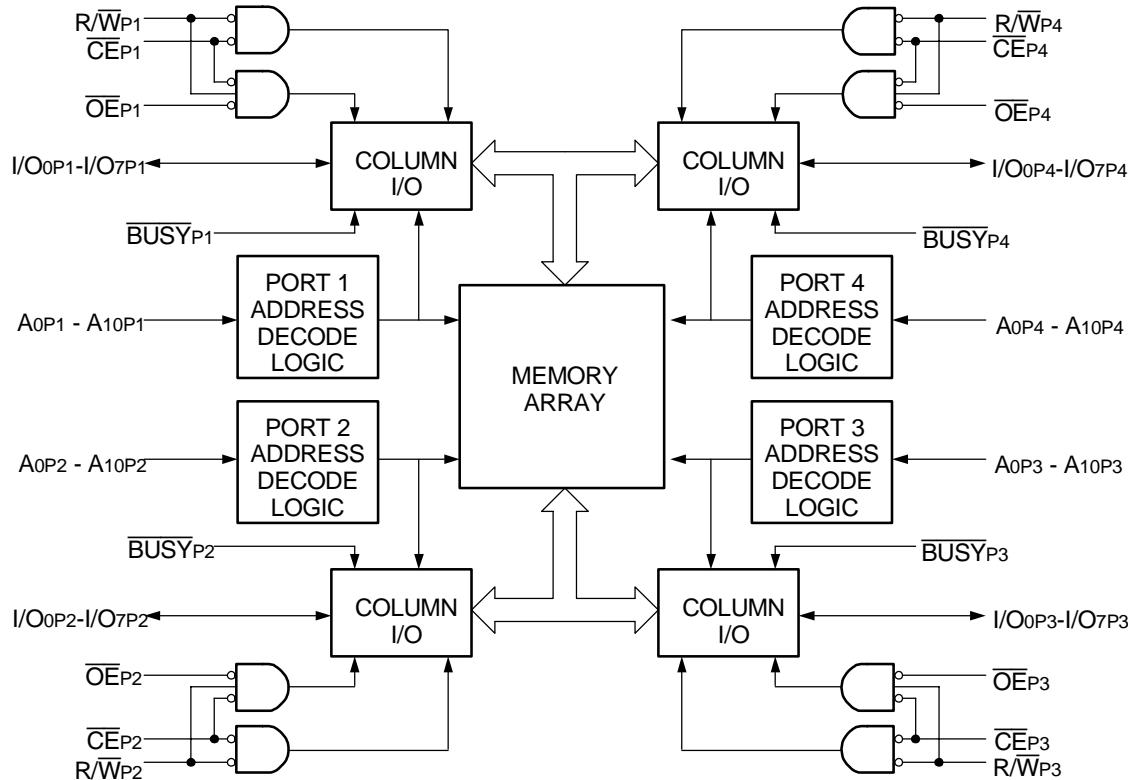


LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

Features

- ◆ **High-speed access**
 - *Commercial: 20/25/35ns (max.)*
 - *Industrial: 25ns (max.)*
 - *Military: 25/35ns (max.)*
- ◆ **Low-power operation**
 - *IDT7052S*
 - Active: 750mW (typ.)*
 - Standby: 7.5mW (typ.)*
 - *IDT7052L*
 - Active: 750mW (typ.)*
 - Standby: 1.5mW (typ.)*
- ◆ **True FourPort memory cells which allow simultaneous access of the same memory locations**
- ◆ **Fully asynchronous operation from each of the four ports: P1, P2, P3, P4**
- ◆ **Versatile control for write-inhibit: separate BUSY input to control write-inhibit for each of the four ports**


- ◆ **Battery backup operation—2V data retention**
- ◆ **TTL-compatible; single 5V ($\pm 10\%$) power supply**
- ◆ **Available in 120 pin Thin Quad Flatpacks and 108 pin PGA**
- ◆ **Military product compliant to MIL-PRF-38535 QML**
- ◆ **Industrial temperature range (-40°C to $+85^{\circ}\text{C}$) is available for selected speeds**
- ◆ **Green parts available, see ordering information**

Description

The IDT7052 is a high-speed 2K x 8 FourPort™ Static RAM designed to be used in systems where multiple access into a common RAM is required. This FourPort Static RAM offers increased system performance in multiprocessor systems that have a need to communicate in real time and also offers added benefit for high-speed systems in which multiple access is required in the same cycle.

The IDT7052 is also designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself to those

Functional Block Diagram

2674 drw 01

JUNE 2018

systems which cannot tolerate wait states or are designed to be able to externally arbitrate or withstand contention when all ports simultaneously access the same FourPort RAM location.

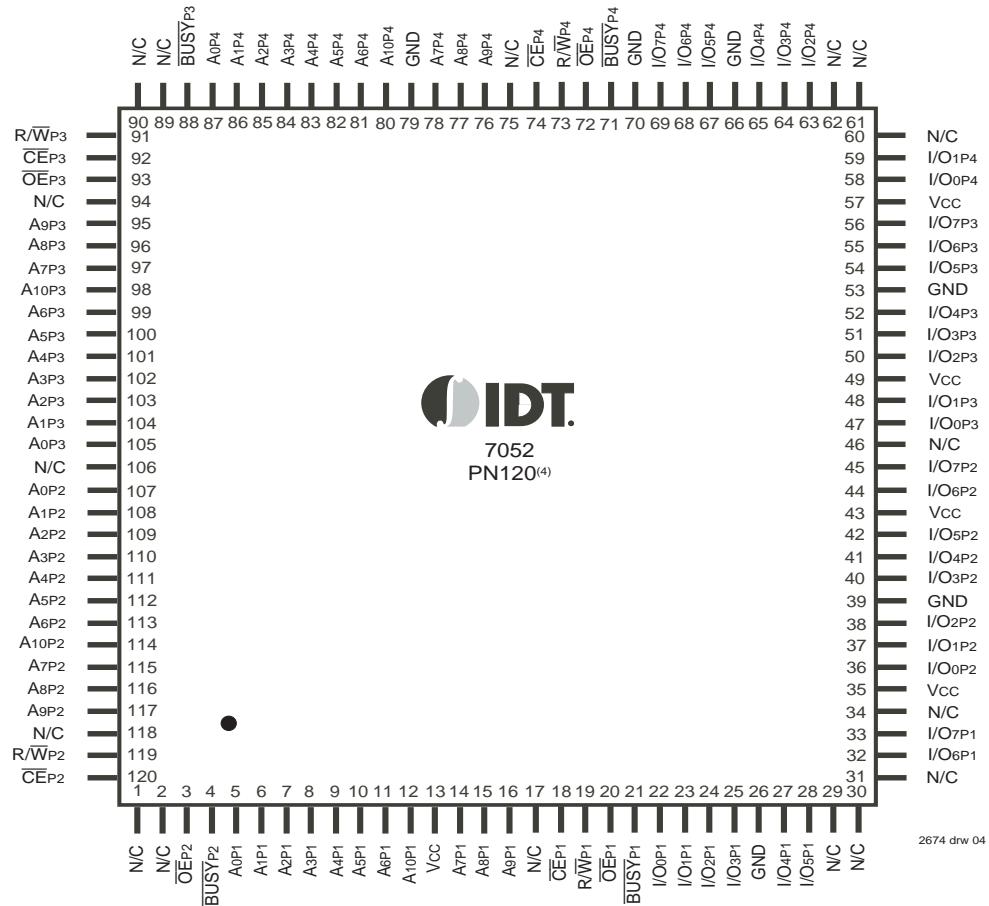
The IDT7052 provides four independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location from all ports. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low power standby power mode.

Fabricated using CMOS high-performance technology, this FourPort SRAM typically operates on only 750mW of power. Low-power (L) versions offer battery backup data retention capability, with each port typically consuming 50 μ W from a 2V battery.

The IDT7052 is packaged in a ceramic 108-pin Pin Grid Array (PGA) and 120-pin Thin Quad Flatpack (TQFP). Military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)

81 R/\overline{W} P2	80 NC	77 A7 P2	74 A5 P2	72 A3 P2	69 A0 P2	68 A0 P3	65 A3 P3	63 A5 P3	60 A7 P3	57 NC	54 R/\overline{W} P3	12
84 $BUSY$ P2	83 \overline{OE} P2	78 A8 P2	76 A10 P2	73 A4 P2	70 A1 P2	67 A1 P3	64 A4 P3	61 A10 P3	59 A8 P3	56 \overline{OE} P3	53 $BUSY$ P3	11
87 A2 P1	86 A1 P1	82 \overline{CE}	79 A9 P2	75 A6 P2	71 A2 P2	66 A2 P3	62 A6 P3	58 A9 P3	55 \overline{CE} P3	51 A1 P4	50 A2 P4	10
90 A5 P1	88 A3 P1	85 A0 P1	IDT7052G G108 ⁽⁴⁾ 108-Pin PGA Top View ⁽⁵⁾									09
92 A10 P1	91 A6 P1	89 A4 P1	IDT7052G G108 ⁽⁴⁾ 108-Pin PGA Top View ⁽⁵⁾									08
95 A8 P1	94 A7 P1	93 Vcc	IDT7052G G108 ⁽⁴⁾ 108-Pin PGA Top View ⁽⁵⁾									07
96 A9 P1	97 NC	98 \overline{CE} P1	IDT7052G G108 ⁽⁴⁾ 108-Pin PGA Top View ⁽⁵⁾									06
99 R/\overline{W} P1	100 \overline{OE} P1	102 I/O0 P1	IDT7052G G108 ⁽⁴⁾ 108-Pin PGA Top View ⁽⁵⁾									05
101 $BUSY$ P1	103 I/O1 P1	106 GND	IDT7052G G108 ⁽⁴⁾ 108-Pin PGA Top View ⁽⁵⁾									04
104 I/O2 P1	105 I/O3 P1	1 I/O6 P1	4 VCC	8 GND	12 VCC	17 VCC	21 GND	25 VCC	28 I/O2 P4	32 I/O5 P4	33 I/O6 P4	03
107 I/O4 P1	2 I/O7 P1	5 I/O0 P2	7 I/O2 P2	10 I/O4 P2	13 I/O6 P2	16 I/O1 P3	19 I/O3 P3	22 I/O5 P3	24 I/O7 P3	29 I/O3 P4	30 I/O4 P4	02
108 I/O5 P1	3 NC	6 I/O1 P2	9 I/O3 P2	11 I/O5 P2	14 I/O7 P2	15 I/O0 P3	18 I/O2 P3	20 I/O4 P3	23 I/O6 P3	26 I/O0 P4	27 I/O1 P4	01


INDEX

2674 drw 02

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply.
3. Package body is approximately 1.21 in x 1.21 in x .16 in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part-marking.

Pin Configurations^(1,2,3) (con't.)

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply.
3. PN120-1 package body is approximately 14mm x 14mm x 1.4mm.
4. This package code is used to reference the package diagram.

Pin Configurations^(1,2)

Symbol	Pin Name
A0 P1 - A10 P1	Address Lines - Port 1
A0 P2 - A10 P2	Address Lines - Port 2
A0 P3 - A10 P3	Address Lines - Port 3
A0 P4 - A10 P4	Address Lines - Port 4
I/O0 P1 - I/O7 P1	Data I/O - Port 1
I/O0 P2 - I/O7 P2	Data I/O - Port 2
I/O0 P3 - I/O7 P3	Data I/O - Port 3
I/O0 P4 - I/O7 P4	Data I/O - Port 4
R/W P1	Read/Write - Port 1
R/W P2	Read/Write - Port 2
R/W P3	Read/Write - Port 3
R/W P4	Read/Write - Port 4
GND	Ground
CE P1	Chip Enable - Port 1
CE P2	Chip Enable - Port 2
CE P3	Chip Enable - Port 3
CE P4	Chip Enable - Port 4
OE P1	Output Enable - Port 1
OE P2	Output Enable - Port 2
OE P3	Output Enable - Port 3
OE P4	Output Enable - Port 4
BUSY P1	Write Disable - Port 1
BUSY P2	Write Disable - Port 2
BUSY P3	Write Disable - Port 3
BUSY P4	Write Disable - Port 4
Vcc	Power

2674tbl01

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply

Capacitance⁽¹⁾

(TA = +25°C, f = 1.0MHz) TQFP only

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	9	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	10	pF

2674tbl03

NOTES:

1. This parameter is determined by device characterization but is not production tested.
2. 3dV references the interpolated capacitance when the input and the output signals switch from 0V to 3V or from 3V to 0V.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Military	Unit
V _{TERM} ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
T _{BIAS}	Temperature Under Bias	-55 to +125	-65 to +135	°C
T _{STG}	Storage Temperature	-65 to +150	-65 to +150	°C
I _{OUT}	DC Output Current	50	50	mA

2674tbl02

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{TERM} must not exceed V_{CC} + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to $\leq 20\text{mA}$ for the period of $V_{TERM} \geq V_{CC} + 10\%$.

Maximum Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	V _{CC}
Military	-55°C to +125°C	0V	5.0V \pm 10%
Commercial	0°C to +70°C	0V	5.0V \pm 10%
Industrial	-40°C to +85°C	0V	5.0V \pm 10%

2674tbl04

NOTE:

1. This is the parameter T_A. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
V _{CC}	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
V _{IH}	Input High Voltage	2.2	—	6.0 ⁽²⁾	V
V _{IL}	Input Low Voltage	-0.5 ⁽¹⁾	—	0.8	V

2674tbl05

NOTES:

1. V_{IL} \geq -1.5V for pulse width less than 10ns.
2. V_{TERM} must not exceed V_{CC} + 10%.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,5) (V_{CC} = 5.0V ± 10%)

Symbol	Parameter	Condition	Version	7052X20 Com'l Only		7052X25 Com'l, Ind & Military		7052X35 Com'l & Military		Unit
				Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	
I _{CC1}	Operating Power Supply Current (All Ports Active)	$\bar{CE} = V_{IL}$ Outputs Disabled $f = 0^{(3)}$	COM'L. S L	150 150	300 250	150 150	300 250	150 150	300 250	mA
				— —	— —	150 150	360 300	150 150	360 300	
I _{CC2}	Dynamic Operating Current (All Ports Active)	$\bar{CE} = V_{IL}$ Outputs Disabled $f = f_{MAX}^{(4)}$	COM'L. S L	240 210	370 325	225 195	350 305	210 180	335 290	mA
				— —	— —	225 195	400 340	210 180	395 330	
I _{SB}	Standby Current (All Ports - TTL Level Inputs)	$\bar{CE} = V_{IH}$ $f = f_{MAX}^{(4)}$	COM'L. S L	70 60	95 80	45 40	85 70	40 35	75 60	mA
				— —	— —	45 40	115 85	40 35	110 80	
I _{S81}	Full Standby Current (All Ports - All CMOS Level Inputs)	All Ports $\bar{CE} \geq V_{CC} - 0.2V$ $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$, $f = 0^{(3)}$	COM'L. S L	1.5 0.3	15 1.5	1.5 0.3	15 1.5	1.5 0.3	15 1.5	mA
				— —	— —	1.5 0.3	30 4.5	1.5 0.3	30 4.5	

NOTES:

- 'X' in part number indicates power rating (S or L).
- V_{CC} = 5V, T_A = +25°C and are not production tested.
- f = 0 means no address or control lines change.
- At f = f_{MAX}, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/t_{RC}, and using "AC Test Conditions" of input levels of GND to 3V.
- For the case of one port, divide the appropriate current above by four.

2674 tbl 06

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (V_{CC} = 5.0V ± 10%)

Symbol	Parameter	Test Conditions	7052S		7052L		Unit
			Min.	Max.	Min.	Max.	
I _{IL}	Input Leakage Current ⁽¹⁾	V _{CC} = 5.5V, V _{IN} = 0V to V _{CC}	—	10	—	5	µA
I _{LO}	Output Leakage Current	$\bar{CE} = V_{IH}$, V _{OUT} = 0V to V _{CC}	—	10	—	5	µA
V _{OL}	Output Low Voltage	I _{OL} = 4mA	—	0.4	—	0.4	V
V _{OH}	Output High Voltage	I _{OH} = -4mA	2.4	—	2.4	—	V

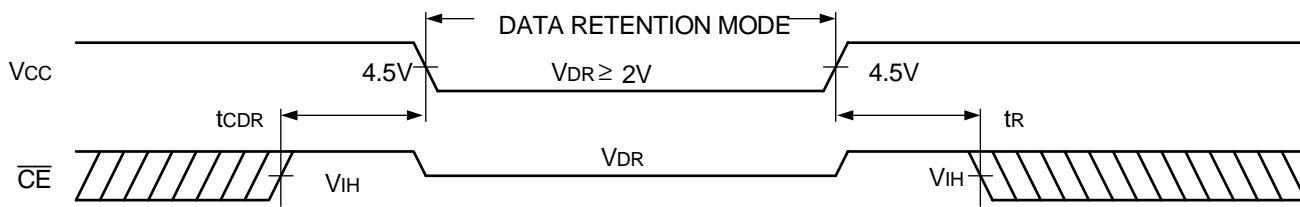
2674 tbl 07

NOTE:

- At V_{CC} ≤ 2.0V input leakages are undefined.

Data Retention Characteristics Over All Temperature Ranges⁽⁴⁾

(L Version Only) $V_{LC} = 0.2V$, $V_{HC} = V_{CC} - 0.2V$


Symbol	Parameter	Test Condition	Min.	Typ. ⁽¹⁾	Max.	Unit
V_{DR}	V _{CC} for Data Retention	$V_{CC} = 2V$ $\overline{CE} \geq V_{HC}$ $V_{IN} \geq V_{HC}$ or $\leq V_{LC}$	2.0	—	—	V
I_{CDR}	Data Retention Current		—	25	600	μA
$t_{CDR}^{(3)}$	Chip Deselect to Data Retention Time		—	25	1800	
$t_R^{(3)}$	Operation Recovery Time		0	—	—	ns
			$t_{RC}^{(2)}$	—	—	ns

2674 tbl 08a

NOTES:

1. $V_{CC} = 2V$, $T_A = +25^\circ C$
2. t_{RC} = Read Cycle Time
3. This parameter is guaranteed but not production tested.
4. Industrial temperature: For other speeds, packages and powers contact your sales office.

Low V_{CC} Data Retention Waveform

2674 drw 05

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2

2674 tbl 08b

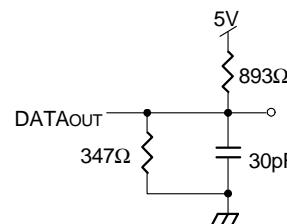


Figure 1. AC Output Test Load

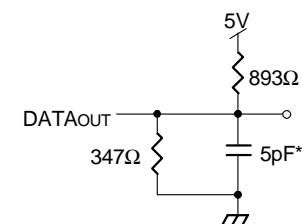
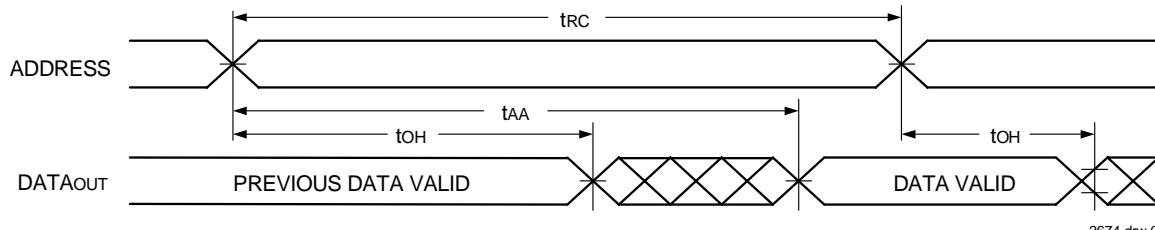


Figure 2. Output Test Load
(for t_{Lz} , t_{Hz} , t_{wz} , t_{ow})

*Including scope and jig

AC Electrical Characteristics Over the
Operating Temperature and Supply Voltage⁽³⁾

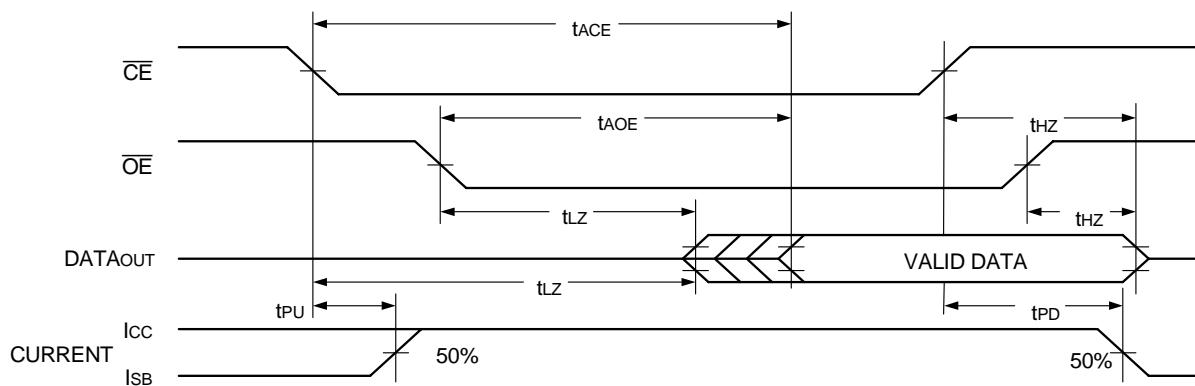

Symbol	Parameter	7052X20 Com'l Only		7052X25 Com'l, Ind & Military		7052X35 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t _{RC}	Read Cycle Time	20	—	25	—	35	—	ns
t _{AA}	Address Access Time	—	20	—	25	—	35	ns
t _{ACE}	Chip Enable Access Time	—	20	—	25	—	35	ns
t _{AOE}	Output Enable Access Time	—	10	—	15	—	25	ns
t _{OH}	Output Hold from Address Change	0	—	0	—	0	—	ns
t _{LZ}	Output Low-Z Time ^(1,2)	5	—	5	—	5	—	ns
t _{HZ}	Output High-Z Time ^(1,2)	—	12	—	15	—	15	ns
t _{PU}	Chip Enable to Power Up Time ⁽²⁾	0	—	0	—	0	—	ns
t _{PD}	Chip Disable to Power Down Time ⁽²⁾	—	20	—	25	—	35	ns

NOTES:

1. Transition is measured 0mV from Low or High-Impedance voltage with the Output Test Load (Figure 2)
2. This parameter is guaranteed by device characterization but is not production tested.
3. 'X' in part number indicates power rating (S or L)

2674 tbl 09

Timing Waveform of Read Cycle No. 1, Any Port⁽¹⁾



2674 drw 07

NOTE:

1. R/W = V_{IH}, \overline{OE} = V_{IL} and \overline{CE} = V_{IL}.

Timing Waveform of Read Cycle No. 2, Any Port^(1,2)

2674 drw 08

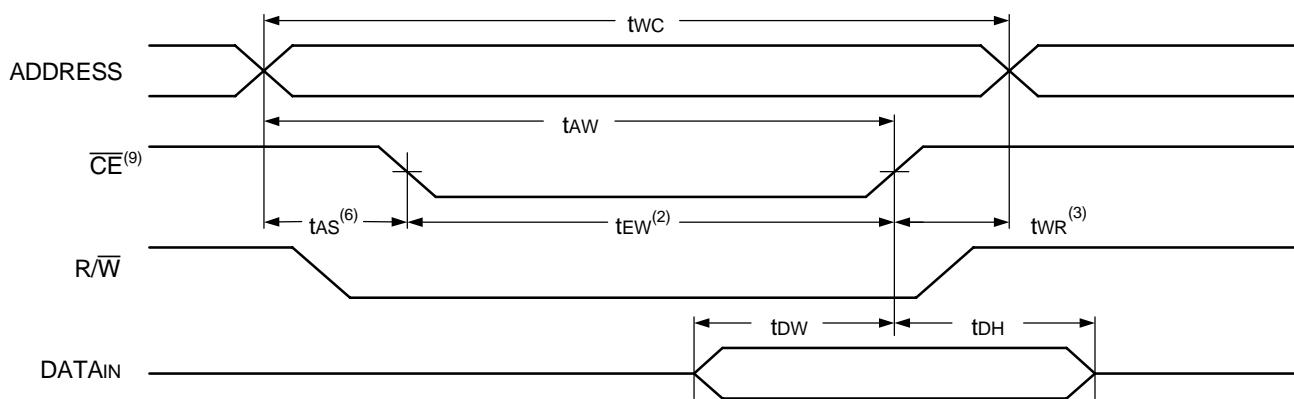
NOTES:

1. R/W = V_{IH} for Read Cycles.
2. Addresses valid prior to or coincident with \overline{CE} transition LOW.

AC Electrical Characteristics Over the
Operating Temperature and Supply Voltage⁽⁷⁾


Symbol	Parameter	7052X20 Com'l Only		7052X25 Com'l & Military		7052X35 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
WRITE CYCLE								
t _{WC}	Write Cycle Time	20	—	25	—	35	—	ns
t _{EW}	Chip Enable to End-of-Write ⁽³⁾	15	—	20	—	30	—	ns
t _{AW}	Address Valid to End-of-Write	15	—	20	—	30	—	ns
t _{AS}	Address Set-up Time	0	—	0	—	0	—	ns
t _{WP}	Write Pulse Width ⁽³⁾	15	—	20	—	30	—	ns
t _{WR}	Write Recovery Time	0	—	0	—	0	—	ns
t _{DW}	Data Valid to End-of-Write	15	—	15	—	20	—	ns
t _{HZ}	Output High-Z Time ^(1,2)	—	15	—	15	—	15	ns
t _{DH}	Data Hold Time	0	—	0	—	0	—	ns
t _{WZ}	Write Enable to Output in High-Z ^(1,2)	—	12	—	15	—	15	ns
t _{OW}	Output Active from End-of-Write ^(1,2)	0	—	0	—	0	—	ns
t _{WDD}	Write Pulse to Data Delay ⁽⁴⁾	—	35	—	45	—	55	ns
t _{WDD}	Write Data Valid to Read Data Delay ⁽⁴⁾	—	30	—	35	—	45	ns
BUSY INPUT TIMING								
t _{WB}	Write to <u>BUSY</u> ⁽⁵⁾	0	—	0	—	0	—	ns
t _{WH}	Write Hold After <u>BUSY</u> ⁽⁶⁾	15	—	15	—	20	—	ns

NOTES:


1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
2. This parameter is guaranteed by device characterization but is not production tested.
3. If $\overline{OE} = V_{IL}$ during a R/W controlled write cycle, the write pulse width must be the larger of t_{WP} or (t_{WZ} + t_{DW}) to allow the I/O drivers to turn off data to be placed on the bus for the required t_{OW}. If $\overline{OE} = V_{IH}$ during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t_{WP}. Specified for $\overline{OE} = V_{IH}$ (refer to "Timing Waveform of Write Cycle", Note 8).
4. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".
5. To ensure that the write cycle is inhibited on port "A" during contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
6. To ensure that a write cycle is completed on port "A" after contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
7. 'X' in part number indicates power rating.

2674 tbl 10

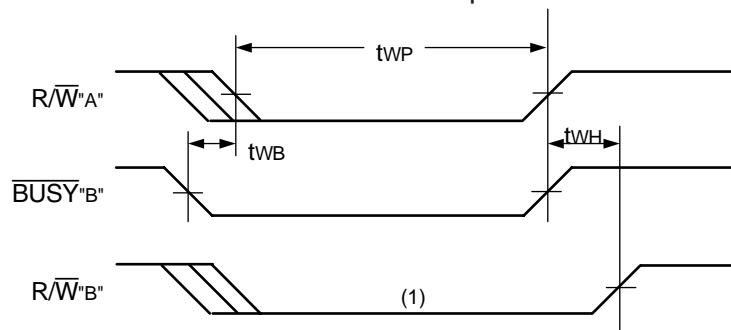
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(5,8)


Timing Waveform of Write Cycle No. 2, CE Controlled Timing^(1, 5)

NOTES:

1. R/W or CE = V_{IL} during all address transitions.
2. A write occurs during the overlap (tew or twp) of a CE = V_{IL} and a R/W = V_{IL}.
3. t_{WR} is measured from the earlier of CE or R/W = V_{IL} to the end of write cycle.
4. During this period, the I/O pins are in the output state, and input signals must not be applied.
5. If the CE = V_{IL} transition occurs simultaneously with or after the R/W = V_{IL} transition, the outputs remain in the High-impedance state.
6. Timing depends on which enable signal is asserted last, CE or R/W.
7. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed but is not production tested.
8. If OE = V_{IL} during a R/W controlled write cycle, the write pulse width must be the larger of twp or (tew + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If OE = V_{IL} during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

Timing Waveform of Write with Port-to-Port Read^(1,2,3)



NOTES:

1. Assume $\overline{\text{BUSY}}$ input = V_{IH} and $\overline{\text{CE}}$ = V_{IL} for the writing port.
2. $\overline{\text{OE}}$ = V_{IL} for the reading ports.
3. All timing is the same for left and right ports. Port "A" may be either of the four ports and Port "B" is any other port.

2674 drw 11

Timing Waveform of Write with **BUSY** Input

2674 drw 12

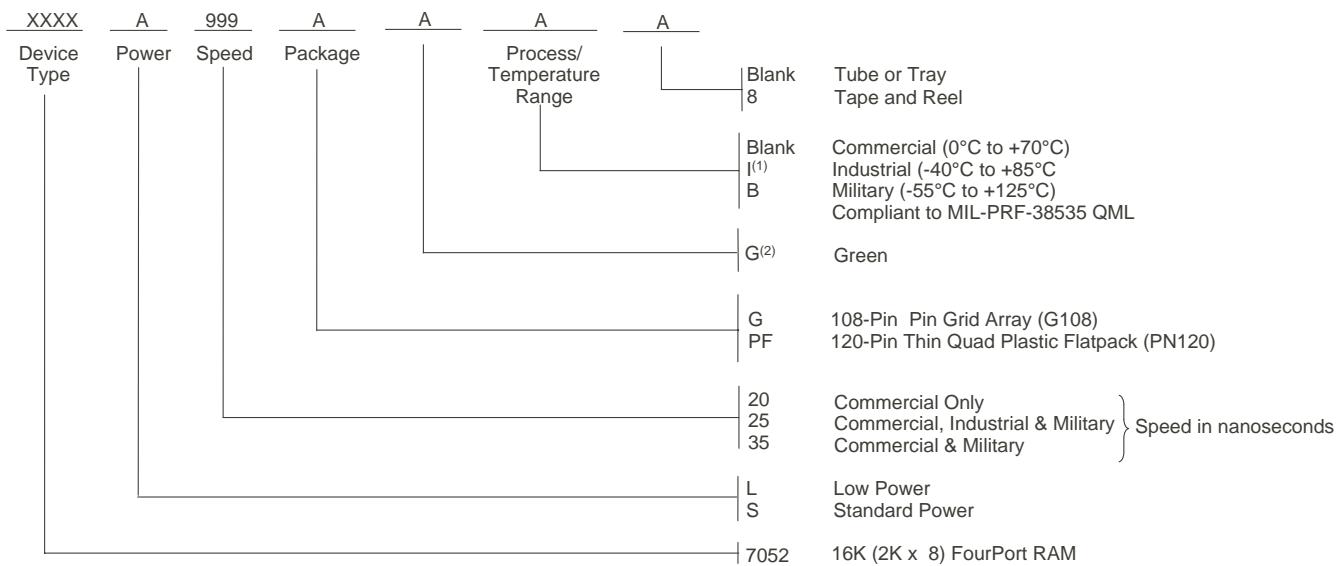
NOTE:

1. $\overline{\text{BUSY}}$ is asserted on Port "B" blocking $\overline{\text{R/W}}^{\text{B}}$ until $\overline{\text{BUSY}}^{\text{B}}$ goes HIGH.

Functional Description

The IDT7052 provides four ports with separate control, address, and I/O pins that permit independent access for reads or writes to any location in memory. These devices have an automatic power down feature controlled by $\overline{\text{CE}}$. The $\overline{\text{CE}}$ controls on-chip power down circuitry that permits the respective port to go into standby mode when not selected ($\overline{\text{CE}} = V_{IH}$). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control ($\overline{\text{OE}}$). In the read mode, the port's $\overline{\text{OE}}$ turns on the output drivers when set LOW. READ/ WRITE conditions are illustrated in the table below.

Truth Table I – Read/Write Control⁽³⁾


Any Port ⁽⁴⁾				Function
$\overline{\text{R/W}}$	$\overline{\text{CE}}$	$\overline{\text{OE}}$	D ₀₋₇	
X	H	X	Z	Port Deselected: Power-Down
X	H	X	Z	$\overline{\text{CE}}_1=\overline{\text{CE}}_2=\overline{\text{CE}}_3=\overline{\text{CE}}_4=V_{IH}$ Power Down Mode IsB or IsB1
L	L	X	DATAIN	Data on port written into memory ⁽²⁾
H	L	L	DATAOUT	Data in memory output on port
X	X	H	Z	Outputs Disabled

NOTES:

1. "H" = V_{IH} , "L" = V_{IL} , "X" = Don't Care, "Z" = High Impedance
2. If $\overline{\text{BUSY}} = V_{IL}$, write is blocked.
3. For valid write operation, no more than one port can write to the same address location at the same time.

2674 tbl 11

Ordering Information

2674 drw 13

NOTES:

1. Industrial temperature range is available. For specific speeds, packages and powers contact your sales office.
2. Green parts available. For specific speeds, packages and powers contact your local sales office.

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02

Datasheet Document History

01/18/99: Initiated datasheet document history
Converted to new format
Cosmetic typographical corrections
Added additional notes to pin configurations

06/04/99: Changed drawing format
Page 1 Corrected DSC number

11/10/99: Replaced IDT logo

11/18/99: Page 10 Fixed typo in caption for BUSY Input waveform

05/23/00: Page 4 Increased storage temperature parameter
Clarified TA parameter
Page 5 DC Electrical parameters—changed wording from "open" to "disabled"
Changed ± 200 mV to 0mV in notes

10/22/01: Pages 2 & 3 Added date revision for pin configurations
Page 5, 7 & 8 Added Industrial temp to column heading for 25ns speed to DC & AC Electrical Characteristics
Page 11 Added Industrial temp offering to 25ns ordering information
Page 4, 5, 7 & 8 Removed Industrial temp footnote from all tables
Page 1 & 11 Replace ™ logo with ® logo

07/24/06: Page 1 Added green availability to features
Page 11 Added green indicator to ordering information

01/19/09: Page 11 Removed "IDT" from orderable part number

02/05/15: Page 2 Removed IDT in reference to fabrication
Page 2,3 & 11 The package codes G108-1 & PN120-1 changed to G108 & PN120 respectively to match standard package codes
Page 11 Added Tape and Reel to Ordering Information
Page 1 & 3 Removed 132-pin PQF offering from the Features & the pin configuration
Page 11 Removed the 132-pin PQF package from the Ordering Information

Datasheet Document History (con't)

07/08/16: Page 3 Changed diagram for the PN120 pin configuration by rotating package pin labels and pin numbers 90 degrees counter clockwise to reflect pin 1 orientation and added pin 1 dot at pin 1
Added the IDT logo to the PN120 pin configurations and changed the text to be in alignment with new diagram marking specs and removed the date revision indicator from all pin configurations
Updated footnote references for PN120 pin configuration by removing footnote 4 & 5

06/07/18: Product Discontinuation Notice - PDN# SP-17-02
Last time buy expires June 15, 2018

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138

for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com

for Tech Support:
408-284-2794
DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

7052L25PQF 7052L20PQFG 7052S35PQF 7052S35G 7052S20G 7052S25G 7052L25PFGI8 7052L25PQFI
7052S35GB 7052L20PFG8 7052L25PFGI 7052S30GB 7052S25PQF 7052L20PQF 7052L20PFG 7052S20PQF
7052L35PQF 7052L35G 7052L25G 7052L20G 7052L35GB 7052L30GB