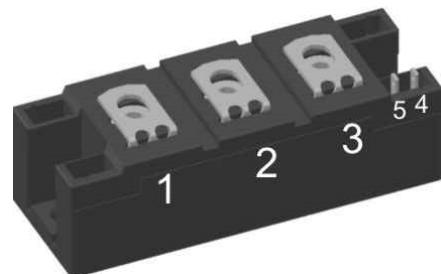


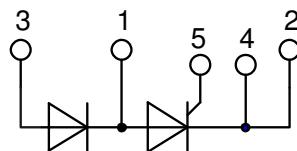
Thyristor \ Diode Module

$V_{RRM} = 2 \times 1600 \text{ V}$


$I_{TAV} = 260 \text{ A}$

$V_T = 1.06 \text{ V}$

Phase leg


Part number

MCMA260PD1600YB

Backside: isolated

E72873

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

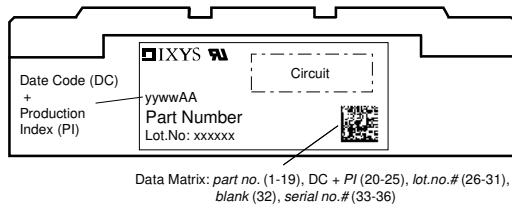
Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: Y4

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms .Conditions of usage:


The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

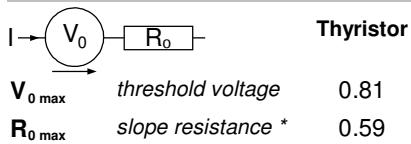
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Rectifier			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
$V_{RSM/DSM}$	max. non-repetitive reverse/forward blocking voltage	$T_{VJ} = 25^\circ C$			1700	V
$V_{RRM/DRM}$	max. repetitive reverse/forward blocking voltage	$T_{VJ} = 25^\circ C$			1600	V
$I_{R/D}$	reverse current, drain current	$V_{R/D} = 1600 V$ $V_{R/D} = 1600 V$	$T_{VJ} = 25^\circ C$ $T_{VJ} = 140^\circ C$		300 20	μA mA
V_T	forward voltage drop	$I_T = 200 A$	$T_{VJ} = 25^\circ C$		1.12	V
		$I_T = 400 A$			1.33	V
		$I_T = 200 A$ $I_T = 400 A$	$T_{VJ} = 125^\circ C$		1.06 1.31	V
I_{TAV}	average forward current	$T_C = 85^\circ C$	$T_{VJ} = 140^\circ C$		260	A
$I_{T(RMS)}$	RMS forward current	180° sine			408	A
V_{T0}	threshold voltage	r_T slope resistance } for power loss calculation only	$T_{VJ} = 140^\circ C$		0.81	V
	slope resistance				1.23	$m\Omega$
R_{thJC}	thermal resistance junction to case				0.13	K/W
R_{thCH}	thermal resistance case to heatsink			0.08		K/W
P_{tot}	total power dissipation		$T_C = 25^\circ C$		880	W
I_{TSM}	max. forward surge current	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$	$T_{VJ} = 45^\circ C$		8.30	kA
		$t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$	$V_R = 0 V$		8.97	kA
		$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$	$T_{VJ} = 140^\circ C$		7.06	kA
		$t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$	$V_R = 0 V$		7.62	kA
I^2t	value for fusing	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$	$T_{VJ} = 45^\circ C$		344.5	kA^2s
		$t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$	$V_R = 0 V$		334.3	kA^2s
		$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$	$T_{VJ} = 140^\circ C$		248.9	kA^2s
		$t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$	$V_R = 0 V$		241.6	kA^2s
C_J	junction capacitance	$V_R = 400 V$ $f = 1 \text{ MHz}$	$T_{VJ} = 25^\circ C$	366		pF
P_{GM}	max. gate power dissipation	$t_p = 30 \mu s$	$T_C = 140^\circ C$		120	W
		$t_p = 500 \mu s$			60	W
P_{GAV}	average gate power dissipation				20	W
$(di/dt)_{cr}$	critical rate of rise of current	$T_{VJ} = 140^\circ C; f = 50 \text{ Hz}$	repetitive, $I_T = 780 A$		100	$A/\mu s$
		$t_p = 200 \mu s; di_G/dt = 0.5 A/\mu s$				
		$I_G = 0.5 A; V = \frac{2}{3} V_{DRM}$	non-repet., $I_T = 500 A$		260	$A/\mu s$
$(dv/dt)_{cr}$	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 140^\circ C$		1000	$V/\mu s$
		$R_{GK} = \infty$; method 1 (linear voltage rise)				
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^\circ C$		2	V
			$T_{VJ} = -40^\circ C$		3	V
I_{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^\circ C$		150	mA
			$T_{VJ} = -40^\circ C$		220	mA
V_{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 140^\circ C$		0.25	V
I_{GD}	gate non-trigger current				10	mA
I_L	latching current	$t_p = 30 \mu s$	$T_{VJ} = 25^\circ C$		200	mA
		$I_G = 0.5 A; di_G/dt = 0.5 A/\mu s$				
I_H	holding current	$V_D = 6 V$ $R_{GK} = \infty$	$T_{VJ} = 25^\circ C$		150	mA
t_{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25^\circ C$		2	μs
		$I_G = 0.5 A; di_G/dt = 0.5 A/\mu s$				
t_q	turn-off time	$V_R = 100 V; I_T = 260 A; V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125^\circ C$		200	
		$di/dt = 10 A/\mu s$ $dv/dt = 50 V/\mu s$ $t_p = 200 \mu s$				μs

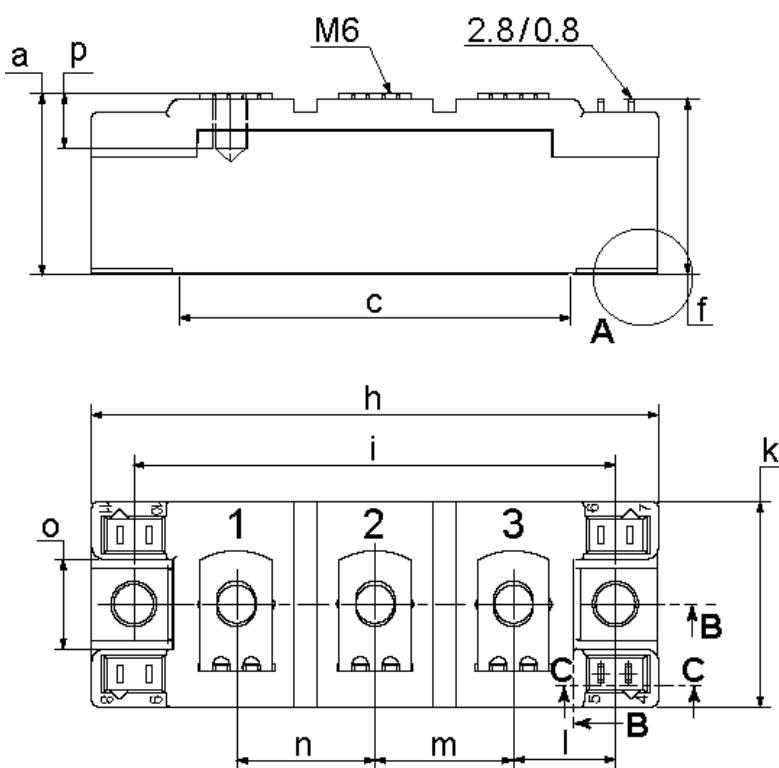
Package Y4			Ratings		
Symbol	Definition	Conditions	min.	typ.	max.
					Unit
I_{RMS}	RMS current	per terminal			300 A
T_{VJ}	virtual junction temperature		-40		140 $^{\circ}\text{C}$
T_{op}	operation temperature		-40		125 $^{\circ}\text{C}$
T_{stg}	storage temperature		-40		125 $^{\circ}\text{C}$
Weight				150	g
M_D	mounting torque		2.25		2.75 Nm
M_T	terminal torque		4.5		5.5 Nm
$d_{Spp/App}$	creepage distance on surface / striking distance through air		terminal to terminal	14.0	10.0 mm
$d_{Spb/Abp}$			terminal to backside	16.0	16.0 mm
V_{ISOL}	isolation voltage	$t = 1$ second $t = 1$ minute	50/60 Hz, RMS; $I_{ISOL} \leq 1$ mA		4800 V 4000 V

Part description

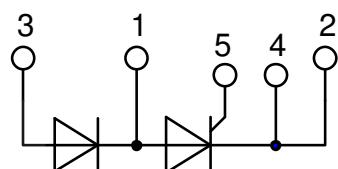
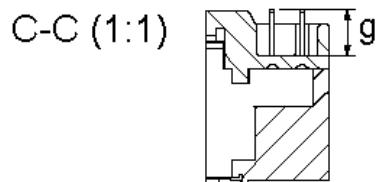
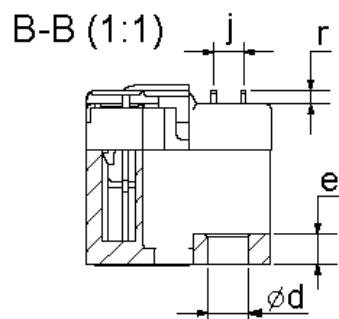
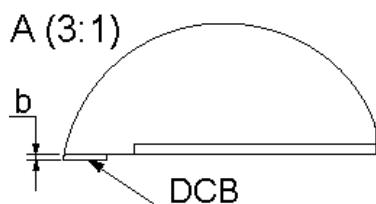

M = Module
 C = Thyristor (SCR)
 M = Thyristor
 A = (up to 1800V)
 260 = Current Rating [A]
 PD = Phase leg
 1600 = Reverse Voltage [V]
 YB = Y4-M6

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA260PD1600YB	MCMA260PD1600YB	Box	6	509778

Equivalent Circuits for Simulation


* on die level

$T_{VJ} = 140 \text{ }^{\circ}\text{C}$

$V_{0\max}$ threshold voltage 0.81 V
 $R_{0\max}$ slope resistance * 0.59 m Ω

Outlines Y4

Dim.	MIN [mm]	MAX [mm]	MIN [inch]	MAX [inch]
a	30.0	30.6	1.181	1.205
b	typ. 0.25		typ. 0.010	
c	64.0	65.0	2.520	2.559
d	6.5	7.0	0.256	0.275
e	4.9	5.1	0.193	0.201
f	28.6	29.2	1.126	1.150
g	7.3	7.7	0.287	0.303
h	93.5	94.5	3.681	3.720
i	79.5	80.5	3.130	3.169
j	4.8	5.2	0.189	0.205
k	33.4	34.0	1.315	1.339
l	16.7	17.3	0.657	0.681
m	22.7	23.3	0.894	0.917
n	22.7	23.3	0.894	0.917
o	14.0	15.0	0.551	0.591
p	typ. 10.5		typ. 0.413	
r	1.8	2.4	0.071	0.041

Thyristor

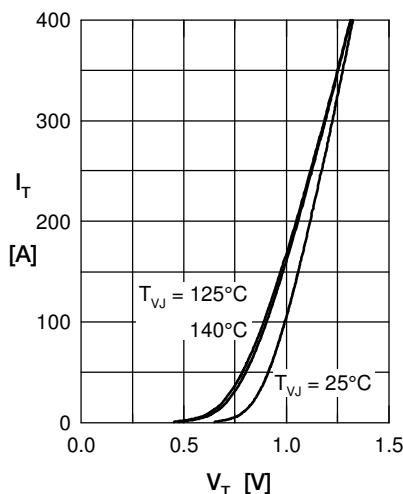


Fig. 1 Forward current vs. voltage drop per thyristor

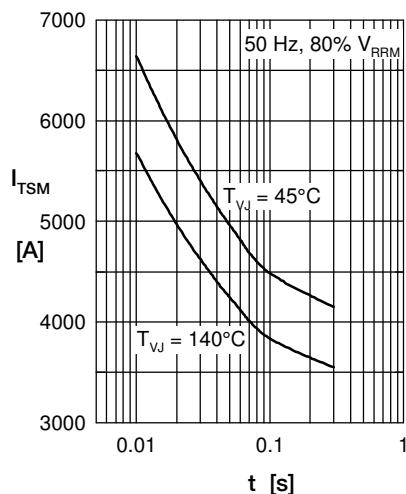


Fig. 2 Surge overload current vs. time per thyristor

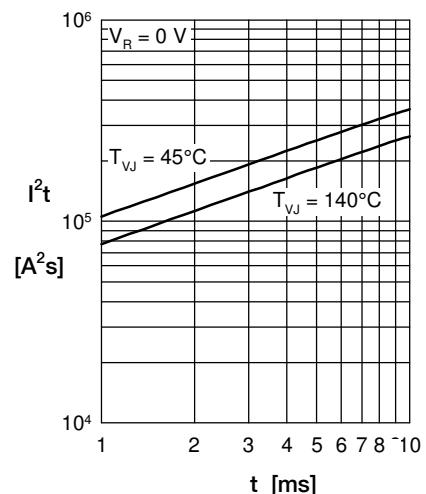
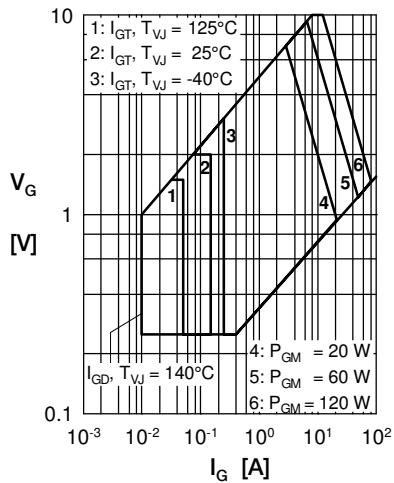


Fig. 3 I^2t vs. time per thyristor

Fig. 4 Gate voltage & gate current

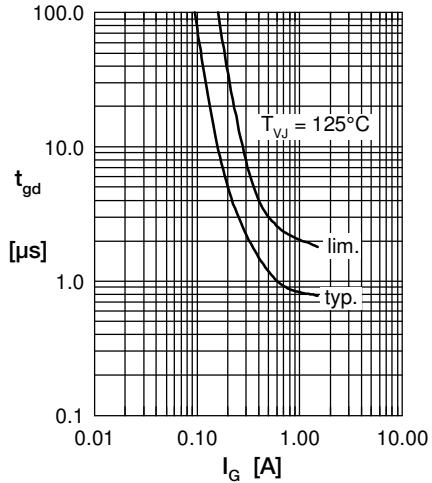
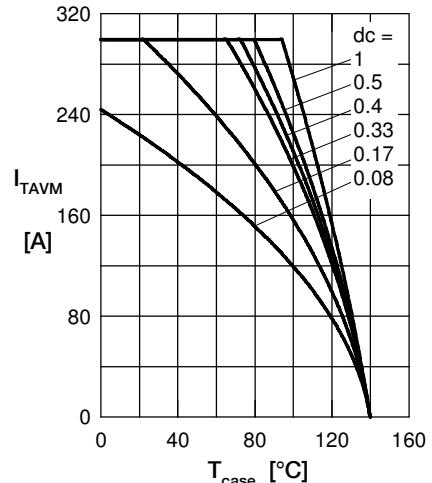


Fig. 5 Gate controlled delay time t_{gd}

Fig. 6 Max. forward current vs. case temperature per thy.

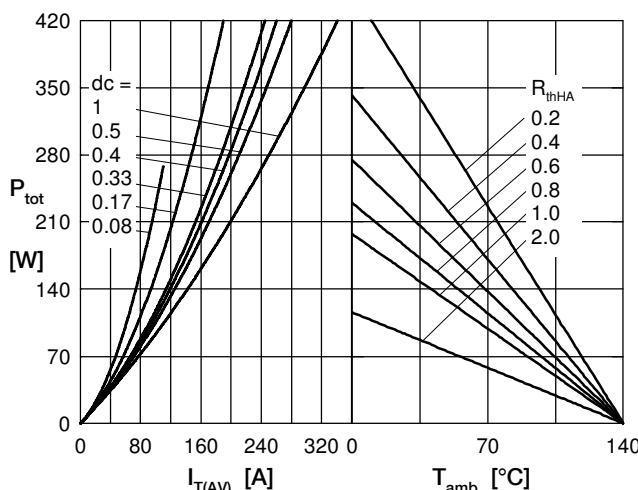


Fig. 7 Power dissipation vs. forward current and ambient temperature per thyristor

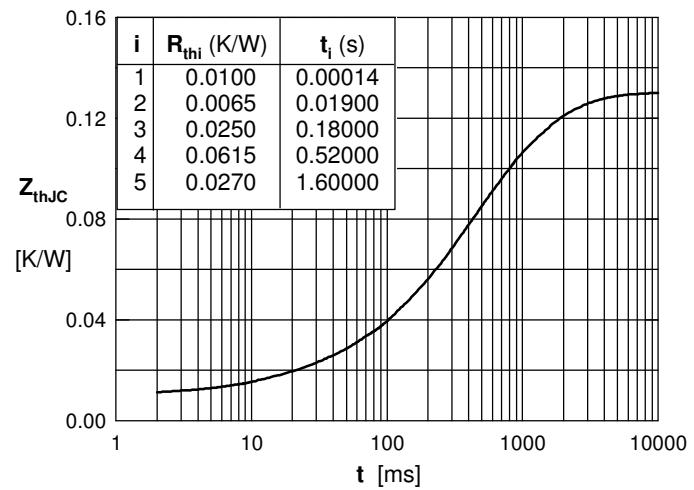


Fig. 8 Transient thermal impedance junction to case vs. time per thyristor

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[IXYS:](#)

[MCMA260PD1600YB](#)