

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

February 1997 Revised August 2004

NC7ST02

TinyLogic® HST 2-Input NOR Gate

General Description

The NC7ST02 is a single 2-Input high performance CMOS NOR Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\mbox{\footnotesize CC}}$ and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with ½ the output current drive of HC/HCT.

Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak™ leadless package
- High Speed; t_{PD} < 7 ns typ, V_{CC} = 5V, C_L = 15 pF
- \blacksquare Low Quiescent Power; $I_{CC} < 1~\mu\text{A typ},~V_{CC} = 5.5\text{V}$
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- TTL-compatible inputs

Ordering Code:

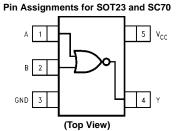
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7ST02M5X	MA05B	8S02	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7ST02P5X	MAA05A	T02	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7ST02L6X	MAC06A	D9	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol

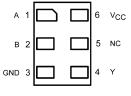
Pin Descriptions

Pin Names	Description
A, B	Inputs
Y	Output
NC	No Connect

Function Table


$$Y = \overline{A + B}$$

Inp	Output			
Α	A B			
L	L	Н		
L	Н	L		
Н	L	L		
Н	Н	L		


H = HIGH Logic Level

L = LOW Logic Level

Connection Diagrams

Pad Assignments for MicroPak

(Top Thru View)

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. $\label{eq:microPak} \mbox{MicroPak}^{\mbox{\tiny TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V Supply Voltage (V_{CC}) DC Input Diode Current (I_{IK})

 $V_{IN} < -0.5V$ -20 mA $V_{IN} \ge V_{CC} + 0.5V$ +20 mA DC Input Voltage (V_{IN}) -0.5V to V_{CC} +0.5V

DC Output Diode Current (I_{OK})

 $V_{OUT} < -0.5V$ -20 mA $V_{OUT} > V_{CC} + 0.5V$ +20 mA

Output Voltage (V_{OUT}) -0.5V to V_{CC} +0.5V

DC Output Source or Sink

Current (I_{OUT}) ±12.5 mA

DC V_{CC} or Ground Current per

Supply Pin (I $_{\rm CC}$ or I $_{\rm GND}$) ±25 mA

-65°C to +150°C Storage Temperature (T_{STG}) Junction Temperature (T_J) 150°C

Lead Temperature (T_L);

(Soldering, 10 seconds) 260°C

Power Dissipation (PD) @+85°C

SOT23-5 200 mW

SC70-5 150 mW

Recommended Operating Conditions (Note 2)

Supply Voltage 4.5V to 5.5V Input Voltage (V_I) 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC} Operating Temperature (T_A) -40°C to +85°C

Input Rise and Fall Time (t_r,t_f)

 $V_{CC} = 5.0V$ 0 to 500 ns

Thermal Resistance (θ_{JA})

SOT23-5 300°C/W

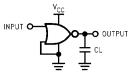
SC70-5 425°C/W

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifica-

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

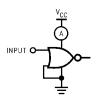
DC Electrical Characteristics

Symbol	Parameter	v _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Cyllibol	i diameter	(V) Min		Тур Мах		Min	Min Max		Conditions	
V _{IH}	HIGH Level Input Voltage	4.5–5.5	2.0			2.0		V		
V_{IL}	LOW Level Input Voltage	4.5–5.5			8.0		0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4			$I_{OH} = -20 \mu A$	
		4.5	4.18	4.35		4.13		V	$V_{IN} = V_{IL}$	
									$I_{OH} = -2 \text{ mA}$	
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1		I _{OL} = 20 μA	
		4.5		0.10	0.26		0.33	V	$V_{IN} = V_{IH}$	
									$I_{OL} = 2 \text{ mA}$	
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5.5V$	
I _{CC}	Quiescent Supply Current	5.5			1.0		10.0	μΑ	$V_{IN} = V_{CC}$ or GND	
I _{CCT}	I _{CC} per Input	5.5			2.0		2.9		One Input $V_{IN} = 0.5V$ or 2.4V,	
									Other Input V _{CC} or GND	


AC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure	
		(V)	Min	Тур	Max	Min	Max	Onics		Number
t _{PLH} ,	Propagation Delay	5.0		3.5	12			ns	C ₁ = 15 pF	
t _{PHL}		3.0		6.3	17			ns	OL = 15 pr	
		4.5		6.1	16		20			Figures
	4.5		11.7	27		31	ns	C _L = 50 pF	1, 3	
	5.5		4.2	14		18				
				11.4	26					30
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	C _L = 15 pF	
t_{THL}		4.5		11	25		31	ns	C _L = 50 pF	Figures 1, 3
				10	21		26	113	OL = 30 pi	, -
C _{IN}	Input Capacitance	Open		2	10			pF		
C _{PD}	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:

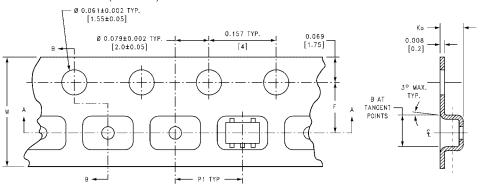

I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CCstatic}).

AC Loading and Waveforms

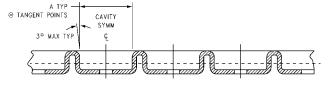
 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_w = 500 ns

FIGURE 1. AC Test Circuit

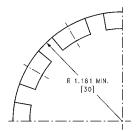
$$\label{eq:local_problem} \begin{split} & \text{Input} = \text{AC Waveform; PRR} = \text{Variable; Duty Cycle} = 50\% \\ & \qquad \qquad \text{FIGURE 2. } I_{\text{CCD}} \text{ Test Circuit} \end{split}$$


FIGURE 3. AC Waveforms

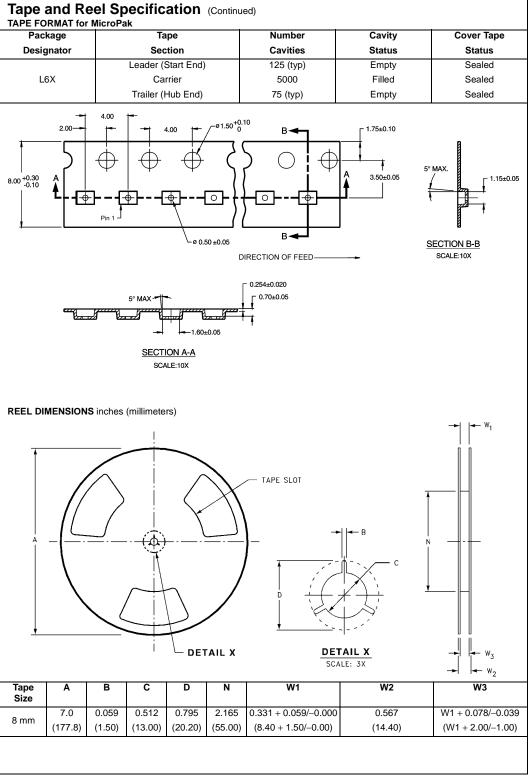
Tape and Reel Specification

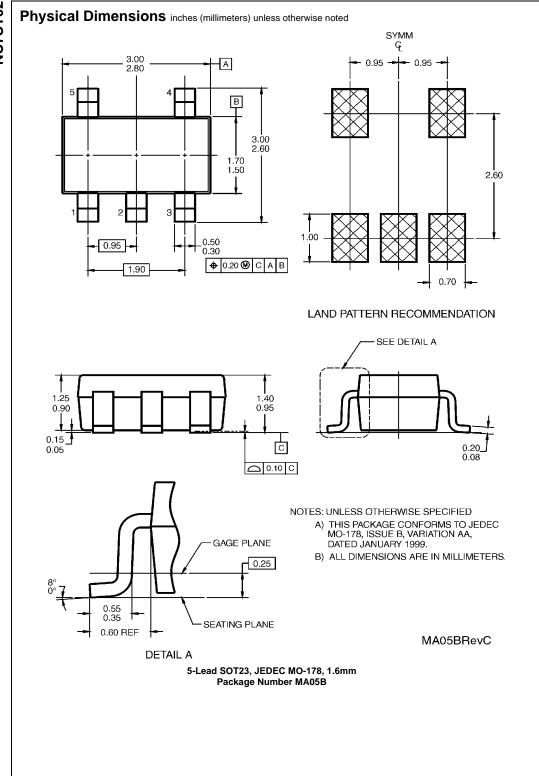

TAPE FORMAT for SC70 and SOT23

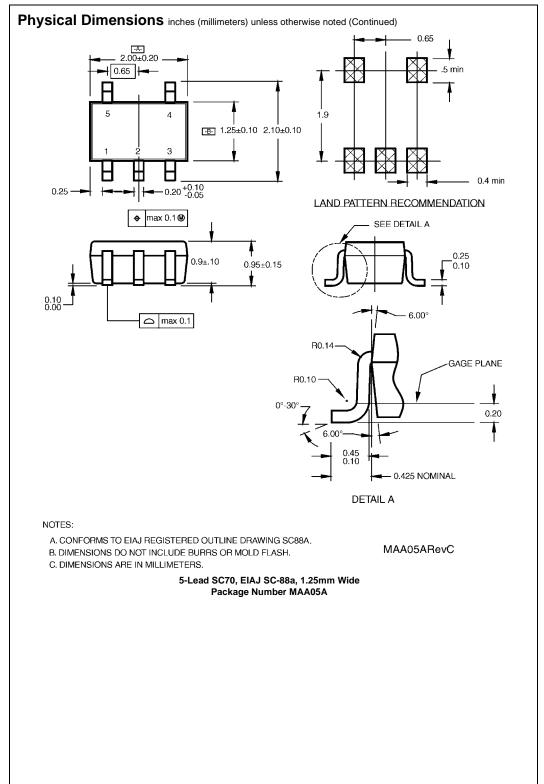
Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


TAPE DIMENSIONS inches (millimeters)

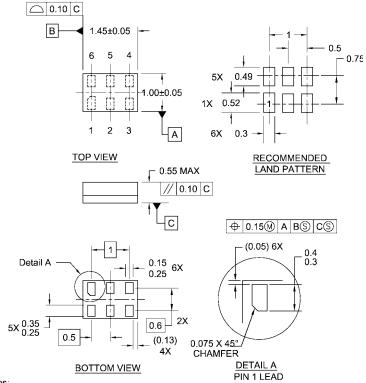
DIRECTION OF FEED _____




SECTION A-A



BEND RADIUS NOT TO SCALE


Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NC7ST02M5X NC7ST02M5 NC7ST02P5 NC7ST02P5X NC7ST02L6X