SN65LBC176A, SN75LBC176A DIFFERENTIAL BUS TRANSCEIVERS

- Designed for Signaling Rates ${ }^{\dagger}$ Up to 30 Mbps
- Bus-Pin ESD Protection Exceeds 12 kV HBM
- Compatible With ANSI Standard TIA/EIA-485-A and ISO 8482:1987(E)
- Low Skew
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Very Low Disabled Supply-Current Requirements . . . $700 \mu \mathrm{~A}$ Maximum
- Common Mode Voltage Range of -7 V to 12 V
- Thermal-Shutdown Protection
- Driver Positive and Negative Current Limiting
- Open-Circuit Failsafe Receiver Design
- Receiver Input Sensitivity . . . $\pm 200 \mathrm{mV}$ Max
- Receiver Input Hysteresis .. . 50 mV Typ
- Glitch-Free Power-Up and Power-Down Protection
- Available in Q-Temp Automotive High Reliability Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards

description

The SN65LBC176A, SN65LBC176AQ, and SN75LBC176A differential bus transceivers are monolithic, integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. They are designed for balanced transmission lines and are compatible with ANSI standard TIA/EIA-485-A and ISO 8482. The A version offers improved switching performance over its predecessors without sacrificing significantly more power.

SN65LBC176AQD (Marked as B176AQ)
SN65LBC176AD (Marked as BL176A)
SN65LBC176AP (Marked as 65LBC176A)
SN75LBC176AD (Marked as LB176A)
SN75LBC176AP (Marked as 75LBC176A)
(TOP VIEW)

logic diagram (positive logic)

Function Tables
DRIVER

INPUT	ENABLE	OUTPUTS	
\mathbf{D}	DE	\mathbf{A}	\mathbf{B}
H	H	H	L
L	H	L	H
X	L	Z	Z
Open	H	H	L

RECEIVER

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$\mathbf{V}_{\mathbf{A}}-\mathbf{V}_{\mathbf{B}}$	$\mathbf{R E}$	\mathbf{R}
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	L	H
$-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.2 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z
Open	L	H

$\mathrm{H}=$ high level, $\quad \mathrm{L}=$ low level, \quad ? = indeterminate, $\mathrm{X}=$ irrelevant, $\quad \mathrm{Z}=$ high impedance (off)

[^0]
description (continued)

The SN65LBC176A, SN65LBC176AQ, and SN75LBC176A combine a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can externally connect together to function as a direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $\mathrm{V}_{\mathrm{CC}}=0$. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications. Very low device supply current can be achieved by disabling the driver and the receiver.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE	
	SMALL OUTLINE (D)	PLASTIC DUAL-IN-LINE
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75LBC176AD	SN75LBC176AP
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65LBC176AD	SN65LBC176AP
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SN65LBC176AQD	-

schematics of inputs and outputs

SN65LBC176A, SN75LBC176A DIFFERENTIAL BUS TRANSCEIVERS

absolute maximum ratings \dagger

Electrostatic discharge:Bus terminals and GND, Class 3, A: (see Note 2) 12 kV
Bus terminals and GND, Class 3, B: (see Note 2) 400 V
All terminals, Class 3, A: ... 3 kV
All terminals, Class 3, B: ... 400 V
Continuous total power dissipation (see Note 3) See Dissipation Rating Table

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.
2. Tested in accordance with MIL-STD-883C, Method 3015.7
3. The maximum operating junction temperature is internally limited. Use the dissipation rating table to operate below this temperature.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW	145 mW
P	1000 mW	8.0 mW/ ${ }^{\circ} \mathrm{C}$	640 mW	520 mW	-

\ddagger This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

recommended operating conditions

[^1]driver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
V_{IK}	Input clamp voltage	$\mathrm{I}=-18 \mathrm{~mA}$			-1.5	-0.8		V
$\left\|V_{O D}\right\|$	Differential output voltage	$\mathrm{IO}=0$		SN65LBC176AQ	1.5	4	6	V
				SN65LBC176A, SN75LBC176A		4		
		$R_{L}=54 \Omega$,	See Figure 1	SN65LBC176AQ	0.9	1.5	6	
				SN65LBC176A	1	1.5	3	V
				SN75LBC176A	1.1	1.5	3	V
		$\mathrm{V}_{\text {test }}=-7 \mathrm{~V}$ to 12 V , See Figure 2		SN65LBC176AQ	0.9	1.5	6	
				SN65LBC176A	1	1.5	3	V
				SN75LBC176A	1.1	1.5	3	V
$\Delta \mathrm{V}_{\text {OD }}$ \|	Change in magnitude of differential output voltage	See Figures 1 and 2			-0.2		0.2	V
VOC(SS)	Steady-state common-mode output voltage	See Figure 1		SN65LBC176AQ	1.8	2.4	3	V
				SN65LBC176A, SN75LBC176A	1.8	2.4	2.8	
$\Delta \mathrm{VOC}(\mathrm{SS})$	Change in steady-state common-mode output voltage			SN65LBC176AQ	-0.2		0.2	
				SN65LBC176A, SN75LBC176A	-0.1		0.1	
IOZ	High-impedance output current	See receiver input currents						
${ }^{\text {IIH }}$	High-level enable input current	$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$			-100			$\mu \mathrm{A}$
IIL	Low-level enable input current	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$			-100			$\mu \mathrm{A}$
IOS	Short-circuit output current	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12 \mathrm{~V}$			-250		250	mA
ICC	Supply current	$\mathrm{V}_{\mathrm{I}}=0 \text { or } \mathrm{V}_{\mathrm{CC}},$ No load	Receiver disabled and driver enabled			5	9	mA
			Receiver disabled and driver disabled			0.4	0.7	
			Receiver enabled and driver enabled			8.5	15	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
driver switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN65LBC176AQ		SN65LBC176A SN75LBC176A			UNIT	
		MIN	TYPt MAX	MIN	TYP \dagger	MAX			
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$$\text { See Figure } 3$	2	12	2	6	12	ns
tPHL	Propagation delay time, high-to-low-level output	2		12	2	6	12	ns	
$\mathrm{t}_{\text {sk(}}$ p)	Pulse skew (\| tPLH - tphl)			2		0.3	1	ns
tr_{r}	Differential output signal rise time	1.2		11	4	7.5	11	ns	
$\mathrm{tf}_{\text {f }}$	Differential output signal fall time	1.2		11	4	7.5	11	ns	
tPZH	Propagation delay time, high-impedance-to-highlevel output	$\mathrm{R}_{\mathrm{L}}=110 \Omega,$ See Figure 4		22		12	22	ns	
tPZL	Propagation delay time, high-impedance-to-lowlevel output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, \\ & \text { See Figure } 5 \end{aligned}$		25		12	22	ns	
tPHZ	Propagation delay time, high-level-to-highimpedance output	$\mathrm{R}_{\mathrm{L}}=110 \Omega,$ See Figure 4		22		12	22	ns	
tPLZ	Propagation delay time, low-level-to-highimpedance output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, \\ & \text { See Figure } 5 \end{aligned}$		22		12	22	ns	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN65LBC176A, SN75LBC176A DIFFERENTIAL BUS TRANSCEIVERS

receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IT }}+$	Positive-going input threshold voltage	$\mathrm{I}=-8 \mathrm{~mA}$					0.2	V
$\mathrm{V}_{\text {IT }}$ -	Negative-going input threshold voltage	$\mathrm{O}=8 \mathrm{~mA}$			-0.2			V
$V_{\text {hys }}$	Hysteresis voltage ($\mathrm{V}_{\text {IT+ }}$ - $\mathrm{V}_{\text {IT-}}$)					50		mV
$\mathrm{V}_{\text {IK }}$	Enable-input clamp voltage	$\mathrm{I}=-18 \mathrm{~mA}$			-1.5	-0.8		V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}$,	$\mathrm{IOH}=-8 \mathrm{~mA}$,	See Figure 6	4	4.9		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {ID }}=-200 \mathrm{mV}$,	$\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$,	See Figure 6		0.1	0.8	V
Ioz	High-impedance-state output current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}		SN65LBC176AQ	-10		10	
				SN65LBC176A, SN75LBC176A	-1		1	$\mu \mathrm{A}$
1	Bus input current	$\mathrm{V}_{\mathrm{IH}}=12 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	Other input at 0 V		0.4	1	mA
		$\mathrm{V}_{1 \mathrm{H}}=12 \mathrm{~V}$,	$V_{C C}=0$			0.5	1	
		$\mathrm{V}_{1 \mathrm{H}}=-7 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		-0.8	-0.4		
		$\mathrm{V}_{1 \mathrm{H}}=-7 \mathrm{~V}$,	$V_{C C}=0$		-0.8	-0.3		
$\mathrm{IIH}^{\text {H }}$	High-level enable-input current	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			-100			$\mu \mathrm{A}$
IIL	Low-level enable-input current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$			-100			$\mu \mathrm{A}$
ICC	Supply current	$\mathrm{V}_{\mathrm{I}}=0 \text { or } \mathrm{V}_{\mathrm{CC}},$ No load	Receiver enabled	nd driver disabled		4	7	mA
			Receiver disabled and driver disabled			0.4	0.7	
			Receiver enabled and driver enabled			8.5	15	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
receiver switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN65LBC176AQ		SN65LBC176A SN75LBC176A			UNIT	
		MIN	TYP† MAX	MIN	TYP \dagger	MAX			
tPLH	Propagation delay time, output \uparrow		$\mathrm{V}_{\mathrm{ID}}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V},$ See Figure 7	7	30	7	13	20	ns
tPHL	Propagation delay time, output \downarrow	7		30	7	13	20	ns	
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\| tPHL - tplel)			6		0.5	1.5	ns	
tr_{r}	Rise time, output	See Figure 7		5		2.1	3.3	ns	
tf	Fall time, output			5		2.1	3.3	ns	
tpZH	Output enable time to high level	$C_{L}=10 \mathrm{pF},$ See Figure 8		50		30	45	ns	
tPZL	Output enable time to low level			50		30	45	ns	
tPHZ	Output disable time from high level			60		20	40	ns	
tplZ	Output disable time from low level			40		20	40	ns	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

Figure 2. Driver $\mathrm{V}_{\mathrm{OD} 3}$

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Voltage Waveforms

NOTES:
A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 5. Driver Test Circuit and Voltage Waveforms

Figure 6. Receiver V_{OH} and V_{OL}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty $\mathrm{cycle}, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 8. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 9. Typical Waveform of Non-Return-To-Zero (NRZ), Pseudorandom Binary Sequence (PRBS) Data at 100 Mbps Through 15m, of CAT 5 Unshielded Twisted Pair (UTP) Cable

TIA/EIA-485-A defines a maximum signaling rate as that in which the transition time of the voltage transition of a logic-state change remains less than or equal to 30% of the bit length. Transition times of greater length perform quite well even though they do not meet the standard definition.

TYPICAL CHARACTERISTICS

Figure 10

INPUT CURRENT
VS
INPUT VOLTAGE

Figure 12

LOGIC INPUT CURRENT
vS
INPUT VOLTAGE

Figure 11

LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

Figure 13

TYPICAL CHARACTERISTICS

Figure 14

RECEIVER PROPAGATION TIME
vs
CASE TEMPERATURE

Figure 16

DRIVER DIFFERENTIAL OUTPUT VOLTAGE
vs
CASE TEMPERATURE

Figure 15

DRIVER PROPAGATION DELAY TIME
vs
CASE TEMPERATURE

Figure 17

TYPICAL CHARACTERISTICS

Figure 18

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN65LBC176AD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BL176A	Samples
SN65LBC176ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BL176A	Samples
SN65LBC176ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BL176A	Samples
SN65LBC176AP	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	65LBC176A	Samples
SN65LBC176AQD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	B176AQ	Samples
SN65LBC176AQDG4	ACTIVE	SOIC	D	8	75	$\begin{aligned} & \text { Green (RoHS } \\ & \text { \& no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ & \hline \end{aligned}$	CU NIPDAU	Level-1-260C-UNLIM		B176AQ	Samples
SN65LBC176AQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	B176AQ	Samples
SN65LBC176AQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		B176AQ	Samples
SN75LBC176AD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LB176A	Samples
SN75LBC176ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LB176A	Samples
SN75LBC176ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LB176A	Samples
SN75LBC176ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LB176A	Samples
SN75LBC176AP	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	N / A for Pkg Type	0 to 70	75LBC176A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65LBC176A :

- Enhanced Product: SN65LBC176A-EP

NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LBC176ADR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| SN65LBC176AQDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| SN75LBC176ADR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC176ADR	SOIC	D	8	2500	340.5	338.1	20.6
SN65LBC176AQDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75LBC176ADR	SOIC	D	8	2500	340.5	338.1	20.6

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed . 006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: \dagger Signaling rate by TIA/EIA-485-A definition restrict transition times to 30% of the bit duration, and much higher signaling rates may be achieved using a different criteria (see TYPICAL CHARACTERISTICS section).

[^1]: § The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet. NOTE 4: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B .

