HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

APPLICATIONS:

- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.
The device is designed for use in lighting applications and low cost switch-mode power supplies.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CES}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	700	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	400	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	9	V
I_{C}	Collector Current	4	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	8	A
I_{B}	Base Current	2	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	4	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	70	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

BUL128

THERMAL DATA

$\mathrm{R}_{\mathrm{thj}}$-case	Thermal Resistance Junction-Case	Max	1.78	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{R}_{\mathrm{thj} \text {-amb }}$	Thermal	Resistance Junction-Ambient	Max	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ices	Collector Cut-off Current ($\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=700 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Vebo	Emitter-Base Voltage $(\mathrm{IC}=0)$	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$		9			V
$\mathrm{V}_{\text {ceo(sus)* }}$	Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{IC}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{L}=25 \mathrm{mH}$	400			V
Iceo	Collector Cut-Off Current ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {CE }}=400 \mathrm{~V}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CE(sat) }}$ *	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=0.5 \mathrm{~A} \\ & \mathrm{IC}=1 \mathrm{~A} \\ & \mathrm{IC}=2.5 \mathrm{~A} \\ & \mathrm{I}=4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} \end{aligned}$		0.5	$\begin{gathered} 0.7 \\ 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE} \text { (sat)* }}$	Base-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=0.5 \mathrm{~A} \\ & \mathrm{IC}=1 \mathrm{~A} \\ & \mathrm{IC}=2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
hFE^{*}	DC Current Gain	$\begin{aligned} & \mathrm{IC}=10 \mathrm{~mA} \\ & \mathrm{IC}=2 \mathrm{~A} \\ & \text { Group A } \\ & \text { Group B } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \\ & 25 \end{aligned}$		$\begin{aligned} & 28 \\ & 40 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	RESISTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{p}}=30 \mu \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=-0.4 \mathrm{~A} \\ & \text { (see fig.2) } \end{aligned}$	1.5	0.2	$\begin{gathered} 3 \\ 0.4 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \mathrm{IC}=2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BE} \text { (off) }}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=200 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ \mathrm{R}_{\mathrm{BB}}=0 \Omega \\ \text { (see fig.1) } \end{gathered}$		$\begin{aligned} & 0.6 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 0.2 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

* Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

Note : Product is pre-selected in DC current gain (GROUP A and GROUP B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details.

Safe Operating Areas

DC Current Gain

Collector Emitter Saturation Voltage

Derating Curve

DC Current Gain

Base Emitter Saturation Voltage

Inductive Load Fall Time

Resistive Load Fall Time

Reverse Biased SOA

Inductive Load Storage Time

Resistive Load Storage Time

Figure 1: Inductive Load Switching Test Circuit.

Figure 2: Resistive Load Switching Test Circuit.

TO-220 MECHANICAL DATA

DIM.	mm				inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		10.40	0.094		0.106
H2	10.00		14.00	0.394		0.409
L2			2.95	0.511		0.551
L4	13.00		15.75	0.600		0.116
L5	2.65		6.60	0.244		0.620
L6	15.25		3.93	0.137		0.260
L7	6.20					0.154
L9	3.50					
M						

BUL128

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

STMicroelectronics:
BUL128 BUL128-K

