Bi-CMOS LSI

Two channels Constant-current H-bridge Driver

http://onsemi.com

Overview

The LV8080LP is a two-channel constant-current driver that supports low-voltage operation. It is optimal for constant-current drive of stepping motors (AF and zoom) in portable equipment such as camera cell phones.

Features

- Two channels constant-current H-bridge driver
- Built-in power supply switch and position detection comparator for use with a photoreflector
- Supports both 2-phase drive and 1-2 phase drive.
- Implemented in a low-power MOS IC process.
- Ultraminiature easy to solder VCT16 package (2.6 × 2.6mm)
- Built-in thermal protection and low-voltage sensing circuits

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} , VM max		6.5	V
Output voltage	V _{OUT} max	OUT1, OUT2, OUT3, OUT4	6.5	V
Input voltage	V _{IN} max	CONT, IN	-0.3 to +6.5	V
Ground pin source current	IGND	Per channel	400	mA
Allowable power dissipation	Pd max	Mounted on a circuit board.*	700	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

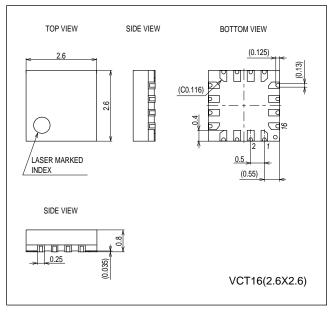
^{*} Specified circuit board : 40×50×0.8mm³ : 4-layer (2S2P) glass epoxy printed circuit board

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ratings at $Ta = 25^{\circ}C$

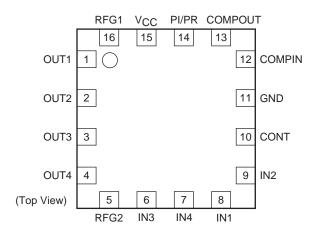
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC		2.5 to 6.0	V
High-level input voltage	VIH	CONT, IN	0.6V _{CC} or more	V
Low-level input voltage	V_{IL}		Up to 0.2V _{CC}	V

Electrical Characteristics at Ta = 25°C, $V_{CC} = 3.0V$

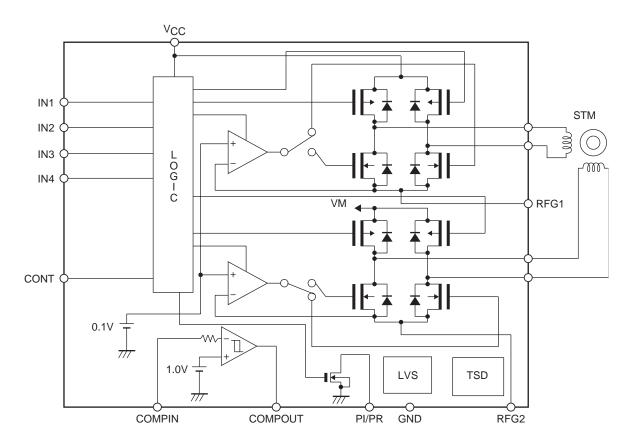

D	0	Complision -		11.7			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Current drain	Icco	EN = 0V		0.1	1	μΑ	
	I _{CCO} 1	EN = 3V		0.7	1	mA	
Output on resistance	Ron1	V _{CC} = 3.0V (High and low side total) EN = 3.0V, I _{OUT} = 100mA		2.0	3.0	Ω	
	Ron2	V _{CC} = 5.0V (High and low side total) EN = 5.0V, I _{OUT} = 100mA		1.50	2.0	Ω	
Constant-current output 1	I _{OUT} 1	Between RFG and ground : 1Ω	95	100	105	mA	
Constant-current output 2	l _{OUT} 2	Between RFG and ground : 0.5Ω (Design specification)	190	200	210	mA	
Output turn-on time	Traise	With RFG1 and RFG2 shorted to ground (Design specification)		1.3	3	μs	
Output turn-off time	Tfall	With RFG1 and RFG2 shorted to ground (Design specification)		0.25	0.65	μs	
Position detection voltage (high level)	VH			1.0	1.06	V	
Position detection voltage (low level)	VL		0.74	0.8		V	
Detection voltage hysteresis	HYS		0.165	0.18	0.195	V	
PI/PR pin current	IPI/PR				20	mA	
Input current	I _{IN}	V _{IN} = 3V		15	30	μА	

Note: The design specification items are design guarantees and are not measured.

Package Dimensions


unit: mm (typ)

3318



Pin Assignment

(VCT16)

Block Diagram

Constant-current calculation : $I_{OUT} = 0.1 \div RF~$ Example : When an I_{OUT} of 100mA is required, RF must be 1Ω . Usage Notes

The constant current is set by the resource RF connected between RFG and ground according to the formula shown above.

Truth Table

Input			Output			Marila			
IN1	IN2	IN3	IN4	OUT1	OUT2	OUT3	OUT4	Mode	
Low	Low	Low	Low	Off	Off	Off	Off	Standby mode	
Low	High			Low	High			Channel 1, reverse	
High	Low	-	-	High	Low	Off	Off	Channel 1, forward	
High	High			Low	Low			Channel 1, brake mode	
		Low	High			Low	High	Channel 2, reverse	
-	-	High	Low	Off	Off	High	Low	Channel 2, forward	
		High	High			Low	Low	Channel 2, brake mode	

Note: The "-" input unstable state. When off, a high-impedance state.

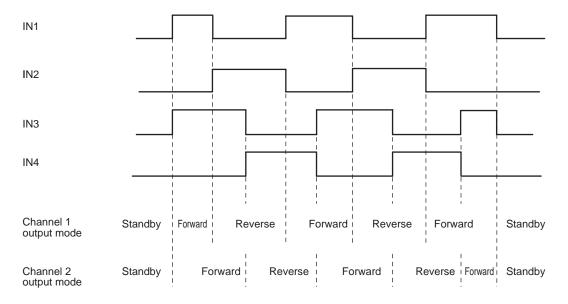
- The ENA goes to the standby state with a low-level input, and to the operating state with a high-level input.
- The control input switches the forward/reverse mode.

Pin Description

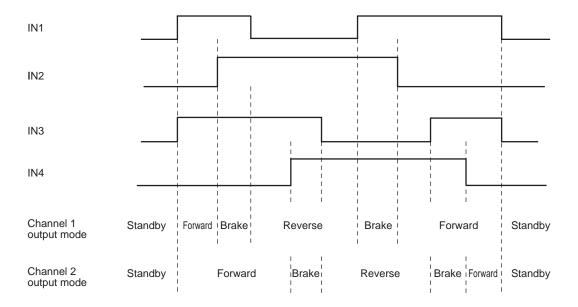
Pin No.	Pin Name	Description	Equivalent Circuit
1	OUT1	1-4 : Output pins	
2	OUT2	H-bridge type output pins	V _{CC}
3	OUT3	Pins 1 and 2 are paired and pins 3 and 4 are paired.	
4	OUT4		
			⊣ <u> </u>
5	RFG2	5, 16 : Current sensing resistor connection pins	
16	RFG1	Connect the current sensing resistor between these	(1) (2)
		pins and ground to detect the output currents for	
		constant current control.	
		Pin 16 corresponds to the output from pins 1 and 2 and	"
		pin 5 to the output from pins 1 and 2.	# #
			
			10kΩ
			\downarrow 10k Ω
			(5)
			0.1V #
6	IN3	Logic input pins	↑ Vcc
7	IN4		.00
8	IN1		
9	IN2		<u>↓</u>
10	CONT		↑
			6 10kΩ
			A 200kO S
			▲ 200kΩ≱
			GND
11	GND	Ground	
12	COMPIN	Photo reflector position sensing comparator input	
			*
			\bigcap 1k Ω ,
			(12)
			★
			T
			GND
13	COMPOUT	Photo reflector position sensing comparator output	1kΩ
		This pin serves as an open-collector output of the NPN	(13) + W
		transistor.	
			<u> </u>
			↑
			GND
			CIND

Continued on next page.

Continued from preceding page Pin Name **Equivalent Circuit** Pin No. Description 14 PI/PR A switch, with NMOS open-drain output, used to turn Vcc on/off the power supply of the position sensor unit. When using this switch, connect the position sensor unit between this pin and the $V_{\mbox{\footnotesize CC}}$ pin. On/off control of this switch is accomplished by CONT (6) pin. Setting the CONT pin high turns on the switch. GND

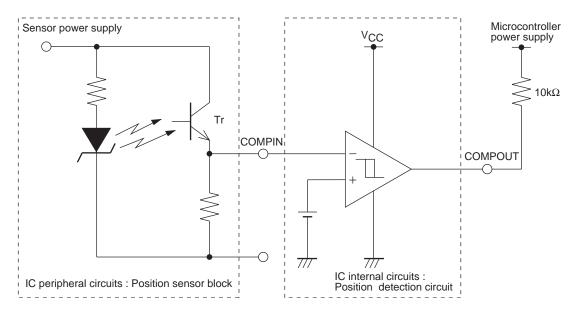

Timing Chart

Vcc

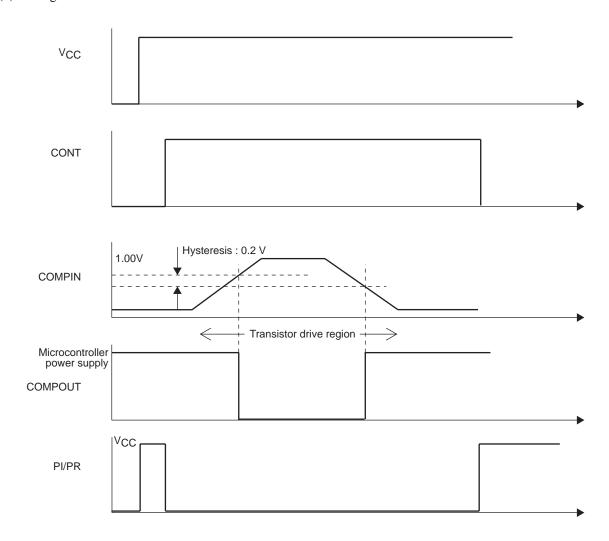

15

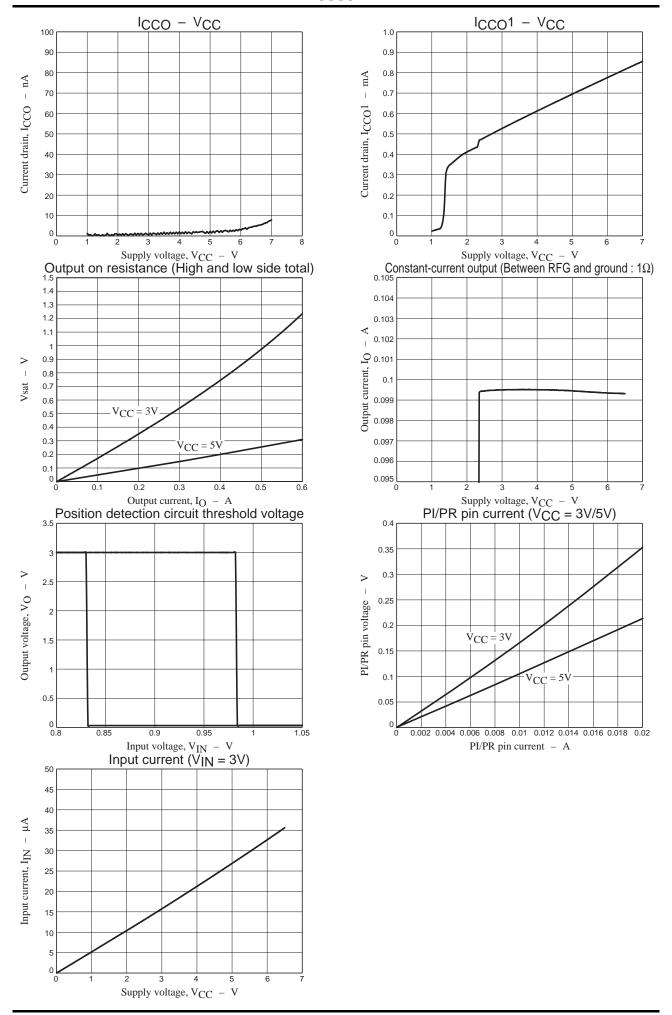
(1) Stepper motor timing chart Timing chart for 2-phase drive

Power supply pin



(2) Timing chart for 1-2 phase drive (Slow decay mode)




Photosensor Position Detection Application Circuit Example

(a) Application circuit

(b) Timing chart

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: