MCP9700 Temperature-to-Voltage Converter PICtailTM Demo Board User's Guide #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. Printed on recycled paper. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. ## **Table of Contents** | Preface | 1 | |---|----| | Chapter 1. Product Overview | 5 | | 1.1 Introduction | | | 1.2 What is the MCP9700 Temperature-to-Voltage Converter PICtail™ Der
Board? | | | 1.3 What the MCP9700 Temperature-to-Voltage Converter PlCtail™ Demo
Board Kit Includes | | | Chapter 2. Installation and Operation | 7 | | 2.1 Introduction | | | 2.2 Features | 7 | | 2.3 Getting Started | 7 | | Appendix A. Schematic and Layouts | 13 | | A.1 Introduction | | | A.2 Board Schematic | | | A.3 Board – Top Layer | 14 | | A.4 Board – Silk Screen Layer | 15 | | A.5 Board – Bottom Layer | 15 | | Appendix B. Bill Of Materials (BOM) | | | Worldwide Sales and Service | | | WICP9700 F | | JEIVIO BY | JARD U | SER 3 C | OIDE | | |------------|--|-----------|--------|---------|------|--| | IOTES: | #### **Preface** #### **NOTICE TO CUSTOMERS** All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available. Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document. For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files. #### INTRODUCTION This chapter contains general information that will be useful to know before using the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. Items discussed in this chapter include: - Document Layout - · Conventions Used in this Guide - · Recommended Reading - The Microchip Web Site - Customer Support - · Document Revision History #### **DOCUMENT LAYOUT** This document describes how to use the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. The manual layout is as follows: - Chapter 1. "Product Overview" Important information about the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. - Chapter 2. "Installation and Operation" This chapter includes instructions on how to get started, with a detailed description of each of the board's functions. - Appendix A. "Schematic and Layouts" Shows the schematic and layout diagrams for the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. - Appendix B. "Bill Of Materials (BOM)" Lists the parts used to build the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. #### **CONVENTIONS USED IN THIS GUIDE** This manual uses the following documentation conventions: #### **DOCUMENTATION CONVENTIONS** | Description | Represents | Examples | | |--|---|--|--| | Arial font: | | | | | Italic characters | Referenced books | MPLAB [®] IDE User's Guide | | | | Emphasized text | is the only compiler | | | Initial caps | A window | the Output window | | | | A dialog | the Settings dialog | | | | A menu selection | select Enable Programmer | | | Quotes | A field name in a window or dialog | "Save project before build" | | | Underlined, italic text with right angle bracket | A menu path | <u>File>Save</u> | | | Bold characters | A dialog button | Click OK | | | | A tab | Click the Power tab | | | N'Rnnnn | A number in verilog format, where N is the total number of digits, R is the radix and n is a digit. | 4'b0010, 2'hF1 | | | Text in angle brackets < > | A key on the keyboard | Press <enter>, <f1></f1></enter> | | | Courier New font: | | | | | Plain Courier New | Sample source code | #define START | | | | Filenames | autoexec.bat | | | | File paths | c:\mcc18\h | | | | Keywords | _asm, _endasm, static | | | Command-line options | | -Opa+, -Opa- | | | | Bit values | 0, 1 | | | | Constants | 0xff, 'A' | | | Italic Courier New | A variable argument | file.o, where file can be any valid filename | | | Square brackets [] | Optional arguments | <pre>mcc18 [options] file [options]</pre> | | | Curly brackets and pipe character: { } | Choice of mutually exclusive arguments; an OR selection | errorlevel {0 1} | | | Ellipses | Replaces repeated text | <pre>var_name [, var_name]</pre> | | | | Represents code supplied by user | <pre>void main (void) { }</pre> | | #### RECOMMENDED READING This user's guide describes how to use the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources. MCP9700 Data Sheet, "Low-Power Linear Active Thermistor ICs" (DS21942) This data sheet provides detailed information regarding the MCP9700 device. #### THE MICROCHIP WEB SITE Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives #### **CUSTOMER SUPPORT** Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - Technical Support - · Development Systems Information Line Customers should contact their distributor, representative or field application engineer for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com #### **DOCUMENT REVISION HISTORY** #### Revision B (March 2006) Updated Bill of Materials (BOM) to show RoHS-compliant part numbers. #### Revision A (March 2005) · Initial Release of this Document. | MCP9700 | PiCtaii ···· | DEMO B | OARD U | SER'S G | UIDE | |---------|--------------|--------|--------|---------|------| | IOTES: | ### **Chapter 1. Product Overview** #### 1.1 INTRODUCTION This chapter provides an overview of the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board and covers the following topics: - What is the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board? - What the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board Kit includes ## 1.2 WHAT IS THE MCP9700 TEMPERATURE-TO-VOLTAGE CONVERTER PICtail™ DEMO BOARD? The MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board demonstrates how to interface the MCP9700 to a PICmicro® microcontroller using the PICkit™ 1 Flash Starter Kit as a platform. A PIC16F676 14-pin, Flash-based, 8-bit CMOS microcontoller device is included with the demo board that can be used with the PICkit 1 Flash Starter Kit, along with firmware that provides the interface to the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board and the voltage-to-temperature conversion routines. The MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board can also be used as a "stand-alone" module to quickly add thermal sensing capablity to any existing application. This basic sensor functionality is implemented on a small Printed Circuit Board (PCB) and an interface via a standard 100 mil header. ## 1.3 WHAT THE MCP9700 TEMPERATURE-TO-VOLTAGE CONVERTER PICtail™ DEMO BOARD KIT INCLUDES This MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board Kit includes: - The MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board - MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board User's Guide (DS51542) - AN981, "Interfacing a MCP9700 Analog Output Temperature Sensor to a PICmicro[®] Microcontroller" (DS00981) - PIC16F676 14-pin, Flash-based, 8-bit CMOS Microcontroller - PIC16F676 Firmware (00059R1.HEX) | MCP9700 PICtall M DEMO BOARD USER'S GUIDE | | | | | | |---|--|--|--|--|--| | IOTES: | ## Chapter 2. Installation and Operation #### 2.1 INTRODUCTION The MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board demonstrates how to interface the MCP9700 to a microcontroller for use by the system designer as an example of how to integrate an analog temperature sensor into their system. #### 2.2 FEATURES The MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board has the following features: - · Small PCB layout - Standard 100 mil 14-pin header (P1) for easy interface to PICkit 1 Flash Starter Kit or custom application #### 2.3 GETTING STARTED This section describes how to quickly set up the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board and PICkit 1 Flash Starter Kit. A block diagram of the setup is presented in Figure 2-1. Refer to AN981, "Interfacing a MCP9700 Analog Output Temperature Sensor to a PICmicro[®] Microcontroller" (DS00981), for detailed information on the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board and the 00059R1.HEX firmware. **FIGURE 2-1:** MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board Block Diagram. #### 2.3.1 Hardware Setup - Connect the P1 header of the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board to the J3 connector on the PICkit 1 Flash Starter Kit board. Refer to Figure 2-2 for proper orientation of the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board and Figure 2-3 for the simplified board schematic. - Insert the PIC16F676 into the evaluation socket of the PICkit 1 Flash Starter Kit board. - Connect the PICkit 1 Flash Starter Kit USB cable from the USB port of the PC to the USB port (J1) on the PICkit 1 Flash Starter Kit board. +5V power is supplied to the PICkit 1 Flash Starter Kit board via the USB cable. The green **POWER** LED and the red **BUSY** LED will turn on, indicating that power is being supplied to the board. FIGURE 2-2: MCP9700 PICtail™ Demo Board and PICkit™ 1 Flash Starter Kit. FIGURE 2-3: Simplified MCP9700 PICtail™ Demo Board Schematic. #### 2.3.2 Programming the PIC16F676 - 1. Download and install the PICkit 1 Flash Starter Kit software to your PC. - Copy the 00059R1.HEX file supplied on the CD that came with this kit to your PC. - 3. Once the PICkit 1 Flash Starter Kit is started, the main window will be displayed on the PC, as indicated in Figure 2-4. FIGURE 2-4: PICkit™ 1 Flash Starter Kit GUI Window on the PC. - 4. Toggle device power to off by unchecking the **Device Power** box under **Board Controls** in the PICkit 1 Flash Starter Kit window (Figure 2-4). The **BUSY** LED on the PICkit 1 Flash Starter Kit board will turn off once the device power is turned off - 5. Click on the **Erase** button in the window to ensure that the PIC16F676 device has been erased. - 6. From the **File** pull down menu, select **Import HEX**. A file window will appear. Select and open "**00059R1.HEX**". - 7. Click on the **Write Device** button in the PICkit 1 Flash Starter Kit window. The PIC16F676 device will be written to with the 00059R1.HEX firmware. When completed, the status bar at the bottom of the window will indicate **Write Successful**. - 8. Toggle the device power on by checking the **Device Power** box under **Board Controls** in the PICkit 1 Flash Starter Kit window. The **BUSY** LED on the PICkit 1 Flash Starter Kit board will turn on once the device power is turned on. Some of the red LEDs (D7-D0) will turn on as well. At this point, the PIC16F676 is reading the temperature data from the MCP9700 and displaying the temperature on the eight red LEDs (D7-D0) on the PICkit 1 Flash Starter Kit board. The ten's digit of the temperature data is represented by bits D7-D4, with D7 being defined as the Most Significant bit (MSb). The one's digit is defined by bits D3-D0, with D3 serving as the MSb. The temperature can be displayed in degrees Celsius or Fahrenheit. The board defaults to the temperature being displayed in Celsius. To display the temperature in Fahrenheit, press the **SW1** push button switch on the PICkit 1 Flash Starter Kit board. The display will change back to Celsius once the **SW1** push button switch is released. Table 2-1 provides a list of the LED patterns that correspond to the Binary Code Decimal (BCD) coding representation of the temperature measurement. TABLE 2-1: BCD CODE REPRESENTATION ON PICkit™ 1 FLASH STARTER KIT LEDS | Binary | BCD
Number | D7
D3 | D6
D2 | D5
D1 | D4
D0 | |--------|---------------|----------|----------|----------|----------| | 0000 | 0 | OFF | OFF | OFF | OFF | | 0001 | 1 | OFF | OFF | OFF | ON | | 0010 | 2 | OFF | OFF | ON | OFF | | 0011 | 3 | OFF | OFF | ON | ON | | 0100 | 4 | OFF | ON | OFF | OFF | | 0101 | 5 | OFF | ON | OFF | ON | | 0110 | 6 | OFF | ON | ON | OFF | | 0111 | 7 | OFF | ON | ON | ON | | 1000 | 8 | ON | OFF | OFF | OFF | | 1001 | 9 | ON | OFF | OFF | ON | For example, a temperature reading of 75°F will be displayed by turning on LEDs D6, D5, D4, D2 and D0 (LEDs D7, D3 and D1 will be turned off), as indicated in Figure 2-5. FIGURE 2-5: PICkit™ 1 Flash Starter Kit LED Display of 75°F. The temperature display will change when the temperature of the MCP9700 is varied. A simple example of this can be seen by pressing your finger on the MCP9700 device (U1) mounted on the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board. More dramatic changes can be seen by applying heat to the MCP9700 with a hair dryer, hot air gun or by cooling the device down. Refer to the MCP9700 data sheet, "Low-Power Linear Active Thermistor ICs", (DS21942) for more information on the MCP9700 and AN981, "Interfacing a MCP9700 Analog Output Temperature Sensor to a PICmicro[®] Microcontroller" (DS00981) for more information on the MCP9700 Temperature-to-Voltage Converter PICtail™ Demo Board and 00059R1.HEX firmware. | | DEMO BOARD 03E | X 3 GOIDE | |--------|----------------|-----------| | NOTES: | ## Appendix A. Schematic and Layouts #### A.1 INTRODUCTION This appendix contains the following schematics and layouts for the MCP9700 Temperature-to-Voltage Converter PICtail Demo Board: - · Board Schematic - · Board Top Layer - Board Silk Screen Layer - Board Bottom Layer #### A.2 BOARD SCHEMATIC #### A.3 BOARD - TOP LAYER #### A.4 BOARD - SILK SCREEN LAYER #### A.5 BOARD - BOTTOM LAYER | MCP9700 | MCP9700 PICtall M DEMO BOARD USER'S GUIDE | | | | | | |---------|---|--|--|--|--|--| | NOTES: | IOTES: | ## **Appendix B. Bill Of Materials (BOM)** #### TABLE B-1: BILL OF MATERIALS (BOM) | Qty | Reference | Description | Manufacturer | Part Number | |-----|--|---|---|---------------| | 1 | C1 | CAP .1UF 25V CERAMIC X7R 0805 | Panasonic® - ECG | ECJ-2VB1E104K | | 1 | P1 | HDR 1X14 CONN HEADER 14POS .100
VERT TIN
* Note Installation on Bottom Side | Molex [®] /Waldom [®] Electronics | 22-28-4140 | | 2 | P2, P3, | Header, single pin (unpopulated) | N/A | N/A | | 4 | V _{DD} , V _{OUT} &
GNDs | "UNPOPULATED" PC TEST POINT COMPACT SMT | Keystone Electronics® | 5016 | | 1 | U2 | MCP9700 Tiny Analog Temperature Sensor | Microchip Technology, Inc. | MCP9700T-E/LT | ### WORLDWIDE SALES AND SERVICE #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286 **Toronto** Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 **Malaysia - Penang** Tel: 60-4-646-8870 Fax: 60-4-646-5086 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-586 Tel: 44-118-921-5869 Fax: 44-118-921-5820 02/16/06