January 2009 # 4N38M, H11D1M, H11D2M, H11D3M, MOC8204M High Voltage Phototransistor Optocouplers #### **Features** - High voltage: - MOC8204M, BV_{CER} = 400V - H11D1M, H11D2M, BV_{CER} = 300V - H11D3M, BV_{CER} = 200V - High isolation voltage: - 7500 V_{AC} peak, 1 second - Underwriters Laboratory (UL) recognized File # E90700, Volume 2 - IEC 60747-5-2 approved (ordering option V) # **Applications** - Power supply regulators - Digital logic inputs - Microprocessor inputs - Appliance sensor systems - Industrial controls #### **General Description** The 4N38M, H11DXM and MOC8204M are phototransistor-type optically coupled optoisolators. A gallium arsenide infrared emitting diode is coupled with a high voltage NPN silicon phototransistor. The device is supplied in a standard plastic six-pin dual-in-line package. #### **Schematic** # ANODE 1 6 BASE 5 COLLECTOR N/C 3 4 EMITTER # **Package Outlines** ## **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameter | Device | Value | Units | |---------------------|--|--|----------------|-------| | TOTAL DEV | ICE | | | | | T _{STG} | Storage Temperature | All | -40 to +150 | °C | | T _{OPR} | Operating Temperature | All | -40 to +100 | °C | | T _{SOL} | Lead Solder Temperature (Wave Solder) | All | 260 for 10 sec | °C | | P _D | Total Device Power Dissipation @ T _A = 25°C | All | 260 | mW | | | Derate Above 25°C | | 3.5 | mW/°C | | EMITTER | | | | | | I _F | Forward DC Current ⁽¹⁾ | All | 80 | mA | | V _R | Reverse Input Voltage ⁽¹⁾ | All | 6.0 | V | | I _F (pk) | Forward Current – Peak (1µs pulse, 300pps) ⁽¹⁾ | All | 3.0 | А | | P_{D} | LED Power Dissipation @ T _A = 25°C ⁽¹⁾ | All | 150 | mW | | | Derate Above 25°C | | 1.41 | mW/°C | | DETECTOR | | • | | | | P_{D} | Power Dissipation @ T _A = 25°C | All | 300 | mW | | | Derate linearly above 25°C | | 4.0 | mW/°C | | V _{CER} | Collector to Emitter Voltage ⁽¹⁾ | MOC8204M | 400 | V | | | | H11D1M, H11D2M | 300 | | | | | H11D3M | 200 | | | | | 4N38M | 80 | | | V _{CBO} | Collector Base Voltage ⁽¹⁾ | MOC8204M | 400 | V | | | | H11D1M, H11D2M | 300 | | | | | H11D3M | 200 | | | | | 4N38M | 80 | | | V _{ECO} | Emitter to Collector Voltage ⁽¹⁾ | H11D1M, H11D2M,
H11D3M,
MOC8204M | 7 | V | | I _C | Collector Current (Continuous) | All | 100 | mA | #### Note: 1. Parameters meet or exceed JEDEC registered data (for 4N38M only). # **Electrical Characteristics** (T_A = 25°C unless otherwise specified.) #### **Individual Component Characteristics** | Symbol | Characteristic | Test Conditions | Device | Min. | Typ.* | Max. | Unit | |---------------------------------|---|--|-----------|------|-------|------|-------| | EMITTER | | | | - | ' | • | ' | | V _F | Forward Voltage ⁽²⁾ | I _F = 10mA | All | | 1.15 | 1.5 | V | | $\frac{\Delta V_F}{\Delta T_A}$ | Forward Voltage
Temp. Coefficient | | All | | -1.8 | | mV/°C | | BV_R | Reverse Breakdown
Voltage | I _R = 10μA | All | 6 | 25 | | V | | СЈ | Junction Capacitance | $V_F = 0V, f = 1MHz$ | All | | 50 | | pF | | | | $V_F = 1V, f = 1MHz$ | | | 65 | | pF | | I _R | Reverse Leakage
Current ⁽²⁾ | V _R = 6V | All | | 0.05 | 10 | μA | | DETECTO | R | | | | | • | ' | | BV _{CER} | Breakdown Voltage | $R_{BE} = 1M\Omega, I_{C} = 1.0mA, I_{F} = 0$ | MOC8204M | 400 | | | V | | | Collector to Emitter ⁽²⁾ | | H11D1M/2M | 300 | | | | | | | | H11D3M | 200 | | | | | BV _{CEO} | | No RBE, I _C = 1.0mA | 4N38M | 80 | | | 1 | | BV _{CBO} | Collector to Base ⁽²⁾ | $I_{C} = 100 \mu A, I_{F} = 0$ | MOC8204M | 400 | | | V | | | | | H11D1M/2M | 300 | | | | | | | | H11D3M | 200 | | | | | | | | 4N38M | 80 | | | | | BV _{EBO} | Emitter to Base | $I_E = 100 \mu A, I_F = 0$ | 4N38M | 7 | | | V | | BV _{ECO} | Emitter to Collector | $I_E = 100 \mu A, I_F = 0$ | All | 7 | 10 | | V | | I _{CER} | Leakage Current
Collector to Emitter ⁽²⁾
($R_{BE} = 1M\Omega$) | $V_{CE} = 300V, I_F = 0, T_A = 25^{\circ}C$ | MOC8204M | | | 100 | nA | | | | $V_{CE} = 300V, I_F = 0, T_A = 100^{\circ}C$ | | | | 250 | μA | | | | $V_{CE} = 200V, I_F = 0, T_A = 25^{\circ}C$ | H11D1M/2M | | | 100 | nA | | | | V _{CE} = 200V, I _F = 0, T _A = 100°C | | | | 250 | μA | | | | V _{CE} = 100V, I _F = 0, T _A = 25°C | H11D3M | | | 100 | nA | | | | V _{CE} = 100V, I _F = 0, T _A = 100°C | | | | 250 | μA | | I _{CEO} | | No R _{BE} , V_{CE} = 60V, I_F = 0, T_A = 25°C | 4N38M | | | 50 | nA | # Transfer Characteristics ($T_A = 25$ °C Unless otherwise specified.) | Symbol | Characteristics | Test Conditions | Device | Min. | Тур.* | Max. | Units | |----------------------|--|---|---------------------------|--------|-------|------|--------| | EMITTER | | | | • | | | | | CTR | Current Transfer
Ratio, Collector to
Emitter | I_F = 10mA, V_{CE} = 10V,
R_{BE} = 1M Ω | H11D1M/2M/3M,
MOC8204M | 2 (20) | | | mA (%) | | | | I _F = 10mA, V _{CE} = 10V | 4N38M | 2 (20) | | | | | V _{CE(SAT)} | Saturation Voltage ⁽²⁾ | I_F = 10mA, I_C = 0.5mA,
R_{BE} = 1M Ω | H11D1M/2M/3M,
MOC8204M | | 0.1 | 0.40 | V | | | | I _F = 20mA, I _C = 4mA | 4N38M | | | 1.0 | | | SWITCHING TIMES | | | | | | | | | t _{ON} | Non-Saturated
Turn-on Time | V_{CE} = 10V, I_{CE} = 2mA,
R_L = 100 Ω | All | | 5 | | μs | | t _{OFF} | Turn-off Time | | All | | 5 | | μs | ^{*}All Typical values at $T_A = 25$ °C #### Note: 2. Parameters meet or exceed JEDEC registered data (for 4N38M only). # **DC Electrical Characteristics** (Continued) (T_A = 25°C unless otherwise specified.) #### **Isolation Characteristics** | Symbol | Characteristic | Test Conditions | Device | Min. | Тур.* | Max. | Units | |------------------|-----------------------|----------------------------|--------|------------------|-------|------|----------------------| | V _{ISO} | Isolation Voltage | f = 60Hz, t = 1 sec. | All | 7500 | | | V _{AC} PEAK | | R _{ISO} | Isolation Resistance | V _{I-O} = 500 VDC | All | 10 ¹¹ | | | Ω | | C _{ISO} | Isolation Capacitance | f = 1MHz | All | | 0.2 | | pF | ^{*}All Typical values at $T_A = 25$ °C ## **Typical Performance Curves** Fig. 2 Normalized Output Characteristics Fig. 3 Normalized Output Current vs. LED Input Current Fig. 4 Normalized Output Current vs. Temperature Fig. 5 Normalized Dark Current vs. Ambient Temperature Fig. 6 Normalized Collector-Base Current vs. Temperature # **Package Dimensions** #### **Through Hole** #### 0.4" Lead Spacing #### **Surface Mount** **Note:** All dimensions in mm. # **Ordering Information** | Option | Order Entry Identifier (Example) | Description | |-----------|-----------------------------------|--| | No option | H11D1M | Standard Through Hole Device (50 units per tube) | | S | S H11D1SM Surface Mount Lead Bend | | | SR2 | H11D1SR2M | Surface Mount; Tape and Reel | | Т | H11D1TM | 0.4" Lead Spacing | | V | H11D1VM | VDE 0884 | | TV | H11D1TVM | VDE 0884, 0.4" Lead Spacing | | SV | H11D1SVM | VDE 0884, Surface Mount | | SR2V | H11D1SR2VM | VDE 0884, Surface Mount, Tape and Reel | # **Marking Information** | Definitions | | | | | |-------------|--|--|--|--| | 1 | Fairchild logo | | | | | 2 | Device number | | | | | 3 | VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) | | | | | 4 | One digit year code, e.g., '7' | | | | | 5 | Two digit work week ranging from '01' to '53' | | | | | 6 | Assembly package code | | | | # **Carrier Tape Specification** User Direction of Feed _____ #### **Reflow Profile** #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore[™] FlashWriter[®]* FPS[™] F-PFS[™] FRFET® Global Power Resource Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ > Quiet Series™ RapidConfigure™ **O**, Saving our world, 1mW/W/kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SUPERFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM® GENERAL The Power Franchise® the practice of the control SerDes® UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILDIS WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Demination of Terms | | | |--------------------------|-----------------------|---| | Datasheet Identification | Product Status | Definition | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. I38