TetraFET

D1016UK

METAL GATE RF SILICON FET

GOLD METALLISED MULTI-PURPOSE SILICON **DMOS RF FET** 40W - 28V - 500MHz PUSH-PULL

FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- VERY LOW C_{rss}
- USEFUL P_O AT 1GHz
- LOW NOISE
- HIGH GAIN 13 dB MINIMUM

APPLICATIONS

 VHF/UHF COMMUNICATIONS from 1 MHz to 1 GHz

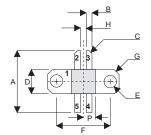
ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

PD	Power Dissipation	100W
BV _{DSS}	Drain – Source Breakdown Voltage *	70V
BV _{GSS}	Gate – Source Breakdown Voltage *	±20V
I _{D(sat)}	Drain Current *	5A
T _{stg}	Storage Temperature	–65 to 150°C
Tj	Maximum Operating Junction Temperature	200°C

* Per Side

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk


MECHANICAL DATA

DQ

SOURCE (COMMON) PIN 2 PIN 1 DRAIN 1 PIN 3 DRAIN 2 PIN 4 GATE 2 PIN 5 GATE 1

DIM mm Tol Inches Tol. Α 16.38 0.26 0.645 0.010 В 1.52 0.13 0.060 0.005 С 45 5° 45° 5° D 0.005 6.35 0.13 0.250 Е 3.30 0.13 0.130 0.005 F 14.22 0.13 0.560 0.005 G 1.27 x 45° 0.13 0.05 x 45° 0.005 Н 0.005 1.52 0.13 0.060 Т 6.35 0.13 0.250 0.005 J 0.13 0.02 0.005 0.001 Κ 2.16 0.13 0.085 0.005 Μ 1.52 0.13 0.060 0.005 0.200 Ν 5.08 MAX MAX 18.90 0.13 0.744 0.005 0 Ρ 3.18 0.25 0.125 0.010

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test C	Min.	Тур.	Max.	Unit	
		PE					
BV _{DSS}	Drain–Source Breakdown	$V_{} = 0$	$= 100 m \Lambda$	70			V
	Voltage	$V_{GS} = 0$	I _D = 100mA	70			v
	Zero Gate Voltage	V/ 20V/	$V_{GS} = 0$			4	mA
DSS	Drain Current	V _{DS} = 28V				1	mA
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	$V_{DS} = 0$			1	μΑ
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 1A	0.8			S
	TOTAL DEVICE						
G _{PS}	Common Source Power Gain	P _O = 40W		13			dB
η	Drain Efficiency	V _{DS} = 28V	I _{DQ} = 0.4A	50			%
VSWR	Load Mismatch Tolerance	f = 400MHz		20:1			—
	PER SIDE						
C _{iss}	Input Capacitance	$V_{DS} = 28V$ V	_{GS} = -5V f = 1MHz			60	pF
C _{oss}	Output Capacitance	$V_{DS} = 28V$ V	GS = 0 f = 1MHz			30	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 28V$ V	GS = 0 f = 1MHz			2.5	pF

* Pulse Test: Pulse Duration = 300 μs , Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 1.75°C / W
-----------------------	------------------------------------	-----------------

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

D1016UK

f = 400MHz Idq = 0.4A 10 30 Vds = 28V ᆜ 20 12 0 2 10 4 8 6 Pin w ★ Pout
→ Drain Efficiency

80

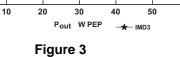
70

60

50

40

f1 = 400MHz f2 = 400.1 MHz ldq = 0.4A Vds = 28V


 $V_{DS} = 28V$, $I_{DQ} = 1A$

60

%

Drain Efficiency

Figure 1 Power Output and efficiency vs. Power Input.

IMD vs. Output Power.

!

Typical S Parameters

# MHZ S MA R 50								
!Freq	S11		S21		S12		S22	
!MHz	mag	ang	mag	ang	mag	ang	mag	ang
100	0.767	-135	22.646	88	0.0155	9	0.531	-103
200	0.813	-153	10.116	57	0.0099	4	0.692	-131
300	0.841	-161	5.623	39	0.0076	49	0.794	-143
400	0.861	-169	3.548	25	0.013	79	0.841	-151
500	0.882	-175	2.82	20	0.021	78	0.875	-156
600	0.902	180	2.093	14	0.0285	78	0.91	-161
700	0.923	174	1.365	9	0.0376	77	0.944	-166
800	0.912	170	1.096	2	0.0457	66	0.944	-170
900	0.923	164	0.902	-3	0.0484	66	0.933	-176
1000	0.923	161	0.724	-4	0.0596	64	0.944	-177

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

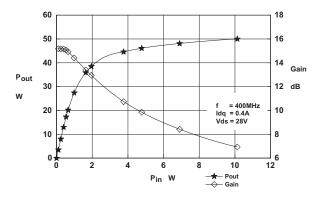


Figure 2 Power Output and Gain vs. Power Input.

OPTIMUM SOURCE AND LOAD IMPEDANCE

Frequency	zs	ZL		
MHz	Ω	Ω		
400MHZ	10.7 - j35.4	13.8 - j22.2		

60

50

40

30

20

0

-10 -20

-40

-50 -60

0

IMD3 -30

dBc

Pout

w

D1016UK

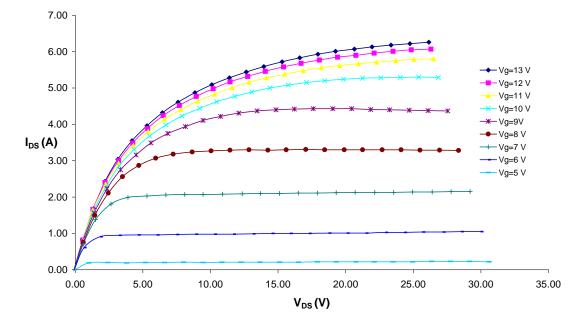
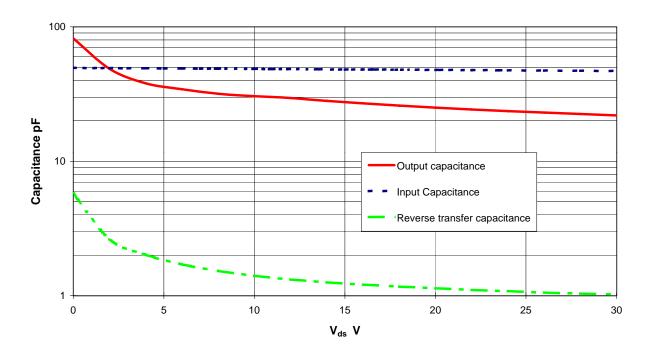
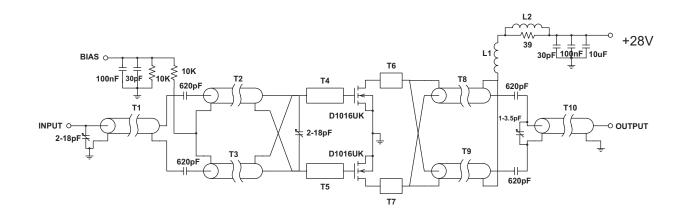



Figure 4 – Typical IV Characteristics.



Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

D1016UK

TEST FIXTURE

Substrate 1.6mm FR4 All microstrip lines W = 2.5mm

- T1 45mm 50 OHM UT34 semi-rigid coax
- T2, T3 55mm 50 OHM UT 34 semi-rigid coax
- T4, T5 25mm microstrip line
- T6, T7 10mm microstrip line
- T8, T9 45mm 25 OHM UT 34-25 semi-rigid coax
- T10 60mm 50OHM UT34 semi-rigid coax
- L1 4 turns 19swg enamelled copper wire, 7mm i.d.
- L2 2.5 turns of 19swg enamelled copper wire on T50-6 ferrite toroid

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: D1016UK