MGSF2N02EL, MVSF2N02EL

MOSFET – N-Channel, SOT-23

2.8 A, 20 V

These miniature surface mount MOSFETs low $R_{DS(on)}$ assure minimal power loss and conserve energy, making these devices ideal for use in space sensitive power management circuitry.

Features

- Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature SOT-23 Surface Mount Package Saves Board Space
- I_{DSS} Specified at Elevated Temperature
- AEC Q101 Qualified and PPAP Capable MVSF2N02EL
- These Devices are Pb-Free and are RoHS Compliant

Applications

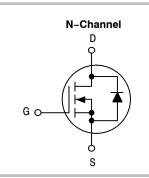
- DC-DC Converters
- Power Management in Portable and Battery Powered Products, ie: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones

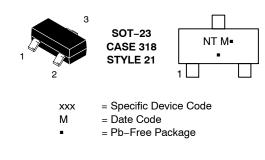
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

()						
Rating	Symbol	Value	Unit			
Drain-to-Source Voltage	V _{DSS}	20	Vdc			
Gate-to-Source Voltage - Continuous	V _{GS}	± 8.0	Vdc			
Drain Current – Continuous @ T _A = 25°C – Single Pulse (t _p = 10 μs)	I _D I _{DM}	2.8 5.0	A			
Total Power Dissipation @ $T_A = 25^{\circ}C$	PD	1.25	W			
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C			
Thermal Resistance Junction-to-Ambient (Note 1) Thermal Resistance Junction-to-Ambient (Note 2)	R _{θJA}	100 300	°C/W			
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C			

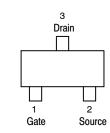
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. 1" Pad, t < 10 sec.


2. Min pad, steady state.


ON Semiconductor®

www.onsemi.com


2.8 A, 20 V R_{DS(on)} = 85 mΩ (max)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MGSF2N02EL, MVSF2N02EL

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) $(V_{GS} = 0 \text{ Vdc}, I_D = 10 \ \mu \text{Adc})$ Temperature Coefficient (Positive)		V _{(BR)DSS}	20 -	_ 22		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{DS} = 20$ Vdc, $V_{GS} = 0$ Vdc) ($V_{DS} = 20$ Vdc, $V_{GS} = 0$ Vdc, $T_J = 125^{\circ}C$)		I _{DSS}			1.0 10	μAdc
Gate-Source Leakage Current (V _{GS} = \pm 8.0 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	±100	nA
ON CHARACTERISTICS (Note 3)						
$\begin{array}{l} \mbox{Gate-Source Threshold Voltage} \\ (V_{DS} = V_{GS}, \mbox{I}_{D} = 250 \ \mu \mbox{Adc}) \\ \mbox{Threshold Temperature Coefficient (Negative)} \end{array}$		V _{GS(th)}	0.5	_ _2.3	1.0 -	Vdc mV/°C
Static Drain-to-Source On-Resistance $(V_{GS} = 4.5 \text{ Vdc}, I_D = 3.6 \text{ A})$ $(V_{GS} = 2.5 \text{ Vdc}, I_D = 3.1 \text{ A})$		R _{DS(on)}		78 105	85 115	mΩ
DYNAMIC CHARACTERISTICS						
Input Capacitance	(V _{DS} = 5.0 Vdc, V _{GS} = 0 V, f = 1.0 MHz)	C _{iss}	-	150	-	pF
Output Capacitance		C _{oss}	-	130	-	-
Transfer Capacitance	,	C _{rss}	-	45	-	
SWITCHING CHARACTERISTICS (N	lote 4)					
Turn-On Delay Time		t _{d(on)}	-	6.0	-	ns
Rise Time	(V _{DD} = 16 Vdc, I _D = 2.8 Adc,	t _r	-	95	-	
Turn-Off Delay Time	V_{gs} = 4.5 V, R_G = 2.3 Ω)	t _{d(off)}	-	28	-	
Fall Time		t _f	-	125	-	
Gate Charge	(V _{DS} = 16 Vdc, I _D = 1.75 Adc, V _{GS} = 4.0 Vdc) (Note 3)	Q _T	-	3.5	-	nC
		Q _{gs}	-	0.6	-	
		Q _{gd}	-	1.5	-	
SOURCE-DRAIN DIODE CHARACT	ERISTICS					
Forward Voltage	(I _S = 1.0 Adc, V _{GS} = 0 Vdc) (Note 3)	V _{SD}	_	0.76	1.2	V
Reverse Recovery Time	(I _S = 1.0 Adc, V _{GS} = 0 Vdc, dI _S / dt = 100 A/µs) (Note 3)	t _{rr}	_	104	_	ns
		ta	-	42	-	1
		t _b	_	62	_	
	4			+		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Q_{RR}

0.20

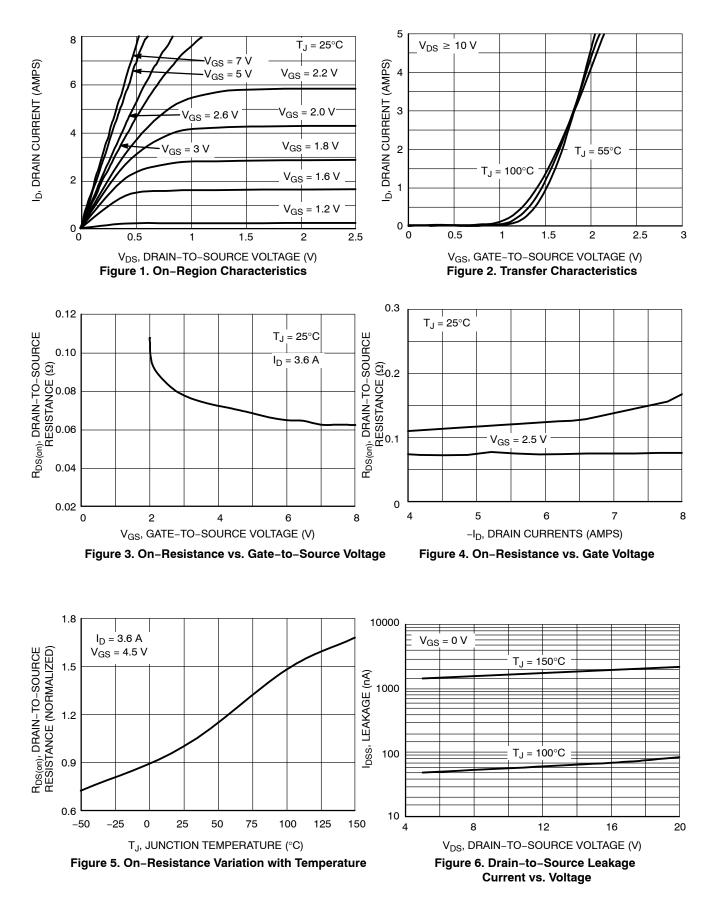
μC

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

4. Switching characteristics are independent of operating junction temperature.

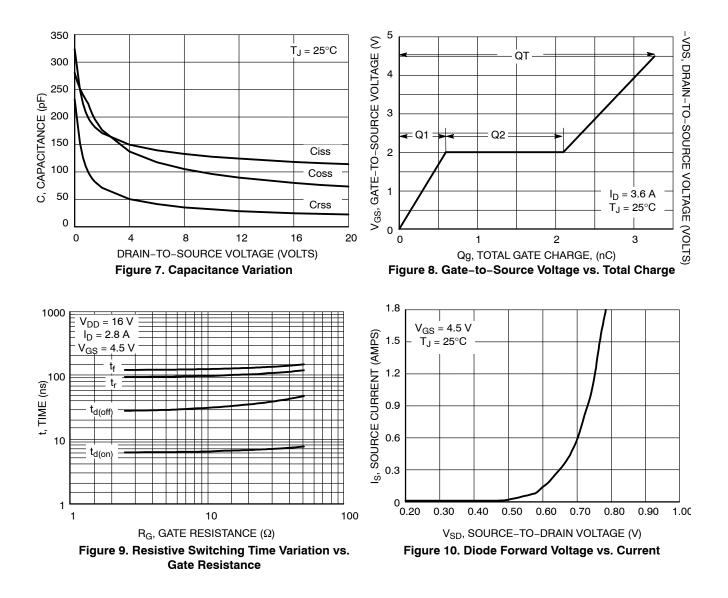
ORDERING INFORMATION

Reverse Recovery Stored Charge

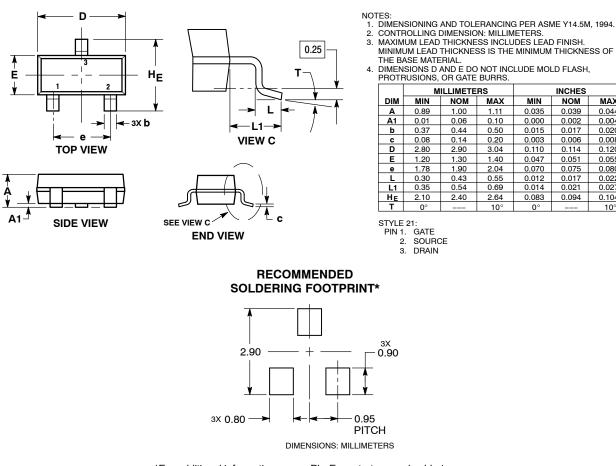

Device	Package	Shipping [†]
MGSF2N02ELT1G	SOT-23	
MVSF2N02ELT1G*	(Pb-Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*MVSF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.


MGSF2N02EL, MVSF2N02EL

TYPICAL CHARACTERISTICS


MGSF2N02EL, MVSF2N02EL

TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AR**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and where are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability ON Semiconductor makes no warranty, representation or guarantee regarding the suitability on its products for any particular purpose, nor does ON semiconductor assume any summary and instantiation or guarantee regarding the suitability including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications customer's technical experts. ON Semiconductor does not convey any license under its pattern rights nor the rights of others. ON Semiconductor products are not designed, interfeded, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

For additional information, please contact your local Sales Representative

ΜΔΧ

0.044

0.004

0.020

0.008

0.120

0.055

0.080

0.022

0.027

0.104

10°

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MVSF2N02ELT1G