

TUSB2551A

SCES790-JUNE 2009


ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVER

FEATURES

- Complies With Universal Serial Bus Specification Rev. 2.0 (USB 2.0)
- Transmits and Receives Serial Data at Both Full-Speed (12-Mbit/s) and Low-Speed (1.5-Mbit/s) Data Rates
- Integrated Bypassable 5-V to 3.3-V Voltage Regulator for Powering Via USB V_{BUS}
- Low-Power Operation is Ideal for Portable Equipment
- Meets the IEC-61000-4-2 Contact Discharge (±9 kV) and Air-Gap Discharge (±9 kV) ESD Ratings
- Separate I/O Supply With Operation Down to 1.65 V
- Very-Low Power Consumption to Meet USB Suspend Current Requirements
- No Power-Supply Sequencing Requirements

APPLICATIONS

- Cellular Phones
- Personal Digital Assistants (PDAs)
- Handheld Computers

NC - No internal connection

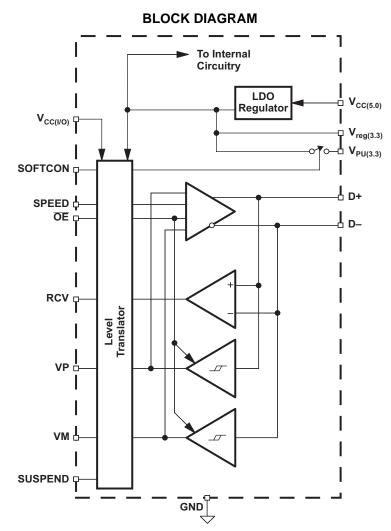
DESCRIPTION/ORDERING INFORMATION

The TUSB2551A is a single-chip transceiver that complies with the physical-layer specifications of universal serial bus (USB) 2.0. The device supports both full-speed (12-Mbit/s) and low-speed (1.5-Mbit/s) operation. The TUSB2551A delivers superior edge-rate control, producing crisper eye diagrams, which ease the task of passing USB compliance testing.

A dual supply-voltage operation allows the TUSB2551A to reference the system interface I/O signals to a supply voltage down to 1.6 V, while independently powered by the USB $V_{CC(5.0)}$. This allows the system interface to operate at its core voltage without the addition of buffering logic, and also reduce system operating current.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TUSB2551A


SCES790-JUNE 2009

ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	QFN – RGT	Reel of 2000	TUSB2551ARGTR	ZUH		
-40°C to 85°C		Reel of 3000	TUSB2551APWR	PREVIEW		
	TSSOP – PW	Tube of 90	TUSB2551APW	PREVIEW		

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

2

www.ti.com

TUSB2551A

SCES790-JUNE 2009

TERMINAL FUNCTIONS

TERMINAL				
NAME	Ν	0.	I/O	DESCRIPTION
NAME	RGT	PW		
V _{CC(I/O)}	15	1	I	System interface supply voltage. Used to provide reference supply voltage for system I/O interface signaling.
SPEED	1	2	I	Speed. Edge-rate control: A logic HIGH operates at edge rates for full-speed operation. A logic LOW operates at edge rates for low-speed operation.
RCV	2	3	0	Receive data. Output for USB differential data.
VP	3	4	I/O	If $\overline{OE} = 1$, VP = Receiver output (+) If $\overline{OE} = 0$, VP = Driver input (+)
VM	4	5	I/O	If $\overline{OE} = 1$, VM = Receiver output (-) If $\overline{OE} = 0$, VM = Driver input (-)
SOFTCON	5	6	I	Soft connect. Controls state of V _{PU(3.3)} . See V _{PU(3.3)} pin description for details.
GND	6	7		Ground reference
SUSPEND	7	8	Ι	Suspend. Active high. Turns off internal circuits to reduce supply current.
NC	8, 16			No internal connection
ŌĒ	9	9	I	Output enable. Active low. Enables the transceiver to transmit data onto the bus. When inactive, the transceiver is in the receive mode.
D–, D+	10, 11	10, 11	I/O	Differential data lines conforming to the USB standard
V _{reg(3.3)}	12	12	0	3.3-V reference supply. Requires a minimum 0.1- μ F decoupling capacitor for stability. A 1- μ F capacitor is recommended.
V _{PU(3.3)}	13	13	0	Pullup supply voltage. Used to connect 1.5-k Ω pullup speed detect resistor. If SOFTCON = 1, V _{PU(3.3)} is high impedance. If SOFTCON = 0, V _{PU(3.3)} = 3.3 V.
V _{CC(5.0)}	14	14	I	USB bus supply voltage. Used to power USB transceiver and internal circuitry.

FUNCTIONAL DESCRIPTION

FUNCTION SELECTION

SUSPEND	ŌE	D+, D-	RCV	VP, VM	FUNCTION
0	0	Driving	Active	Active	Normal transmit mode
0	1	Receiving	Active	Active	Normal receive mode
1	0	Hi-Z	0	Not active	Low power state
1	1	Hi-Z	0	Active	Receiving during suspend (low power state) ⁽¹⁾

(1) During suspend, VP and VM are active to detect out-of-band signaling conditions.

TRUTH TABLE DURING NORMAL MODE

		ō	<u>DE</u> = 0		
IN	PUT		OUTPUT		RESULT
VP	VM	D+	D-	RCV	RESULT
0	0	0	0	X ⁽¹⁾	SE0
0	1	0	1	0	Logic 0
1	0	1	0	1	Logic 1
1	1 1		1	X ⁽¹⁾	Undefined
		ō	DE = 1		·
IN	PUT		OUTPUT	RESULT	
D+	D-	VP	VM	RCV	RESULT
0	0	0	0	X ⁽¹⁾	SE0
0	1	0	1	0	Logic 0
1	0	1	0	1	Logic 1
1	1	1	1	X ⁽¹⁾	Undefined

(1) X = Undefined

SCES790-JUNE 2009

Power-Supply Configurations

The TUSB2551A can be used with different power-supply configurations, which can be dynamically changed. An overview is given in Table 1.

- Normal mode Both V_{CC(I/O)} and V_{CC(5.0)} or V_{CC(5.0)} and V_{reg(3.3)} are connected. For 5-V operation, V_{CC(5.0)} is connected to a 5-V source (4 V to 5.5 V). The internal voltage regulator then produces 3.3 V for the USB connections. For 3.3-V operation, both V_{CC(5.0)} and V_{reg(3.3)} are connected to a 3.3-V source (3 V to 3.6 V). V_{CC(I/O)} is independently connected to a voltage source (1.65 V to 3.6 V), depending on the supply voltage of the external circuit.
- Disable mode V_{CC(I/O)} is not connected; V_{CC(5.0)} or V_{CC(5.0)} and V_{reg(3.3)} are connected. In this mode, the internal circuits of the TUSB2551A ensure that the D+ and D– pins are in 3-state, and the power consumption drops to the low-power (suspended) state level. Some hysteresis is built into the detection of V_{CC(I/O)} lost.
- Sharing mode $V_{CC(I/O)}$ is connected; $V_{CC(5.0)}$ and $V_{reg(3.3)}$ are not connected. In this mode, the D+ and Dpins are made 3-state, and the TUSB2551A allows external signals of up to 3.6 V to share the D+ and Dlines. The internal circuits of the TUSB2551A ensure that virtually no current (maximum 10 mA) is drawn via the D+ and D- lines. The power consumption through $V_{CC(I/O)}$ drops to the low-power (suspended) state level. Both the VP and VM pins are driven HIGH to indicate this mode. Pin RCV is made LOW. Some hysteresis is built into the detection of $V_{reg(3.3)}$ lost.

CONFIGURATION MODE	VBUS/VTRM	VIF	Notes
Normal	Connected	Connected	Normal supply configuration and operation
Disconnect (D+/D– sharing)	Open	Connected	VP/VM are HIGH outputs, RCV is LOW. With $\overline{OE} = 0$ and SUSPEND = 1, data lines may be driven with external devices up to 3.6 V. With D+, D– floating, I _{CC(I/O)} draws less than 1 μ A.
Disconnect	Ground	Connected	VP/VM are HIGH outputs, RCV is LOW. With D+, D– floating, $I_{CC(I/O)F}$ draws less than 1 μ A.
Disable Mode	Connected	Open	Logic controlled inputs pins are Hi-Z.
Prohibited	Connected	Ground	Prohibited condition

Table 1. Power-Supply Configuration Overview

Table 2. Pin States	s in Disabl	le or Sharing	Mode
---------------------	-------------	---------------	------

PINS	DISABLE-MODE STATE	SHARING-MODE STATE
V _{CC(5.0)} /V _{reg(3.3)}	5-V input/3.3-V output, 3.3-V input/3.3-V input	Not present
V _{CC(I/O)}	Not present	1.65-V to 3.6-V input
V _{PU(3.3)}	High impedance (off)	High impedance (off)
D+, D–	High impedance	High impedance
VP, VM	Invalid ⁽¹⁾	Н
RCV	Invalid ⁽¹⁾	L
Inputs (SPEED, SUSPEND, OE, SOFTCON)	High impedance	High impedance

(1) High impedance or driven LOW

4

EXAS

NSTRUMENTS

www.ti.com

Power-Supply Input Options

The TUSB2551A has two power-supply input options.

- Internal regulator V_{CC(5.0)} is connected to 4 V to 5.5 V. The internal regulator is used to supply the internal circuitry with 3.3 V (nominal). V_{reg(3.3)} becomes a 3.3-V output reference.
- Regulator bypass $V_{CC(5,0)}$ and $V_{reg(3,3)}$ are connected to the same supply. The internal regulator is bypassed, and the internal circuitry is supplied directly from the $V_{reg(3,3)}$ power supply. The voltage range is 3 V to 3.6 V to comply with the USB specification.

The supply-voltage range for each input option is specified in Table 3.

Table 3. Power-Supply Input Options

INPUT OPTION V _{CC(5.0)}		V _{reg(3.3)}	V _{CC(I/O)}
Internal regualtor	Supply input for internal regulator (4 V to 5.5 V)	Voltage-reference output (3.3 V, 300 μA)	Supply input for digital I/O pins (1.4 V to 3.6 V)
Regulator bypass	Connected to V _{reg(3.3)} with maximum voltage drop of 0.3 V (2.7 V to 3.6 V)	Supply input (3 V to 3.6 V)	Supply input for digital I/O pins (1.4 V to 3.6 V)

Electrostatic Discharge (ESD)

PIN NAME	ESD	TYP	UNIT
	IEC61000-4-2, Air-Gap Discharge	±9	
	IEC61000-4-2, Contact Discharge	±9	kV
	Human-Body Model	±15	
All other pins	Human-Body Model	±2	kV

SCES790-JUNE 2009

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC(5.0)}	Supply voltage range	-0.5	6	V
V _{CC(I/O)}	I/O supply voltage range	-0.5	4.6	V
V _{reg(3.3)}	Regulated voltage range	-0.5	4.6	V
VI	DC input voltage range	-0.5	$V_{CC(I/O)} + 0.5$	mA
I _{O(D+, D-)}	Output current (D+, D-)		±50	mA
lo	Output current (all others)		±15	mA
l _l	Input Current		±50	mA
T _{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V _{CC(5.0)}	Supply voltage, internal regulator option	5-V operation	4	5	5.25	V
V _{reg(3.3)}	Supply voltage, regulator bypass option	3.3-V operation	3	3.3	3.6	V
V _{CC(I/O)}	I/O supply voltage		1.65		3.6	V
V _{IL}	Low-level input voltage ⁽¹⁾		V _{CC(I/O)} –0.3		0.15 V _{CC(I/O)}	V
V _{IH}	High-level input voltage ⁽¹⁾		0.85 V _{CC(I/O)}		$V_{CC(I/O)} + 0.3$	V
D+, D–	Input voltage on analog I/O pins		0		3.6	V
T _c	Junction temperature		-40		85	°C

(1) Specification applies to the following pins: SUSPEND, SPEED, RCV, SOFTCON, VP, VM, and OE.

TUSB2551A

SCES790-JUNE 2009

www.ti.com

DC ELECTRICAL CHARACTERISTICS – SYSTEM AND USB INTERFACE⁽¹⁾

 $V_{CC(I/O)}$ = 3.6 V, $V_{CC(5.0)}$ = 5 V (unless otherwise noted), T_A = 25°C. Bold indicates specifications over temperature, -40°C to 85°C.

PA	RAMETER		TES		DITIONS		MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	I _{OH} = 20 μ	A				0.9 V _{CC(I/O)}			V
V _{OL}	Low-level output voltage ⁽²⁾	I _{OL} = 20 μ	A						0.1	V
IIL	Input leakage current ⁽²⁾						-5	1.5	5	μΑ
		SPEED	SUSPEND	OE	VOLTAGE	LOAD				
		1	0	1				1	5	
		1	0	0				1	5	
$\frac{V_{OH}}{V_{OL}} = \frac{V_{OH} + 20 \mu \text{A}}{V_{OL}} = \frac{V_{OL} + 20 \mu \text{A}}{V_{OL} + 20 \mu \text{A}} = \frac{V_{OL} + 20$			1	5	μA					
	V _{CC(UO)} supply current	0	0	0	$V_{CC(5.0)} = 5.25 V$			0.9 V _{CC(I/O)} 0.1 -5 1.5 5 		
		0	1	0	$V_{CC(I/O)} =$					
$\begin{array}{c c c c c c c c } V_{OH} & \begin{array}{c} High-level output \\ voltage^{(2)} & I_{d} \\ \hline \\ V_{OL} & \begin{array}{c} Low-level output \\ voltage^{(2)} & I_{d} \\ \hline \\ I_{IL} & Input leakage current^{(2)} \\ \hline \\ I_{IL} & V_{CC(I/O)} & V_{CC(I/O)} & V_{CC(I/O)} & V_{CC(I/O)} \\ \hline \\ I_{CC(I/O)} & V_{CC(I/O)} & Supply current \\ \hline \\ \\ I_{CC(5.0)} & V_{CC(5.0)} & Supply current \\ \hline \\ \hline \\ I_{PU(3.3)LEAK} & V_{PU(3.3)} & leakage current \\ \hline \\ V_{PU(3.3)} & Pullup & output voltage \\ \hline \\ R_{SW} & \begin{array}{c} V_{PU(3.3)} & switch \\ resistance \\ \hline \\ IEC-61000-4-2 \\ \hline \\ Air-Gap & Discharge \\ \hline \end{array}$	1	0	0	3.6 V	f = 6 MHz, $C_L = 50 pF$		1	2	mA	
		0	0	0	-	f = 750 kHz, C _L = 600 pF		260	5 5 5 5 5 5 2 2 280 1100 5000 350 700 200 10 5 5 5 5 5	μΑ
		1	0	1	-			800	1100	
		1	0	0				3000	5000	
		0	0	1				230	1.5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 2 260 280 800 1100 000 5000 230 350 400 700 130 200 6 10 43 5 5 5 3.3 3.6 10 ±9	μA
		0	0	0	$V_{CC(5.0)} =$			400	700	
I _{CC(5.0)}	V _{CC(5.0)} supply current	0	1	0	$V_{CC(I/O)} =$			130	200	
		1	0	0	3.6 V	f = 6 MHz, C _L = 50 pF		6	10	
		0 0 0 f =	f = 750 kHz, C _L = 600 pF		43	5	- mA			
I _{PU(3.3)LEAK}	V _{PU(3.3)} leakage current	SOFTCOM	N = 1, V _{PU(3.3)}	= 0 V	L		-5		5	μA
					$V_{CC(5.0)} = 5.25 V, V_{CC(1/O)} = 3.6 V$		-5		5	μA
V _{PU(3.3)}	Pullup output voltage	$I_{reg(3.3)} = 2$	200 μA, V _{CC(5.}	₀₎ = 4 V	to 5.25 V		3	3.3	3.6	V
		$I_{reg(3.3)} = 1$	10 mA, V _{CC(5.0}	₀₎ = 4 V	to 5.25 V			10		Ω
ESD Protection	ı									
	Air-Gap Discharge	10 pulses						±9		
	Contact Discharge	10 pulses						±9		kV

Specification for packaged product only
Specification applies to the following pins: RCV, VP, VM, OE.

INSTRUMENTS www.ti.com

Texas

SCES790-JUNE 2009

DC ELECTRICAL CHARACTERISTICS – TRANSCEIVER⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
Leakage Current										
I _{LO}	Hi-Z state data line leakage (suspend mode)	0 V < V _{IN} < 3.3 V, SUSPEND = 1	-10		10	μA				
Input L	evels									
V _{DI}	Differential input sensitivity	(D+) - (D-)	0.2			V				
V _{CM}	Differential common mode range	Includes V _{DI} range	0.8		2.5	V				
V _{SE}	Single-ended receiver threshold		0.8		2	V				
	Receiver hysteresis			200		mV				
Output	Levels									
V _{OL}	Static output low	$R_L = 1.5 \text{ k}\Omega \text{ to } 3.6 \text{ V}$			0.3	V				
V _{OH}	Static output high	$R_L = 15 \text{ k}\Omega \text{ to GND}$	2.8		3.6	V				
Capaci	tance									
C _{IN}	Transceiver capacitance	Pin to GND		10		pF				
Z _{DRV}	Driver output resistance	Steady-state drive	1	6	11	Ω				

(1) Specification for packaged product only

TUSB2551A

SCES790-JUNE 2009

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Driver (Characteristics (Low Speed)	I			
T _R	Transition rise time	$C_L = 200 \text{ pF}$ (see Figure 2), $C_L = 600 \text{ pF}$	75	300	ns
T _F	Transition fall time	C_L = 200 pF (see Figure 2), C_L = 600 pF	75	300	ns
LRFM	Rise/fall time matching	T _R , T _F	80	125	%
V _{CRS}	Output signal crossover voltage		1.3	2	V
Driver (Characteristics (Full Speed)				
T _R	Transition rise time	$C_L = 50 \text{ pF}$ (see Figure 2)	4	20	ns
T _F	Transition fall time	$C_L = 50 \text{ pF}$ (see Figure 2)	4	20	ns
FRFM	Rise/fall time matching	TR, TF	90	111.1	%
V _{CRS}	Output signal crossover voltage		1.3	2	V
Transce	eiver Timing (Full Speed)				
t _{PVZ}	OE to receiver 3-state delay	See Figure 1		15	ns
t _{PZD}	Receiver 3-state to transmit delay	See Figure 1	15		ns
t _{PDZ}	OE to driver 3-state delay	See Figure 1		15	ns
t _{PZV}	Driver 3-state to receive delay	See Figure 1	15		ns
t _{PLH} t _{PHL}	$V_{\text{P}},V_{\text{M}}$ to D+, D– propagation delay	See Figure 4		17	ns
t _{PLH} t _{PHL}	D+, D– to RCV propagation delay	See Figure 3		17	ns
t _{PLH} t _{PHL}	D+, D– to V_P , V_M propagation delay	See Figure 3		10	ns

(1) Specification for packaged product only

SCES790-JUNE 2009

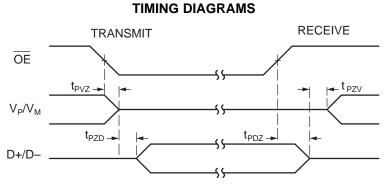


Figure 1. Enable and Disable Times

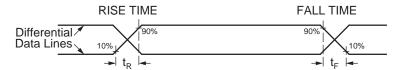


Figure 2. Rise and Fall Times

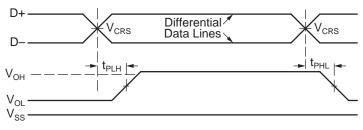


Figure 3. Receiver Propagation Delay

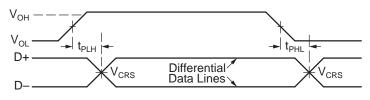


Figure 4. Driver Propagation Delay

SCES790-JUNE 2009

TEST CIRCUITS

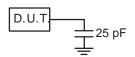


Figure 5. Load for V_P , V_M , RCV

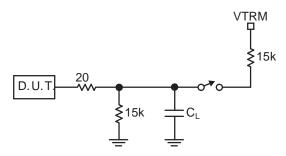


Figure 6. Load for D+, D-

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TUSB2551ARGTR	ACTIVE	VQFN	RGT	16	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZUH	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

w

(mm)

12.0

K0

(mm)

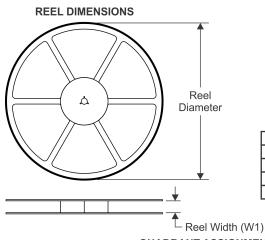
1.0

P1

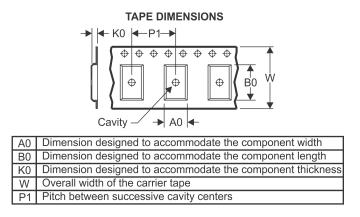
(mm)

8.0

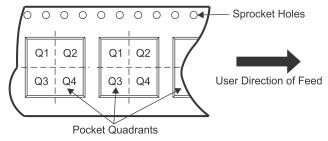
Pin1


Quadrant

Q2


www.ti.com

Texas Instruments


TAPE AND REEL INFORMATION

TUSB2551ARGTR

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

330.0

12.4

3.3

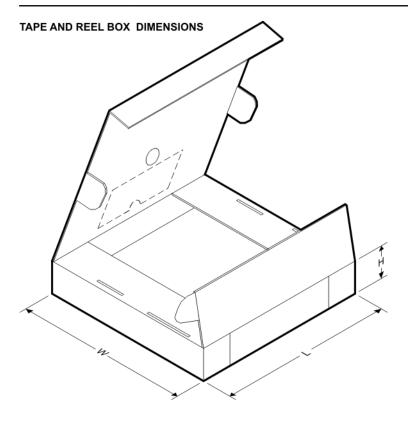
3.3

All dimensions are nominal					
Device	Package Type	Package Drawing		Reel Width W1 (mm)	B0 (mm)

16

3000

RGT

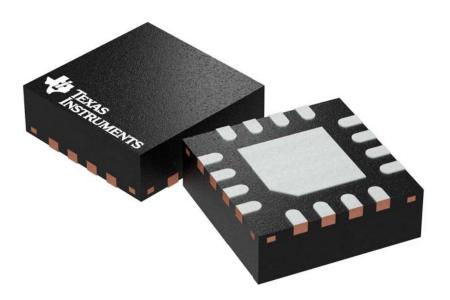

VQFN

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Aug-2017



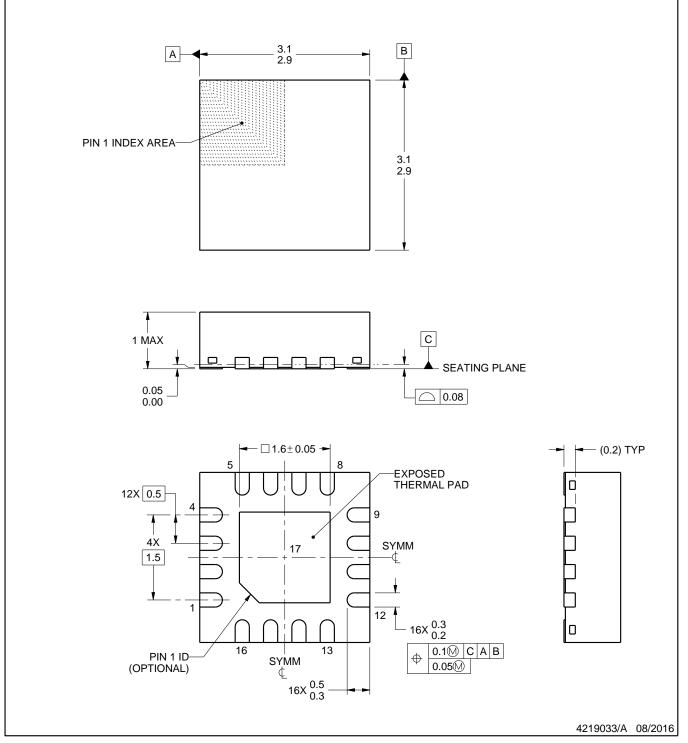
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TUSB2551ARGTR	VQFN	RGT	16	3000	346.0	346.0	35.0

GENERIC PACKAGE VIEW

VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RGT0016B

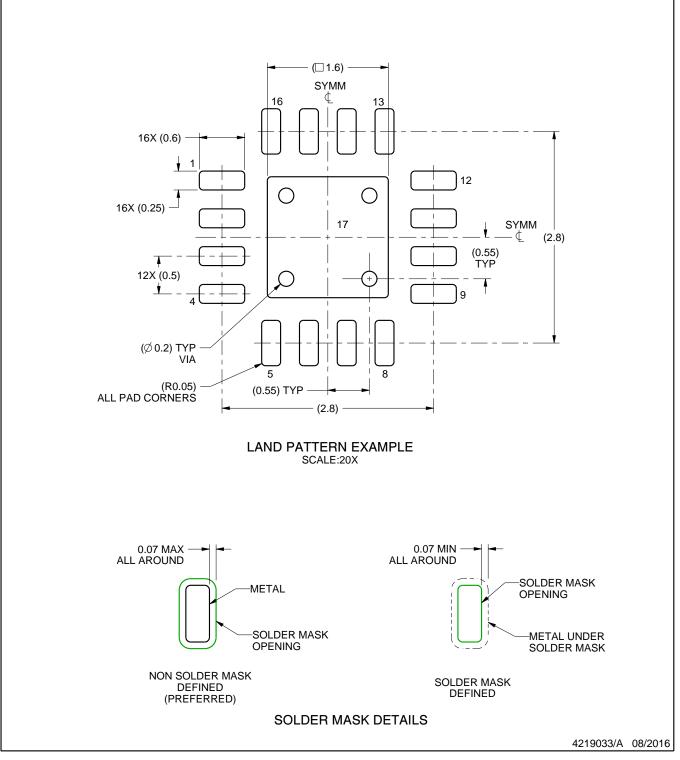
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RGT0016B

EXAMPLE BOARD LAYOUT

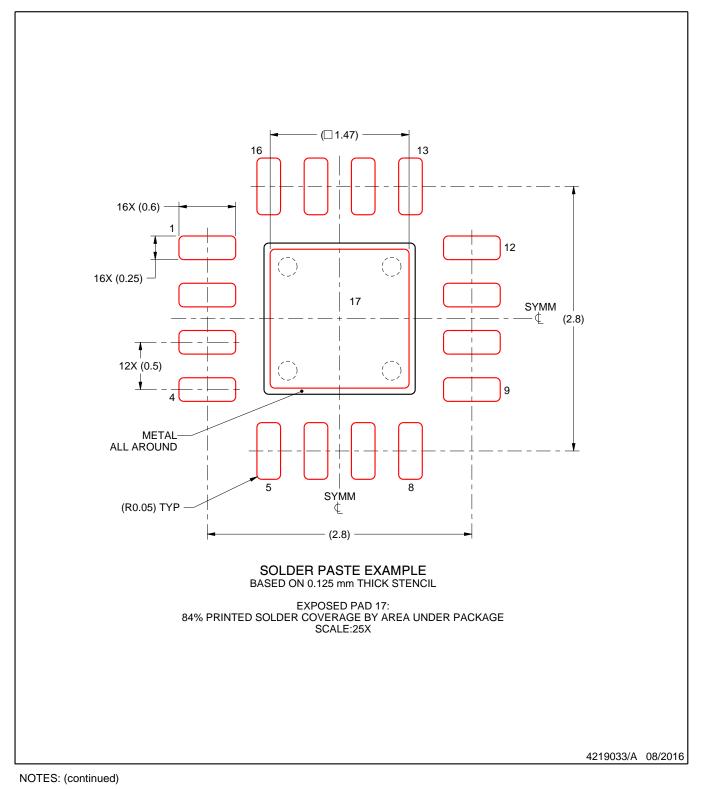
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RGT0016B

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated