74ACT11074 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

SCAS498A - DECEMBER 1986 - REVISED APRIL 1996

- Inputs Are TTL-Voltage Compatible
- Center-Pin V_{CC} and GND Configurations to Minimize High-Speed Switching Noise
- **EPIC™** (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- **Package Options Include Plastic** Small-Outline (D) and Shrink Small-Outline (DB) Packages, and Standard Plastic 300-mil DIPs (N)

description

This device contains two independent positive-edge-triggered D-type flip-flops. A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup-time requirements are transferred to the outputs on the low-to-high transition of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

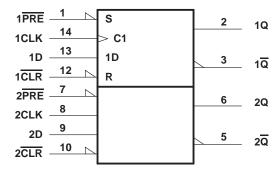
The 74ACT11074 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE

	INP	OUTI	PUTS		
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	X	Χ	L	Н
L	L	X	Χ	н†	Η [†]
Н	Н	\uparrow	Н	Н	L
Н	Н	\uparrow	L	L	Н
Н	Н	L	Х	Q ₀	\overline{Q}_0

[†]This configuration is unstable; that is, it does not persist when either PRE or CLR returns to its inactive (high) level.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated

74ACT11074 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

SCAS498A - DECEMBER 1986 - REVISED APRIL 1996

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 6 V
Input voltage range, V _I (see Note 1)		$5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, VO (see Note 1)		$5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)		±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})		±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})		±50 mA
Continuous current through V _{CC} or GND		±100 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2)): D package	1.25 W
	DB package	0.5 W
	N package	1.1 W
Storage temperature range, T _{stq}		−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The maximum package power dissipation is calculated using a junction temperature of 150 °C and a board trace length of 750 mils, except for the N package, which has a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	V
V _{IH}	High-level input voltage	2		V
V_{IL}	Low-level input voltage		0.8	V
٧ _I	Input voltage	0	VCC	V
VO	Output voltage	0	VCC	V
IOH	High-level output current		-24	mA
lOL	Low-level output current		24	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
T _A	Operating free-air temperature	-40	85	°C

SCAS498A - DECEMBER 1986 - REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vaa	T,	4 = 25°C	;	MIN	MAX	UNIT	
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	IVIIIV	IVIAA	UNIT	
	Jour 50 "A	4.5 V	4.4			4.4			
VOH	IOH = -50 μA	5.5 V	5.4			5.4			
	Jan 24 mA	4.5 V	3.94			3.8		V	
	IOH = -24 mA	5.5 V	4.94			4.8			
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85			
	I _{OL} = 50 μA	4.5 V			0.1		0.1		
	10L = 30 μΑ	5.5 V			0.1		0.1		
VoL	le 24 mA	4.5 V			0.36		0.44	V	
	I _{OL} = 24 mA	5.5 V			0.36		0.44		
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65		
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ	
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40	μΑ	
Δl _{CC} ‡	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1	mA	
C _i	V _I = V _{CC} or GND	5 V		3.5				pF	

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

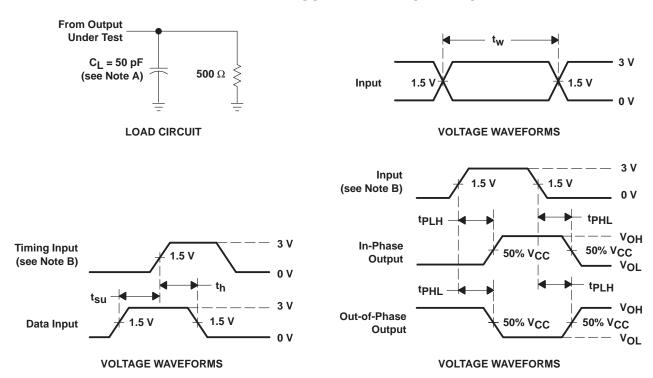
timing requirements over recommended ranges of supply voltage and free-air temperature (unless otherwise noted) (see Figure 1)

			T _A = :	25°C	MIN	MAX	UNIT	
				MAX	IVIIIN	WIAX	UNIT	
fclock	Clock frequency		0	100	0	100	MHz	
	Pulse duration	PRE or CLR low	5		5		no	
t _w	Pulse duration	CLK low or high	5		5		ns	
	Out on these budges OLIVA	Data high or low	4.5		4.5		no	
t _{su}	Setup time before CLK↑	PRE or CLR inactive	2		2	ns		
t _h	Hold time after CLK↑		0		0		ns	

switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	_Δ = 25°C	;	MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN		ONIT
f _{max}			100	125		100		MHz
t _{PLH}	DDE or CLD	Q or $\overline{\mathbb{Q}}$	1.5	5.7	8.9	1.5	9.6	ns
^t PHL	PRE or CLR		1.5	6.6	11.3	1.5	12.5] 115
^t PLH	CLK	Q or $\overline{\mathbb{Q}}$	1.5	6	8.5	1.5	9.4	20
t _{PHL}	CLN	QUIQ	1.5	5.7	8	1.5	8.8	ns

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$


	PARAMETER	TEST CON	TYP	UNIT	
C _{pd}	Power dissipation capacitance per flip-flop	C _L = 50 pF,	f = 1 MHz	30	pF

[‡]This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

SCAS498A - DECEMBER 1986 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 3 \ ns$, $t_f = 3 \ ns$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74ACT11074D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT11074	Samples
74ACT11074DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AT074	Samples
74ACT11074DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT11074	Samples
74ACT11074N	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	74ACT11074N	Samples
74ACT11074NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT11074	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: Til defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

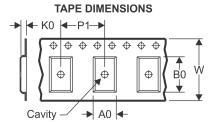
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

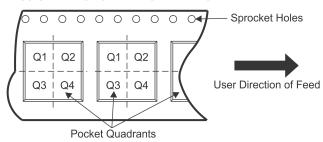
6-Feb-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

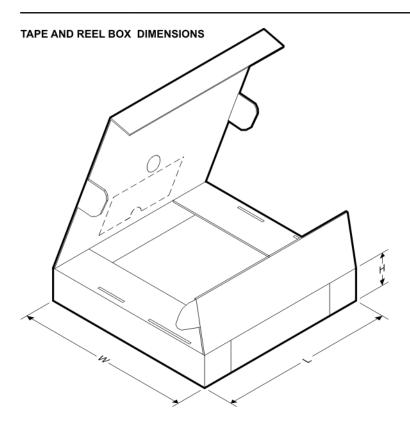

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Dec-2018


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

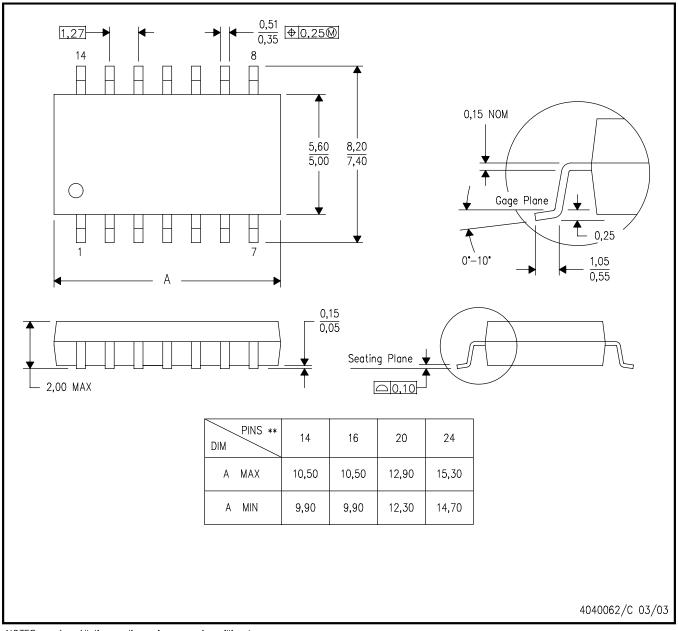

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ACT11074NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 20-Dec-2018

*All dimensions are nominal

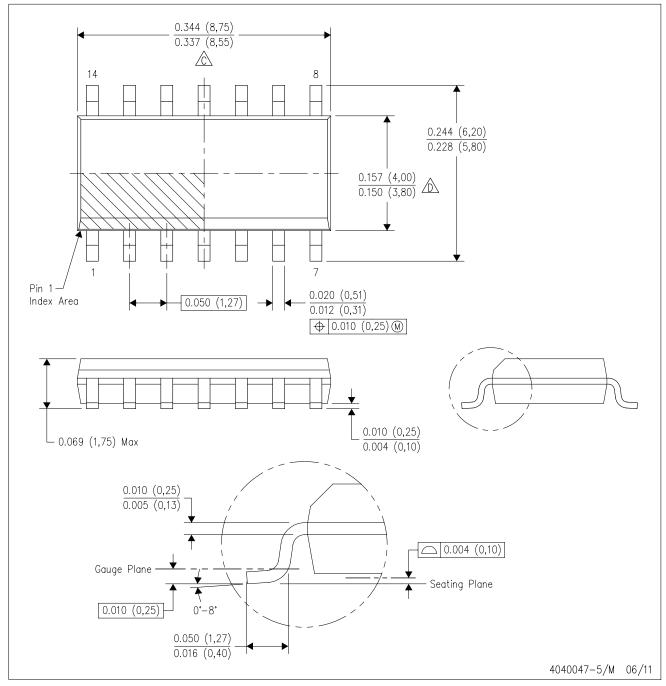

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
74ACT11074NSR	SO	NS	14	2000	367.0	367.0	38.0	

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

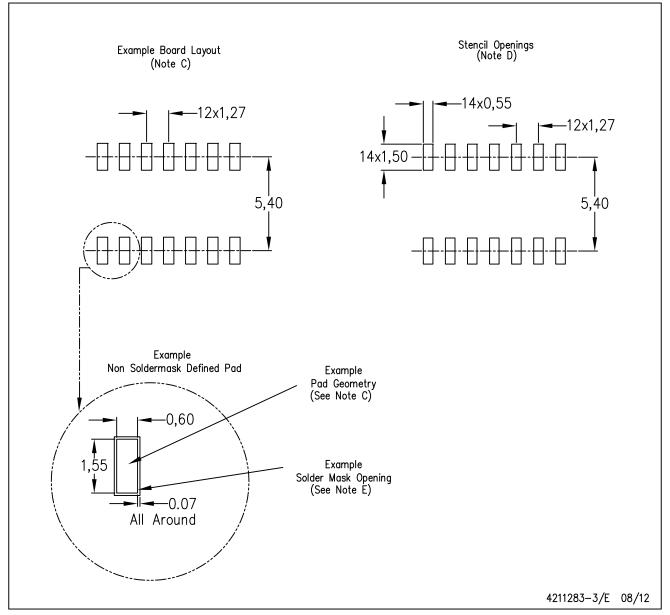
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

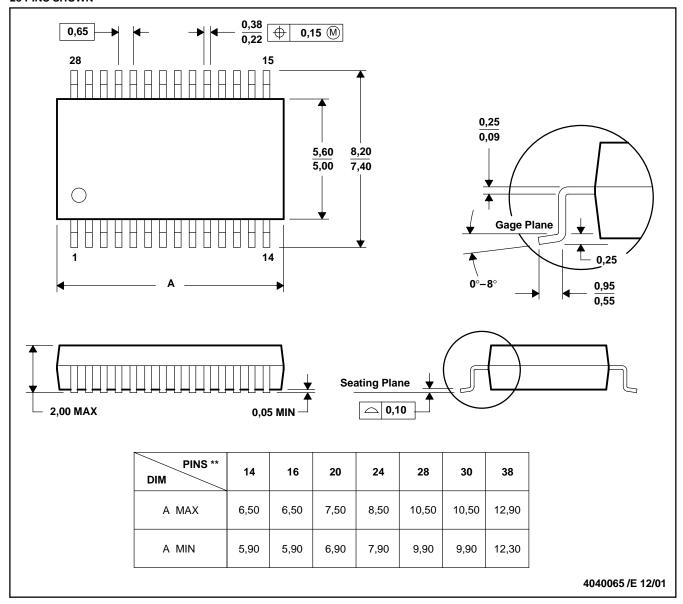
PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated