- Designed for TIA/EIA-485, TIA/EIA-422, and ISO 8482 Applications
- Signaling Rate ${ }^{\text {Exceeding }} 50 \mathrm{Mbps}$
- Fail-Safe in Bus Short-Circuit, Open-Circuit, and Idle-Bus Conditions
- ESD Protection on Bus Inputs Exceeds 6 kV
- Common-Mode Bus Input Range -7 V to 12 V
- Propagation Delay Times <16 ns
- Low Standby Power Consumption <20 $\mu \mathrm{A}$
- Pin-Compatible Upgrade for AM26LS32, DS96F173, LTC488, and SN75173

description

The SN65LBC173A and SN75LBC173A are quadruple differential line receivers with 3 -state outputs, designed for TIA/EIA-485 (RS-485), TIA/EIA-422 (RS-422), and ISO 8482 (Euro RS-485) applications.

These devices are optimized for balanced multipoint bus communication at data rates up to and exceeding 50 million bits per second. The transmission media may be twisted-pair cables, printed-circuit board traces, or backplanes. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

SN65LBC173A (Marked as 65LBC173A)
SN75LBC173A (Marked as 75LBC173A)
D or N PACKAGE
(TOP VIEW)

1B] V_{CC}
1A	215] 4B
1Y	314] 4 A
G [413] 4 Y
2 Y	512	$\overline{\mathrm{G}}$
2 A	$6 \quad 11$] $3 Y$
2B	710] 3A
GND	89	3B

logic diagram

Each receiver operates over a wide range of positive and negative common-mode input voltages, and features ESD protection to 6 kV , making it suitable for high-speed multipoint data transmission applications in harsh environments. These devices are designed using LinBiCMOS ${ }^{m}$, facilitating low power consumption and robustness.

The G and $\overline{\mathrm{G}}$ inputs provide enable control logic for either positive- or negative-logic enabling all four drivers. When disabled or powered off, the receiver inputs present a high-impedance to the bus for reduced system loading.
The SN75LBC173A is characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The SN65LBC173A is characterized over the temperature range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^0]
QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

FUNCTION TABLE
(each receiver)

DIFFERENTIAL INPUTS$A-B\left(V_{I D}\right)$	ENABLES		$\underset{\mathrm{Y}}{\text { OUTPUT }}$
	G	$\overline{\mathrm{G}}$	
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	X	L
	X	L	
$-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<-0.01 \mathrm{~V}$	H	X	?
	X	L	
$-0.01 \mathrm{~V} \leq \mathrm{V}_{\text {ID }}$	H	X	H
	X	L	
X	L	H	Z
	OPEN	OPEN	
Short circuit	H	X	H
	X	L	
Open circuit	H	X	H

H = high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off), ? = indeterminate

AVAILABLE OPTIONS

	PACKAGE	
$\mathbf{T A}_{\mathbf{A}}$	PLASTIC SMALL OUTLINE (JEDEC MS-012)	PLASTIC DUAL-IN-LINE (JEDEC MS-001)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75LBC173AD	SN75LBC173AN
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65LBC173AD	SN65LBC173AN

† Add an R suffix for taped and reeled
equivalent input and output schematic diagrams

SN65LBC173A, SN75LBC173A QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) .. }-0.3 \mathrm{~V} \text { to } 6 \mathrm{~V} \\
& \text { Voltage range at any bus input (DC) ... } 10 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
& \text { Voltage range at any bus input (transient pulse through } 100 \Omega \text {, see Figure 5) } 30 \mathrm{~V} \text { to } 30 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Receiver output current, IO ... } 10 \mathrm{~mA} \\
& \text { Electrostatic discharge: } \\
& \text { Human body model (see Note 2): A and B to GND ... } 6 \mathrm{kV} \\
& \text { All pins ... } 5 \mathrm{kV} \\
& \text { Charged-device model (see Note 3): All pins .. } 2 \mathrm{kV} \\
& \text { Continuous power dissipation See Power Dissipation Rating Table } \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to GND, and are steady-state (unless otherwise specified). } \\
& \text { 2. Tested in accordance with JEDEC Standard 22, Test Method A114-A. } \\
& \text { 3. Tested in accordance with JEDEC Standard 22, Test Method C101. }
\end{aligned}
$$

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE $\mathbf{T A}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}}=70^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING
D	1080 mW	$8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	690 mW	560 mW
N	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW	598 mW

\ddagger This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
Voltage at any bus terminal	A, B	-7		12	V
High-level input voltage, V_{IH}	$\mathrm{G}, \overline{\mathrm{G}}$	2		V_{CC}	V
Low-level input voltage, V_{IL}		0		0.8	
Output current	Y	-8		8	mA
Operating free-air temperature, T_{A}	SN75LBC173A	0		70	${ }^{\circ} \mathrm{C}$
	SN65LBC173A	-40		85	

QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

SLLS456B - NOVEMBER 2000 - REVISED APRIL 2005

electrical characteristics over recommended operating conditions

PARAMETER			TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT	
$\mathrm{V}_{\text {IT+ }}$	Positive-going differential input voltage threshold		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CM}}=\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right)^{\prime 2}\right)$			-80	-10		
$\mathrm{V}_{\text {IT- }}$	Negative-going differential input voltage threshold				-200	-120		mV	
$\mathrm{V}_{\text {HYS }}$	Hysteresis voltage (VIT+ - $\mathrm{V}_{\text {IT-}}$)					40		mV	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{I}=-18 \mathrm{~mA}$		-1.5	-0.8		V	
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V} \mathrm{ID}=200 \mathrm{mV}, \\ & \mathrm{IOH}=-8 \mathrm{~mA} \end{aligned}$	See Figure 1	2.7	4.8			
V OL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV}, \\ & \mathrm{IOL}=8 \mathrm{~mA} \end{aligned}$			0.2	0.4	v	
IOZ	High-impedance-state output current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}		-1		1	$\mu \mathrm{A}$	
リ	Line input current		Other input at 0 V , $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 5 V	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$			0.9	mA	
			$\mathrm{V}_{1}=-7 \mathrm{~V}$	-0.7					
${ }^{1 / H}$	High-level input current	Enable inputs $\mathrm{G}, \overline{\mathrm{G}}$						100	$\mu \mathrm{A}$
IIL	Low-level input current				-100			$\mu \mathrm{A}$	
R_{1}	Input resistance	A, B inputs			12			$\mathrm{k} \Omega$	
ICC	Supply current		$\mathrm{V}_{\text {ID }}=5 \mathrm{~V}$	G at $0 \mathrm{~V}, \overline{\mathrm{G}}$ at V_{CC}			20	$\mu \mathrm{A}$	
			No load	G at $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{G}}$ at 0 V		11	16	mA	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$.

switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$.
NOTES: 4. Outputs skew $\left(\mathrm{t}_{\mathrm{sk}(0)}\right)$ is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together.
5. Part-to-part skew ($\left.\mathrm{t}_{\mathrm{sk}(\mathrm{pp})}\right)$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Voltage and Current Definitions

Figure 2. Switching Test Circuit and Waveforms

Generators: PRR = $1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$

Figure 3. Test Circuit Waveforms, $\mathrm{t}_{\text {PZH }}$ and $\mathrm{t}_{\mathrm{PHZ}}$

QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

PARAMETER MEASUREMENT INFORMATION

Generators: PRR = $1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$

Figure 4. Test Circuit Waveforms, tpzL and tpLZ

Figure 5. Test Circuit and Waveform, Transient Over-Voltage Test

SN65LBC173A, SN75LBC173A QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

SLLS456B - NOVEMBER 2000 - REVISED APRIL 2005
TYPICAL CHARACTERISTICS

Figure 6

SUPPLY CURRENT
vs
SIGNALING RATE (ALL FOUR CHANNELS)

Figure 8

Figure 7

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

Figure 9

TYPICAL CHARACTERISTICS

Figure 10. Receiver Inputs and Outputs, 50 Mbps Signaling Rate

APPLICATION INFORMATION
TMS320F243
DSP
(Controller)
SPISIMO
IOPA1
(Enable)

Figure 11. Typical Application Circuit, DSP-to-DSP Link via Serial Peripheral Interface

Figure 12. Typical Application Circuit, High-Speed Servomotor Encoder Interface

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking $(4 / 5)$	Samples
SN65LBC173AD	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC173A	Samples
SN65LBC173ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC173A	Samples
SN65LBC173ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC173A	Samples
SN65LBC173AN	ACTIVE	PDIP	N	16	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	N/ A for Pkg Type	-40 to 85	65LBC173A	Samples
SN75LBC173AD	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC173A	Samples
SN75LBC173ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC173A	Samples
SN75LBC173AN	ACTIVE	PDIP	N	16	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	N / A for Pkg Type	0 to 70	75LBC173A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. Tl may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annul basis.
OTHER QUALIFIED VERSIONS OF SN65LBC173A :

- Enhanced Product: SN65LBC173A-EP

NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
SN65LBC173ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75LBC173ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC173ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN75LBC173ADR	SOIC	D	16	2500	333.2	345.9	28.6

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: LinBiCMOS is a trademark of Texas Instruments.
 †The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

