- $5-\Omega$ Switch Connection Between Two Ports

D, DB, DBQ, OR PW PACKAGE
(TOP VIEW)

- TTL-Compatible Input Levels

RGY PACKAGE (TOP VIEW)

description/ordering information

The SN74CBT3257 is a 4-bit 1-of-2 high-speed TTL-compatible FET multiplexer/demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
Output-enable (OE) and select-control (S) inputs select the appropriate B1 and B2 outputs for the A-input data.
ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGY	Tape and reel	SN74CBT3257RGYR	CU257
	SOIC - D	Tube	SN74CBT3257D	CBT3257
		Tape and reel	SN74CBT3257DR	
	SSOP - DB	Tape and reel	SN74CBT3257DBR	CU257
	SSOP (QSOP) - DBQ	Tape and reel	SN74CBT3257DBQR	CU257
	TSSOP - PW	Tube	SN74CBT3257PW	CU257
		Tape and reel	SN74CBT3257PWR	

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE	
INPUTS FUNCTION $\mathbf{O E}$ S L L A port = B1 port L H A port = B2 port H X Disconnect	

SN74CBT3257

4-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

> Supply voltage range, V_{CC} -0.5 V to 7 V

Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Continuous channel current 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Package thermal impedance, θ_{JA} (see Note 2): D package $73^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 2): DB package $82^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 2): DBQ package $90^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 2): PW package $108^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 3): RGY package $39^{\circ} \mathrm{C} / \mathrm{W}$

Storage temperature range, $\mathrm{T}_{\text {stg }}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
3. The package thermal impedance is calculated in accordance with JESD 51-5.

recommended operating conditions (see Note 4)

		MIN	MAX
UNIT			
V_{CC}	Supply voltage	4	5.5
$\mathrm{~V}_{\mathrm{IH}}$	High-level control input voltage	2	V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	V	
T_{A}	Operating free-air temperature	-40	85

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \ddagger	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
I		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND				± 1	$\mu \mathrm{A}$
I_{CC}			$\mathrm{l}_{\mathrm{O}}=0$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			3	$\mu \mathrm{A}$
$\Delta \mathrm{lCC}^{\text {§ }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, }$	One input at 3.4 V,	Other inputs at V_{CC} or GND			2.5	mA
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V} \text { or } 0$				3.5		pF
$\mathrm{C}_{\text {io(OFF) }}$	A port	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\overline{O E}=V_{C C}$			6.5		pF
	B port					4		
$\mathrm{ron}^{\text {n }}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \\ & \mathrm{TYP} \text { at } \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$,	$\mathrm{I}_{1}=15 \mathrm{~mA}$		14	20	Ω
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		5	7	
		$\mathrm{I}_{1}=30 \mathrm{~mA}$			5	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}_{1}=15 \mathrm{~mA}$		10	15		

[^0]switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$	UNIT
			MIN MAX	MIN MAX	
tpd^{\dagger}	A or B	B or A	0.35	0.25	ns
t_{pd}	S	A	5.5	1.65	ns
$t_{\text {en }}$	S	B	5.7	1.65 .2	ns
	OE	A or B	5.6	1.85 .1	
$\mathrm{t}_{\text {dis }}$	S	B	5.2	$1 \quad 5$	ns
	OE	A or B	5.5	2.25 .5	

\dagger The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {pd }}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74CBT3257D	ACTIVE	SOIC	D	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBT3257	Samples
SN74CBT3257DBQR	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU257	Samples
SN74CBT3257DBQRE4	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU257	Samples
SN74CBT3257DBQRG4	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU257	Samples
SN74CBT3257DBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU257	Samples
SN74CBT3257DG4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBT3257	Samples
SN74CBT3257DR	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBT3257	Samples
SN74CBT3257PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU257	Samples
SN74CBT3257PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU257	Samples
SN74CBT3257PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU257	Samples
SN74CBT3257RGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU257	Samples
SN74CBT3257RGYRG4	ACTIVE	VQFN	RGY	16	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU257	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

[^1]In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74CBT3257DBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
SN74CBT3257DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74CBT3257PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74CBT3257RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CBT3257DBQR	SSOP	DBQ	16	2500	340.5	338.1	20.6
SN74CBT3257DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74CBT3257PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74CBT3257RGYR	VQFN	RGY	16	3000	367.0	367.0	35.0

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MO-137, variation AB.

SOLDER MASK DETAILS

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON . 005 INCH [0.127 MM] THICK STENCIL
SCALE:8X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

RGY (R-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § This is the increase in supply current for each input that is at the specified TTL voltage level, rather than $V_{C C}$ or GND.
 ${ }^{7}$ Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.

[^1]: Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
 ${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
 ${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
 ${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device
 ${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

 Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

