- Single-Chip Interface Solution for the 9-terminal GeoPort™ Host (DTE)
- Designed to Operate up to 4 Mbit/s Full Duplex
- Single 5-V Supply Operation
- 6-kV ESD Protection on All Terminals
- Backward compatible With AppleTalk[™] and LocalTalk[™]
- Combines Multiple Components into a Single-chip Solution
- Complements the SN75LBC777 9-Terminal GeoPort Peripheral (DCE) Interface Device
- LinBiCMOS™ Process Technology

(TOP VIEW) DA1 \square 20 ☐ GND 2 19 V_{EE} 3 18 DY1 4 17 TI RY3 C+ □ SHDN [5 16 ☐ RB3 DZ2 \square 6 15 ☐ RA2 DY2 □ 7 14 □ RY2 GND [13 DEN \Box 9 12 ☐ RA1 10 ☐ RY1 DA2 11

DB or DW PACKAGE

description

The SN75LBC776 is a low-power LinBiCMOS device that incorporates the drivers and receivers for a 9-pin GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/TIA-423-B drivers and receivers to transmit data up to four megabits per second (Mbit/s) full duplex. GeoPort is a serial communications standard that is intended to replace the RS-232, Appletalk, and LocalTalk printer ports all in one connector in addition to providing real-time data transfer capability. It provides point-to-point connections between GeoPort-compatible devices with data transmission rates up to 4 Mbit/s full duplex and a hot-plug feature. Applications include connection to telephony, integrated services digital network (ISDN), digital sound and imaging, fax-data modems, and other serial and parallel connections. The GeoPort is backwardly compatible to both LocalTalk and AppleTalk.

While the SN75LBC776 is powered-off (V_{CC} = 0) the outputs are in a high-impedance state. When the shutdown (SHDN) terminal is high, the charge pump is powered down and the outputs are in a high-impedance state. The driver enable (\overline{DEN}) terminal sends the outputs of the differential driver into a high-impedance state with a high input signal. All drivers and receivers have fail-safe mechanisms to ensure a high output state when the inputs are left open.

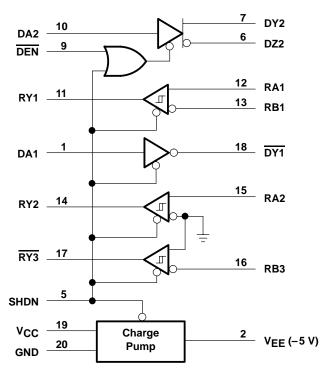
A switched-capacitor voltage converter generates the negative voltage required from a single 5-V supply using four 0.1- μ F capacitors, two capacitors between the C+ and C- terminals and two capacitors between V_{EE} and ground.

The SN75LBC776 is characterized for operation over the 0°C to 70°C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated. LinBiCMOS is a trademark of Texas Instruments Incorporated.

DRIVER FUNCTION TABLE†


INPUT	·		OUTPUT	OUT	PUT	
DA1	DA2	SHDN	DEN	DY1	DY2	DZ2
Н	Х	L	Х	L	Х	Х
L	X	L	Х	Н	Х	Х
X	н	L	L	Х	Н	L
X	L	L	L	Х	L	Н
OPEN	OPEN	L	L	L	Н	L
X	X	Н	Х	Z	Z	Z
Х	X	Х	Н	Х	Z	Z
X	X	OPEN	OPEN	Z	Z	Z

 $^{^{\}dagger}$ H = high level L = low level X = irrelevant ? = indeterminate Z = high impedance (off)

RECEIVER FUNCTION TABLE†

INPUT RA1 RB1	INPUT RA2 & RB3	ENABLE SHDN	OUTPUT RY1	OUTPUT RY2	OUTPUT RY3
H L	Н	L	Н	Н	L
L H	L	L	L	L	Н
OPEN	OPEN	L	Н	Н	Н
SHORT‡	SHORT‡	L	?	?	?
x x	Х	Н	Z	Z	Z
x x	X	OPEN	Z	Z	Z

function logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Positive supply voltage range, V _{CC} (see Note 1)	–0.5 to 7 V
Negative supply voltage range, V _{EE} (see Note 1)	–7 to 0.5 V
Receiver input voltage range (RA, RB)	15 V to 15 V
Receiver differential input voltage range, V _{ID}	12 to 12 V
Receiver output voltage range (RY)	0.5 V to 5.5 V
Driver output voltage range (Power Off) (DY1, DY2, DZ2)	15 V to 15 V
Driver output voltage range (Power On) (DY1, DY2, DZ2)	11 V to 11 V
Driver input voltage range (DA, SHND, DEN)	\dots -0.5 V to V _{CC+} 0.4 V
Continuous total power dissipation	. See Dissipation Rating Table
Continuous total power dissipation Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A	, .
	6 kV
Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A	6 kV
Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A	6 kV
Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A	6 kV
Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A	6 kV 500 V 6 kV 500 V 500 V 500 V 500 V 6 kV 500 V 500 C to 70°C -65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.

2. This parameter is measured in accordance with MIL-STD-883C, Method 3015.7.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	OPERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
DB	1035 mW	8.3 mW/°C	660 mW
DW	1125 mW	9.0 mW/°C	720 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	DA, SHDN, DEN	2		5.25	V
Low-level input voltage, V _{IL}	DA, SHDN, DEN			0.8	V
Receiver common-mode input	-7		7	V	
Receiver differential input volta	ge, V _{ID}	-12		12	V
Voltage-converter filter capacit	Voltage-converter filter capacitance				
Voltage-converter filter-capacit			0.2	Ω	
Operating free-air temperature	0		70	°C	

driver electrical characteristics over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNIT
Vau	High-level output voltage		R _L = 12 kΩ	3.6	4.53		V
VOH	r ligh-level output voltage	Single ended,	$R_L = 120 \Omega$	2	3.63		V
Vai	Low-level output voltage	See Figure 1	$R_L = 12 \text{ k}\Omega$		-4.53	-3.6	V
VOL	Low-level output voltage		$R_L = 120 \Omega$		-2.7	-1.8	V
IVODI	Magnitude of differential output voltage $ (V_{(DY)} - V_{(DZ)} $	R _L = 120 Ω,	See Figure 2	4			٧
Δ V _{OD}	Change in differential voltage magnitude					250	mV
Voc	Common-mode output voltage			-1		3	V
ΔV _{OC} (SS)	Magnitude of change, common-mode steady state output voltage	See Figure 3				200	mV
ΔVOC(PP)	Magnitude of change, common-mode peak-to-peak output voltage				700		mV
la a	Cumply oursent	SHDN = \overline{DEN} = 0 V,	No load		7	15	mA
ICC	Supply current	SHDN = DEN = 5 V,	No load			100	μΑ
loz	High-impedance output current	$V_O = -10 \text{ V to } 10 \text{ V},$	V _{CC} = 0 or 5 V			±100	μΑ
los	Short-circuit output current (see Note 3)	$V_0 = -5 \text{ V to } 5 \text{ V}$			±170	±450	mA

NOTE 3: Not more than one output should be shorted at one time.

driver switching characteristics over operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low level output				42	75	ns
tPLH	Propagation delay time, low-to-high level output				41	75	ns
tPZL	Driver output enable time to low-level output				25	100	μs
^t PZH	Driver output enable time to high-level output	SHDN	Single ended,		25	100	μs
t _{PLZ}	Driver output disable time from low-level output	SUDIN	See Figure 4		28	100	ns
tPHZ	Driver output disable time from high-level output				37	100	ns
t _r	Rise time			10	25	75	ns
tf	Fall time		1	10	23	75	ns
tPHL	Propagation delay time, high-to-low level output				40	75	ns
tPLH	Propagation delay time, low-to-high level output	gation delay time, low-to-high level output				75	ns
4	Driver and and analysis for the law boule artest				25	100	μs
tPZL	Driver output enable time to low-level output	DEN			29	150	ns
	Driver output enable time to high-level output	SHDN			25	100	μs
^t PZH	Driver output enable time to high-level output	DEN	Differential,		35	150	ns
	Driver output disable time from low-level output	SHDN	See Figure 5		28	100	ns
tPLZ	Driver output disable time from low-level output	DEN			34	100	ns
.	Driver output disable time from high level output	SHDN			37	100	ns
^t PHZ	Driver output disable time from high-level output DEN				34	100	ns
t _r	Rise time		10	27	75	ns	
t _f	Fall time			10	26	75	ns
tSK(p)	Pulse skew, tpLH - tpHL					22	ns

receiver electrical characteristics over operating free-air temperature range (unless otherwise noted)

	PARAMETER	•	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage						200	mV
VIT-	Negative-going input threshold voltage	See Figure	See Figure 6					IIIV
V _{hys}	Differential input voltage hysteresis ($V_{IT+} - V_{IT-}$)					50		mV
Vон	High-level output voltage (see Note 4)	$V_{IC} = 0$,	$I_{OH} = -2 \text{ mA},$	See Figure 6	2	4.9		V
VOL	Low-level output voltage	$V_{IC} = 0$,	$I_{OL} = 2 \text{ mA},$	See Figure 6		0.2	0.8	V
laa	Short circuit output current	V _O = 0			-85	-45		mA
ios	IOS Short-circuit output current		VO = VCC			47	+85	IIIA
RĮ	Input resistance	V _{CC} = 0 or 5.25 V, V _I = -12 V to 12 V			6	30		kΩ

NOTE 4: When the inputs are left unconnected, receivers one and two interpret these as high-level inputs and receiver three interprets these as low-level inputs so that all outputs are at a high level.

receiver switching characteristics over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output				31	75	ns
^t PLH	Propagation delay time, low-to-high level output]			30	75	ns
t _r	Rise time	$R_L = 2 k\Omega$, $C_L = 15 pF$, See Figure 6			15	30	ns
t _f	Fall time	See rigule 0		15	30	ns	
tSK(P)	Pulse skew tpLH-tpHL	1				20	ns
tPZL	Receiver output enable time to low level output				35	100	ns
^t PZH	Receiver output enable time to high level output	Differential, C _L =50 pF,			32	100	ns
^t PLZ	Receiver output disable time from low level output	See Figure 7			21	100	ns
^t PHZ	Receiver output disable time from high level output	1			21	100	ns
^t PZL	Receiver output enable time to low level output				12	25	μs
^t PZH	Receiver output enable time to high level output	Single ended,	$C_L = 50 pF$,		12	25	μs
^t PLZ	Receiver output disable time from low level output	See Figure 7			25	100	ns
^t PHZ	Receiver output disable time from high level output	1	1				ns

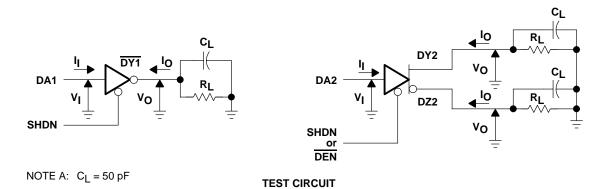


Figure 1. Single-Ended Driver DC Parameter Test

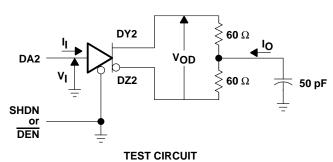
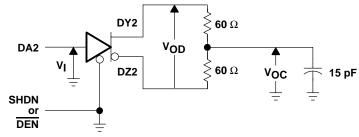
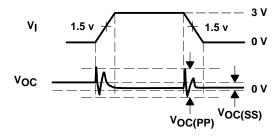
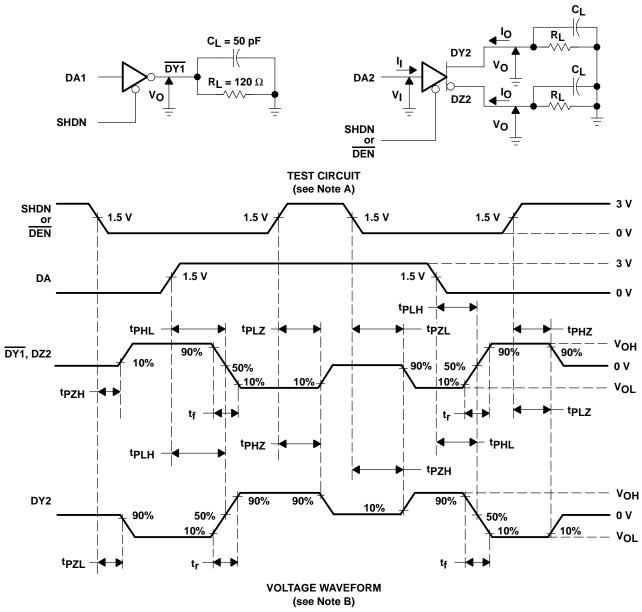




Figure 2. Differential Driver DC Parameter Test

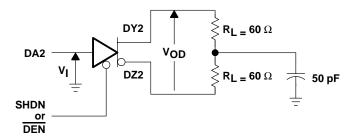
TEST CIRCUIT (see Note A)



VOLTAGE WAVEFORM

NOTE A: Measured 3dB bandwidth = 300 MHz

Figure 3. Differential-Driver Common-Mode Output Voltage Tests



NOTES: A. $C_L = 50 \text{ pF}$, $R_L = 120 \Omega$

B. The input waveform t_r , $t_f \le 10$ ns.

Figure 4. Single-Ended Driver Propagation and Transition Times

TEST CIRCUIT

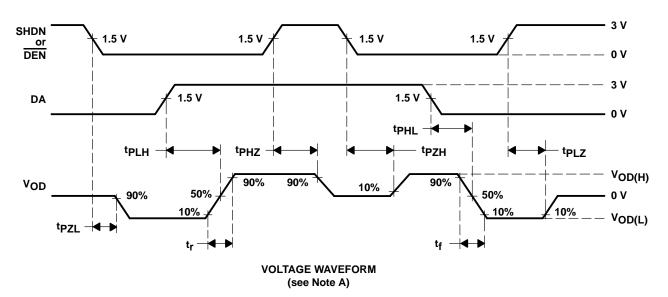
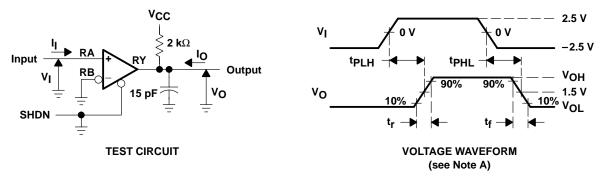
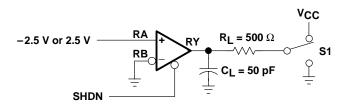
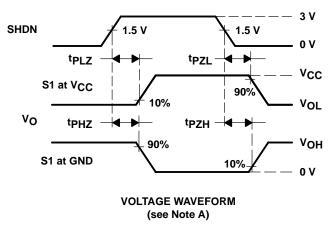


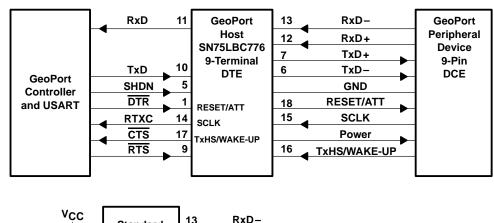
Figure 5. Differential Driver Propagation and Transition Times


Figure 6. Receiver Propagation and Transition Times

NOTE A: The input waveform t_r , $t_f \le 10$ ns.

TEST CIRCUIT



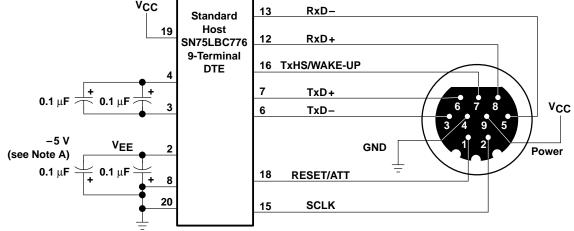

NOTE A: The input waveform t_f , $t_f \le 10$ ns.

Figure 7. Receiver Enable and Disable Test Circuit and Waveforms

APPLICATION INFORMATION

NOTE A: The AVX 0603YC104MATXA or equivalent is one of the possible capacitors that can be used as the charge pump capacitor.

Figure 8. GeoPort 9-Terminal DTE Connection Application

APPLICATION INFORMATION

generator characteristics

	DADAMETED	TEST CONDITIONS	EIA/TIA-	232/V.28	EIA/TIA-	423/V.10	56	2	UNIT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
		Open circuit		25	4	6		13.2	V
$ V_O $	V _O Output voltage magnitude	$3 \text{ k}\Omega \leq R_L \leq 7 \text{ k}\Omega$	5	15	NA		3.7		V
		$R_L = 450 \Omega$	NA		3.6		NA		V
V _O (RING)	Output voltage ringing		NA			10%		5%	
los	Short-circuit output current	VO = 0		100		150		60	mA
1	Dower off output ourrent	V _{CC} = 0, V _O < 2 V	300		NA		300		Ω
lO(OFF)	Power-off output current	V _{CC} = 0, V _O < 6 V	NA			±100	NA		μΑ
SR	Output voltage slew rate			30	NA		4	30	V/μs
		±3.3 V to ±3.3 V	NA		NA		0.22	2.1	μs
t _t	Transition time	±3 V to ±3 V		0.04	NA		NA		ui†
		10% to 90%	NA			0.3	NA		ui†

[†] ui is the unit interval and is the inverse of the signaling rate (bit transmit time).

receiver characteristics

	PARAMETER TEST CONDITIONS		EIA/TIA-232/V.28		EIA/TIA-423/V.10		562		UNIT	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
$ V_I $	Input voltage magnitude			25		10		25	V	
V	V _I < 15 V	-3	3	NA		-3	3	V		
۷۱۱	V _{IT} Input voltage threshold	V _I < 10 V	NA		-0.2	0.2	NA		V	
Rı	Input resistance	3 V < V _I < 15 V	3	7	NA		3	7	kΩ	
K	input resistance	V _I < 10 V	NA		4		NA		kΩ	

PACKAGE OPTION ADDENDUM

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN75LBC776DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LB776	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

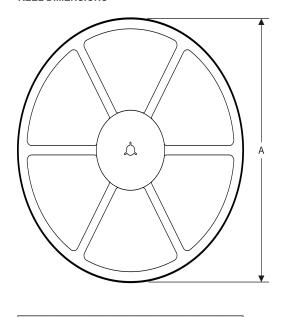
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

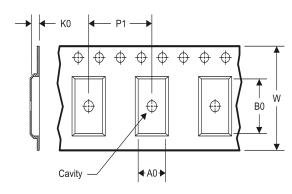
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

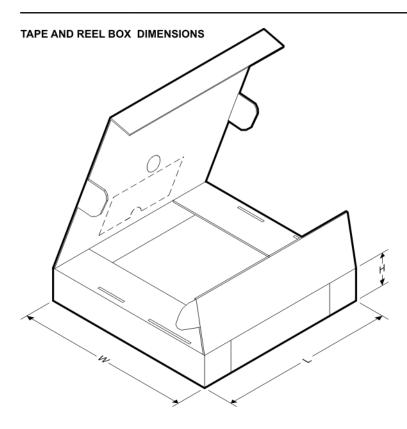

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

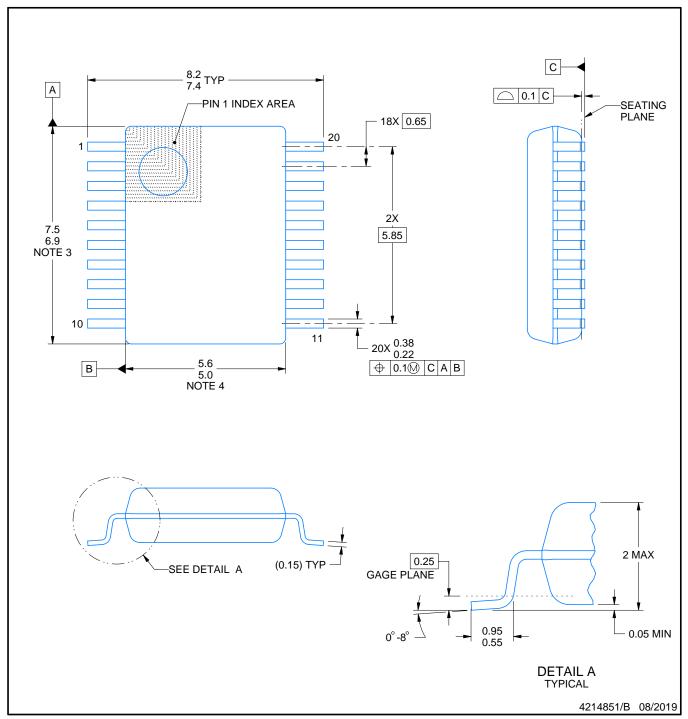

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75LBC776DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

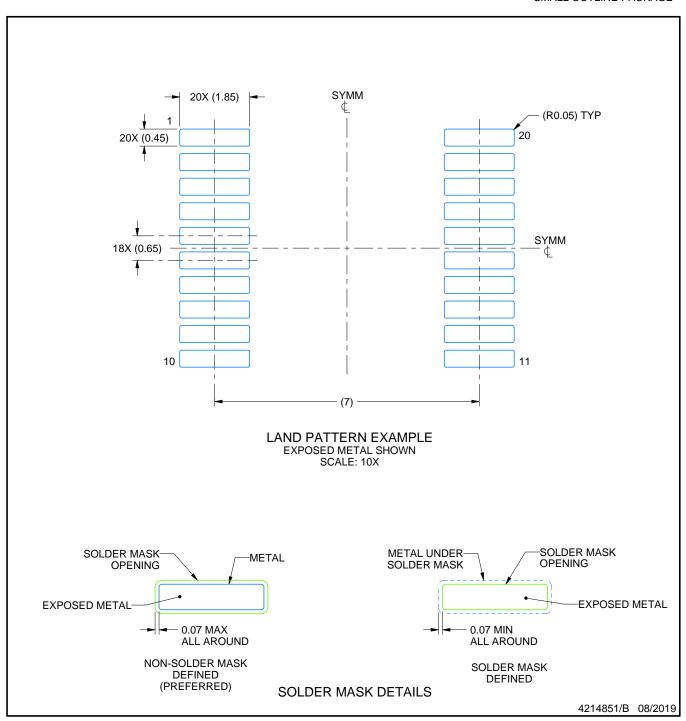


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75LBC776DBR	SSOP	DB	20	2000	367.0	367.0	38.0

SMALL OUTLINE PACKAGE

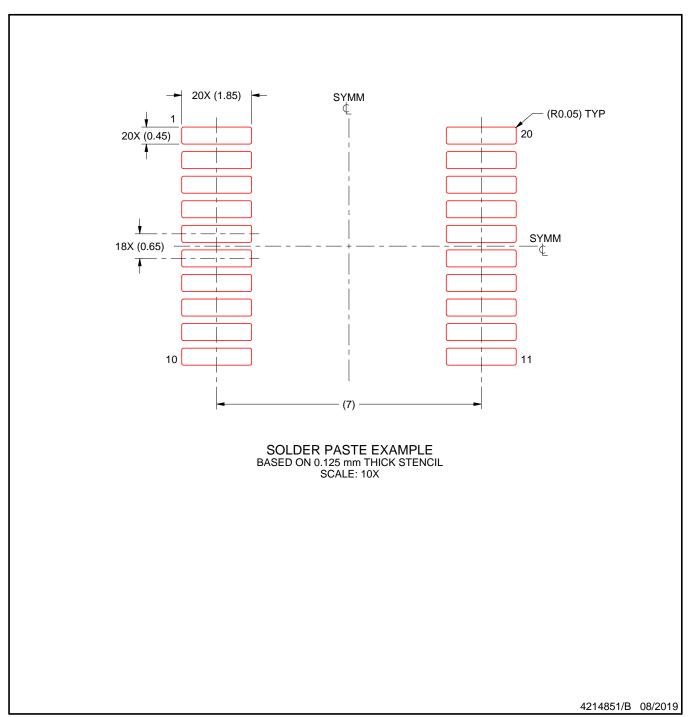
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated