

LM48901 Boomer® Audio Power Amplifier Series Quad Class D Spatial Array

Check for Samples: LM48901

FEATURES

- Spatial Sound Processing
- I²S Compatible Input
- Differential-Input Stereo ADC
- Edge Rate Control Reduces EMI while Preserving Audio Quality and Efficiency
- Paralleled Output Mode
- Short Circuit and Thermal Overload Protection
- Minimum external components
- Click and Pop suppression
- Micro-power shutdown

 Available in space-saving micro SMD and LLP packages

APPLICATIONS

- Laptops
- Tablets
- Desktop Computers
- Sound Bars
- Multimedia Devices
- MP3 Player Accessories
- Docking Stations

DESCRIPTION

The LM48901 is a quad Class D amplifier that utilizes Texas Instruments' proprietary spatial sound processor to create an enhanced sound stage for portable multimedia devices. The Class D output stages feature Texas Instruments' edge rate control (ERC) PWM architecture that significantly reduces RF emissions while preserving audio quality and efficiency.

The LM48901's flexible I²S interface is compatible with standard serial audio interfaces. A stereo differential-input ADC gives the device the ability to process analog stereo audio signals.

The LM48901 is configured through an I²C compatible interface and is capable of delivering 2.8W/channel of continuous output power into an 4 Ω load with less than 10% THD+N. A 2.1 mode pairs two output drivers in parallel, increasing current drive for 4 Ω loads.

Output short circuit and thermal overload protection prevent the device from being damaged during fault conditions. Superior click and pop suppression eliminates audible transients on power-up/down and during shutdown. The LM48901 is available in space saving microSMD and LLP packages.

Table 1. Key Specifications

		VALUE	UNIT	
SNR (A-Weighted)		87	dBA (typ)	
Output Power/channel, PV _{DD} = 5V	R _L = 8Ω, THD+N ≤10%	1.7		
	R _L = 4Ω, THD+N ≤10%	2.8	W (typ)	
THD+N		0.06% (typ)		
Efficiency/Channel		89% (typ)		
PSRR at 217Hz		71	dB (typ)	
Shutdown current 1 µA (typ)		1	μA (typ)	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Typical Application

Figure 1. Typical Audio Amplifier Application Circuit

TEXAS INSTRUMENTS

www.ti.com

SNAS520C - OCTOBER 2011 - REVISED JANUARY 2012

Only OUT2 and OUT3 can be configured in parallel. OUT1 and OUT4 cannot be configured in parallel.

TEXAS INSTRUMENTS

www.ti.com

Connection Diagram

Figure 3. Top View

Figure 4. Top View XY = Date code TT = Die traceability G = Boomer Family 02 = LM48901RL

SQ Package

Figure 5. Top View

Table 2. Pin Descriptions

BUMP	PIN	NAME	DESCRIPTION
A1	1	OUT4+	Channel 4 Non-Inverting Output
A2, A5	2, 7	PVDD	Class D Power Supply
A3	4	OUT3+	Channel 3 Non-Inverting Output. Connect to OUT2+ in Parallel Mode.
A4	5	OUT2+	Channel 2 Non-Inverting Output. Connect to OUT3+ in Parallel Mode.
A6	8	OUT1+	Channel 1 Non-Inverting Output
B1	31	OUT4-	Channel 4 Inverting Output
B2, B5	9, 32	PGND	Power Ground
B3	3	OUT3-	Channel 3 Inverting Output. Connect to OUT2- in Parallel Mode.
B4	6	OUT2-	Channel 2 Inverting Output. Connect to OUT3- in Parallel Mode.
B6	10	OUT1-	Channel 1 Inverting Output
C1	29	IOVDD	Digital Interface Power Supply
C2	28	DVDD	Digital Power Supply
C3	30	DGND	Digital Ground
C4	11	AGND1	Modulator Analog Ground
C5	—	AVDD3	ADC Reference Power Supply
C6	12	AVDD1	Modulator Analog Power Supply. Set to same voltage as PV _{DD} for maximum headroom.
D1	27	SHDN	Active Low Shutdown. Connect to V _{DD} for normal operation.
D2	26	I ² C_EN	I ² C Enable Input
D3	30	IOGND	Digital Interface Ground
D4	_	AGND2	ADC Analog Ground

Copyright © 2011–2012, Texas Instruments Incorporated

www.ti.com

Table 2. Fill Descriptions (continueu)				
BUMP	PIN	NAME	DESCRIPTION	
D5	_	PLLV _{DD}	PLL Power Supply	
D6	13	AVDD2	ADC Analog Power Supply	
E1	25	I ² C_EX	I ² C Enable Output	
E2	23	WS	I ² S Word Select Input	
E3	20	SDA	I ² C Serial Data Input	
E4	18	INR-	Right Channel Inverting Analog Input	
E5	15	INL-	Left Channel Inverting Analog Input	
E6	14	REF	ADC Reference Bypass	
F1	24	MCLK	Master Clock	
F2	22	SCLK	Serial Clock Input	
F3	21	SDIO	I ² S Serial Data Input/Output	
F4	19	SCL	I ² C Clock Input	
F5	17	INR+	Right Channel Non-Inverting Analog Input	
F6	16	INL+	Left Channel Non-Inverting Analog Input	

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)

Supply Voltage	
AV _{DD} , PV _{DD} , PLV _{DD} , IOV _{DD} ⁽¹⁾	6.0V
Supply Voltage, DV _{DD} ⁽¹⁾	2.2V
Storage Temperature	-65°C to + 150°C
Input Voltage	-0.3V to V _{DD} + 0.3V
Power Dissipation ⁽³⁾	Internally limited
ESD Susceptibility ⁽⁴⁾	2000V
ESD Susceptibility ⁽⁵⁾	150V
Junction Temperature	150°C
Thermal Resistance	
θ _{JA} (microSMD)	26°C/W
θ _{JA} (LLP)	26°C/W
θ _{JC} (LLP)	2.6°C/W

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the given in *Absolute Maximum Ratings*, whichever is lower.

(4) Human body model, applicable std. JESD22-A114C.

(5) Machine model, applicable std. JESD22-A115-A.

Operating Ratings

Temperature Range	
$T_{MIN} \le T_A \le T_{MAX}$	-40°C ≤ T _A ≤ +85°C
Supply Voltage	
AV _{DD}	$2.7 V \le AV_DD \le 5.5 V$

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

Operating Ratings (continued)

PV _{DD}	$2.7V \le PV_{DD} \le 5.5V$
PLLV _{DD}	$2.7V \le PLLV_{DD} \le 5.5V$
IOV _{DD}	$1.62V \le IOV_{DD} \le 5.5V$
DV _{DD}	$1.62V \le DV_{DD} \le 1.98V$

Electrical Characteristics $PV_{DD} = AV_{DD} = 5V$, $IOV_{DD} = PLLV_{DD} = 3.3V$, $DV_{DD} = 1.8$ ⁽¹⁾⁽²⁾

The following specifications apply for $A_V = 0$ dB, $C_{REF} = 4.7\mu$ F, $R_L = 8\Omega$, f = 1kHz, unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

	Parameter	Conditions	LM48901			Units
Symbol			Min (2)	Тур (3)	Max (2)	(Limits)
AV _{DD}	Analog Supply Voltage Range	(4)	2.7		5.5	V
PV _{DD}	Amplifier Supply Voltage Range	(4)	2.7		5.5	V
PLLV _{DD}	PLL Supply Voltage Range		2.7		5.5	V
IOV _{DD}	Interface Supply Voltage Range		1.62		5.5	V
DV _{DD}	Digital Supply Voltage Range		1.62		1.98	V
AI _{DD}	Analog Quiescent Supply Current	LM48901RL LM48901SQ		17.5 19.2	21 22.3	mA mA
PI _{DD}	Amplifier Quiescent Supply Current	$R_L = 8\Omega$		5.25	8.25	mA
PLLI _{DD}	PLL Quiescent Supply Current	LM48901RL		1.5		mA
DI _{DD}	Quiescent Digital Power Supply Current			5.5	6.2	mA
I _{SD}	Shutdown Current (Analog, Amplifier and PLL Supplies)	Shutdown Enabled		1	5	μA
DI _{STBY}	Digital Standby Current			30		μA
DI _{SD}	Digital Shutdown Current	Shutdown Enabled		2		μA
V _{OS}	Differential Output Offset Voltage	V _{IN} = 0	-17	0	17	mV
-		Power Up (Device Initialization)		150		ms
T _{WU}	Wake-up Time	From Shutdown		30		ms
f _{SW}	Switching Frequency	f _S = 48kHz		384		kHz
		$R_L = 4\Omega$, THD+N = 10% f = 1kHz, 22kHz BW				
		$V_{DD} = 5V$		2.8		W
		$V_{DD} = 3.6V$		1.4		W
		$R_L = 4\Omega$, THD+N = 1% f = 1kHz, 22kHz BW				
		$V_{DD} = 5V$		2.2		W
D	Output Down/Ohomod	V _{DD} = 3.6V		1.2		W
P _O	Output Power/Channel	R _L = 8Ω, THD+N = 10% f = 1kHz, 22kHz BW	<u>.</u>	-!		+
		$V_{DD} = 5V$		1.7		W
		V _{DD} = 3.6V		825		mW
		R _L = 8Ω, THD+N = 1% f = 1kHz, 22kHz BW				
		$V_{DD} = 5V$	1.0	1.3		W
		V _{DD} = 3.6V		650		mW

(1) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(2) R_L is a resistive load in series with two inductors to simulate an actual speaker load. For $R_L = 8\Omega$, the load is 15μ H+ 8Ω + 15μ H. For $R_L = 4\Omega$, the load is 15μ H+ 4Ω + 15μ H.

- (3) Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
- (4) Maintain PV_{DD} and AV_{DD} at the same voltage potential.
- 8 Submit Documentation Feedback

SNAS520C - OCTOBER 2011 - REVISED JANUARY 2012

Electrical Characteristics $PV_{DD} = AV_{DD} = 5V$, $IOV_{DD} = PLLV_{DD} = 3.3V$, $DV_{DD} = 1.8$ ^{(1) (2)} (continued)

The following specifications apply for $A_V = 0$ dB, $C_{REF} = 4.7\mu$ F, $R_L = 8\Omega$, f = 1kHz, unless otherwise specified. Limits apply for $T_A = 25$ °C.

	Parameter	Conditions	LM48901			Units
Symbol			Min (2)	Тур (3)	Max (2)	(Limits)
		R _L = 4Ω, THD+N = 10%, f = 1kHz, 2	2kHz BW			
		$V_{DD} = 5V$		3.2		W
P		V _{DD} = 3.6V		1.6		W
Po	Output Power (Parallel Mode) ⁽⁵⁾	$R_{L} = 4\Omega$, THD+N = 1%, f = 1kHz, 22	kHz BW		•	
		$V_{DD} = 5V$		2.5		W
		$V_{DD} = 3.6V$		1.2		W
THD+N	Total Harmonic Distortion + Noise	$P_0 = 500 \text{mW}, \text{ f} = 1 \text{kHz}, \text{ R}_L = 8 \Omega$		0.06		%
		$V_{RIPPLE} = 200 m V_{P-P}$ sine, Inputs AC	GND, C _{IN} =	1µF		
		$f_{RIPPLE} = 217Hz$, Applied to PV_{DD}		67		dB
		$f_{RIPPLE} = 217Hz$, Applied to DV_{DD}		54		dB
PSRR	Power Supply Rejection Ratio (ADC Path)	$f_{RIPPLE} = 1 kHz$, Applied to PV_{DD}		66		dB
		$f_{RIPPLE} = 1 kHz$, Applied to DV_{DD}		54		dB
		$f_{RIPPLE} = 10kHz$, Applied to PV_{DD}		57		dB
		$f_{RIPPLE} = 10 kHz$, Applied to DV_{DD}		52		dB
	Power Supply Rejection Ratio (I ² S Path)	V _{RIPPLE} = 200mV _{P-P} sine, Inputs –120dBFS				
		$f_{RIPPLE} = 217Hz$, Applied to PV_{DD}		71		dB
PSRR		$f_{RIPPLE} = 217Hz$, Applied to DV_{DD}		58		dB
		$f_{RIPPLE} = 1 kHz$, Applied to PV_{DD}		69		dB
		$f_{RIPPLE} = 1 kHz$, Applied to DV_{DD}		57		dB
		$f_{RIPPLE} = 10 kHz$, Applied to PV_{DD}		70		dB
		$f_{RIPPLE} = 10 kHz$, Applied to DV_{DD}		55		dB
CMRR	Common Mode Rejection Ratio	$\label{eq:VRIPPLE} \begin{array}{l} V_{\text{RIPPLE}} = 1 V_{\text{P-P}}, f_{\text{RIPPLE}} = 217 \text{Hz}, \\ A_{V} = 0 \text{dB} \end{array}$		60		dB
~	Efficiency/Channel	$V_{DD} = 5V, P_{O} = 1.1W$		89		%
η	Efficiency/Channel	$V_{DD} = 3.6V, P_{O} = 400mW$		87		%
n	F#isissor	$V_{DD} = 5V, P_{O} = 1.1W$		87		%
η	Efficiency	$V_{DD} = 3.6V, P_{O} = 400mW$		86		%
SNR	Signal to Naisa Datia	ADC Input, $P_0 = 1W$		85		dB
SINK	Signal-to-Noise-Ratio	I^2S Input, $P_O = 1W$		87		dB
CMVR	Common Mode Input Voltage Range			5		V
ε _{OS}	Output Noise	Inputs AC GND, A-weighted, $A_V = 0 dB$		130		μV
		I ² S Input		72		μV
X _{TALK}	Crosstalk			75		dB

(5) Only OUT2 and OUT3 can be configured in Parallel Mode.

I²C Interface Characteristics ^{(1) (2)}

The following specifications apply for $R_{PU} = 1k\Omega$ to IOV_{DD}, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

	Parameter	Conditions	LM48901			
Symbol			Min (3)	Тур (4)	Max (3)	Units
VIH	Logic Input High Threshold	SDA, SCL	0.7*IOV _{DD}			V
VIL	Logic Input Low Threshold	SDA, SCL		300		mV
VOL	Logic Output Low Threshold	SDA, ISDA = 3.6mA			0.35	V
IOH	Logic Output High Current	SDA, SCL			2	uA
	SCL Frequency				400	kHz
1	Hold Time (repeated START Condition)		0.6			μs
2	Clock Low Time		1.3			μs
3	Clock High Time		600			ns
4	Setup Time for Repeated START condition		600			ns
5	Data Hold Time	Output	300		900	ns
6	Data Setup Time		100			ns
7	SDA Rise Time				300	ns
8	SDA Fall Time				300	ns
9	Setup Time for STOP Condition		600			ns
10	Bus Free Time Between STOP and START Condition		1.3			μs

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(3) Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

(4) Typical values represent most likely parametric norms at $T_A = +25^{\circ}$ C, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

www.ti.com

I²S Timing Characteristics ^{(1) (2)}

The following specifications apply for $DV_{DD} = 1.8V$, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

Symbol		Conditions		11		
	Parameter		Min (3)	Тур (4)	Max (3)	Units (Limits)
t _{MCLKL}	MCLK Pulse Width Low		16			ns
t _{MCLKH}	MCLK Pulse Width High		16			ns
t _{MCLKY}	MCLK Period		27			ns
t _{BCLKR}	SCLK rise time				3	ns
t _{BCLKCF}	SCLK fall time				3	ns
t _{BCLKDS}	SCLK Duty Cycle			50		%
T _{DL}	LRC Propagation Delay from SCLK falling edge				10	ns
T _{DST}	DATA Setup Time to SCLK Rising Edge		10			ns
T _{DHT}	DATA Hold Time from SCLK Rising Edge		10			ns

(1) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(2) R_L is a resistive load in series with two inductors to simulate an actual speaker load. For R_L = 8Ω , the load is 15μ H+ 8Ω + 15μ H. For R_L = $4\overline{\Omega}$, the load is 15μ H+4 Ω +15 μ H.

(3)

Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis. Typical values represent most likely parametric norms at $T_A = +25^{\circ}C$, and at the *Recommended Operation Conditions* at the time of (4) product characterization and are not guaranteed.

TEXAS INSTRUMENTS

100

100

100

www.ti.com

10

1

vs

1

vs

10

100

100

vs

10

100

10

0.1

0.01

100

10

0.1

0.01

100

10

0.1

0.01

0.001

SINGLE CH

0.01

THD+N (%)

0.001

THD+N (%)

SINGLE CH

0.01

ALL CHANNELS

0.01

VDD

JNE

V_{DD}

THD+N (%)

Typical Performance Characteristics (continued) THD+N THD+N vs vs OUTPUT POWER OUTPUT POWER $R_L = 4\Omega$, f = 1kHz, ADC Input, Single channel $R_L = 8\Omega$, f = 1kHz, ADC Input 100 5 = 5V V_{DD} = 3.6V. 10 V_{DD} = 3.6V THD+N (%) 0.1 CHANNE 0.01 10 10 0.1 1 0.01 0.1 OUTPUT POWER (W) OUTPUT POWER (W) THD+N THD+N vs vs OUTPUT POWER **OUTPUT POWER** $R_L = 4\Omega$, f = 1kHz, ADC Input, All channels $R_L = 4\Omega$, f = 1kHz, ADC Input, Parallel mode 100 = 5\ 10 V_{DD} = 3.6V $V_{DD} = 3.6V$ THD+N (%) 0.1 PARALLEL MODE 0.01 0.001 0.01 10 0.1 10 0.1 1 1 OUTPUT POWER (W) OUTPUT POWER (W) THD+N THD+N vs vs **OUTPUT POWER OUTPUT POWER** $R_L = 8\Omega$, f = 1kHz, l²S Input, Single mode $R_L = 4\Omega$, f = 1kHz, I²S Input, Single channel 100 = 5\ VDD = 5V V_{DD} = 3.6V 10 V_{DD} = 3.6V THD+N (%) 0.1 SI 0.01 0.1 10 0.001 0.01 0.1 10 OUTPUT POWER (W) OUTPUT POWER (W)

www.ti.com

INSTRUMENTS

Texas

TEXAS INSTRUMENTS

www.ti.com

EXAS

-10

-20

-30

-40

-50

0

-10

-20

-30

-40

-50

5

3

2

0

SUPPLY CURRENT (µA)

PSRR (dB)

PSRR (dB)

ÈXAS NSTRUMENTS

vs

R_L = Open

²S MODE

1.9

2

1.8

vs

1.8

vs

1.9

2

www.ti.com

10

1

100

www.ti.com

Application Information

I²C COMPATIBLE INTERFACE

The LM48901 is controlled through an I²C compatible serial interface that consists of a serial data line (SDA) and a serial clock (SCL). The clock and data lines are bi-directional (open drain). The LM48901 can communicate at clock rates up to 400kHz. Figure 6 shows the I²C interface timing diagram. Data on the SDA line must be stable during the HIGH period of SCL. The LM48901 is a transmit/receive device, and can act as the I²C master, generating the SCL signal. Each transmission sequence is framed by a START condition and a STOP condition Figure 7.

Due to the number of data registers, the LM48901 employs a page mode scheme. Each data write consists of 7, 8 bit data bytes, device address (1 byte), 16 bit register address (2 bytes), and 32 bit register data (4 bytes). Each byte is followed by an acknowledge pulse Figure 8. Single byte read and write commands are ignored. The LM48901 device address is 0110000X.

Figure 6. I²C Timing Diagram

Figure 7. Start and Stop Diagram

WRITE SEQUENCE

The example write sequence is shown in Figure 8. The START signal, the transition of SDA from HIGH to LOW while SDA is HIGH, is generated, altering all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, most significant bit (MSB) first, followed by the R/W bit (R/W = 0 indicating the master is writing to the LM48901). The data is latched in on the rising edge of the clock. Each address bit must be stable while SDA is HIGH. After the R/W bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48901 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK).

Once the master device registers the ACK bit, the first 8-bit register address word is sent, MSB first [15:8]. Each data bit should be stable while SCL is HIGH. After the first 8-bit register address is sent, the LM48901 sends another ACK bit. Upon receipt of acknowledge, the second 8-bit register address word is sent [7:0], followed by another ACK bit. The register data is sent, 8-bits at a time, MSB first in the following order [7:0], [15:8], [23:16], [31:24]. Each 8-bit word is followed by an ACK, upon receipt of which the successive 8-bit word is sent. Following the acknowledgement of the last register data word [31:24], the master issues a STOP bit, allowing SDA to go high while SDA is high.

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

Figure 8. Example I²C Write Sequence

READ SEQUENCE

The example read sequence is shown in Figure 9. The START signal, the transition of SDA from HIGH to LOW while SDA is HIGH, is generated, altering all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, followed by the R/W = 0. After the R/W bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48901 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK). Once the master device registers the ACK bit, the first 8-bit register address word is sent, MSB first [15:8], followed by and ACK from the LM48901. Upon receipt of the acknowledge, the second 8-bit register address word is sent [7:0], followed by another ACK bit. Following the acknowledgement of the last register address, the master initiates a REPEATED START, followed by the 7-bit device address, followed by R/W = 1 (R/W = 1 indicating the master wants to read data from the LM48901). The LM48901 sends an ACK, followed by the selected register data. The register data is sent, 8-bits at a time, MSB first in the following order [7:0], [15:8], [23:16], [31:24]. Each 8-bit word is followed by an ACK, upon receipt of which the successive 8-bit word is sent. Following the acknowledgement of the last register data word [31:24], the master issues a STOP bit, allowing SDA to go high while SDA is high.

SCL	
SDA	START MSB DEVICE ADDRESS LSB W ACK REGISTER ADDRESS [15:8] ACK REGISTER ADDRESS [7:0] ACK
SCL	
SDA	START MSB DEVICE ADDRESS LSB X R X ACK X REGISTER DATA [7:0] X ACK X REGISTER DATA [15:8] X ACK
SCL	
SDA	REGISTER DATA [23:16] ACK REGISTER DATA [31:24] ACK STOP

Figure 9. Example I²C Read Sequence

I²S DATA FORMAT

The LM48901 supports three I^2S formats: Normal Mode Figure 10, Left Justified Mode Figure 11, and Right Justified Mode Figure 12. In Normal Mode, the audio data is transmitted MSB first, with the unused bits following the LSB. In Left Justified Mode, the audio data format is similar to the Normal Mode, without the delay between the LSB and the change in I^2S_WS . In Right Justified Mode, the audio data MSB is transmitted after a delay of a preset number of bits.

www.ti.com

Figure 12. I²S Right Justified Input Format

MEMORY ORGANIZATION

The LM48901 memory is organized into three main regions: a 32-bit wide Coefficient Space that holds the spatial coefficients, a 32-bit wide Register Space that holds the device configuration settings, and a 48-bit wide Audio Sample Space that holds the current audio data sampled from either the ADCs or the I2S interface, organized as shown in Figure 13.

0X7FFh						
INPUT SAMPLE MEMORY (48-BIT)	0x700h - 0x7FFh: Array Filter Sample Memory 0x600h - 0x67Fh: Pre-Filter Sample Memory					
	0X600h					
REGISTER SPACE (32-BIT)	0x520h - 0x527h: Analog Control Registers 0x510h - 0x51Fh: System Control Registers 0x500h - 0x50Fh: Filter Control Registers					
	0X500h					
COEFFICIENT SPACE (32-BIT)	0x400h - 0x4FFh: Pre-Filter Coefficients 0x000h - 0x3FFh: Array Coefficients					
0X000h						

Figure 13. LM48901 Memory Organization

COEFFICIENT MEMORY

The device must be in Debug mode in order to write to the Coefficient memory. Set Bit 7 (DBG_ENABLE) in Filter Debug Register 1 (0x504h) = 1 to enable Debug mode. The Coefficient Memory Space is organized as follows.

REGISTER ADDRESS	REGIS	STER CONTENTS	
	(31:16)	(15:0)	
	256x16 bit Array Taps	256x16 bit Array Taps	
0x000h - 0x0FFh	(Right Input to OUT4)	(Left Input to OUT4)	
	256x16 bit Array Taps	256x16 bit Array Taps	
0x100h - 0x1FFh	(Right Input to OUT3)	(Left Input to OUT3)	
	256x16 bit Array Taps	256x16 bit Array Taps	
0x200h - 0x2FFh	(Right Input to OUT2)	(Left Input to OUT2)	
0.4200h 0.42FFh	256x16 bit Array Taps	256x16 bit Array Taps	
0x300h - 0x3FFh	(Right Input to OUT1)	(Left Input to OUT1)	
	C2 128x16 bit Prefilter Taps	C0 128x16 bit Prefilter FIR Taps	
0x400h - 0x47Eh (EVEN)	(Right to Right)	(Left to Left)	
	C3 128x16 bit Prefilter Taps	C1 128x16 bit Prefilter FIR Taps	
0x441h - 0x47Fh (ODD)	(Right to Left)	(Left to Right)	

Table 3. Coefficient Memory Space

CONTROL REGISTERS

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x500h [7:0]	0xFFh				ARRA	Y_TAP			
FILTER	0x500h [15:8]	0xFFh	UNUSED				PRE_TAP			
CONTROL	0x500h [23:16]	0xE4h	CH4	_SEL	CH3	_SEL	СН	2_SEL	CH	1_SEL
	0x500h [31:24]	0x31h	ARRAY_	PRE_	ARRAY_	PRE_		UNUS	SED	
	0x501h	0x00h	ENABLE	ENABLE G1_GAIN	BYPASS	BYPASS		COMP_TH		
FILTER	[7:0] 0x501h [15:8]	0x00h	UNUSED	_	POST GAIN		UNUSED	-	COMP_RATIO	
COMP1	0x501h [23:16]	0x00h	UNUGED		1001_0AIN		MP SELECT			,
	0x501h [31:24]	0x00h				_	JSED			
	0x502h [7:0]	0x00h	G1_GAIN COMP_TH							
FILTER	0x502h [15:8]	0x00h	UNUSED		POST_GAIN		UNUSED	0	COMP_RATIC)
COMP2	0x502h [23:16]	0x00h		G1_GAIN				COMP_TH		
	0x502h [31:24]	0x00h	UNUSED		POST_GAIN		UNUSED	INUSED COMP_RATIO		
	0x503h [7:0]	0xFFh				DBG_D	ATA [7:0]			
FILTER	0x503h [15:8]	0xFFh				DBG_D	ATA [15:8]			
DEBUG0	0x503h [23:16]	0xFFh				DBG_DA	TA [23:16]			
	0	0xFFh	DBG_							
	0x503h [31:24]	UXFFN	STEP				UNUSED			
	0x504h	0xFFh	DBG_	STEP_		FILTER_				
	[7:0]	UXFFN	ENABLE	ENABLE UNUSED		SELECT	ACC_ADDR			
FILTER DEBUG1	0x504h [15:8]	0xFFh				UN	JSED			
	0x504h [23:16]	0xFFh				UN	JSED			
	0x504h [31:24]	0xFFh				UN	JSED			

Table 4. Register Map

www.ti.com

Table 4. Register Map (continued)

	,			4. Register Map		~)	1			
Register Name	Register Address	Default Value	7	6 5	4	3	2		1	0
	0x505h [7:0]	0x00h		COUNT1_MODE CH_SEI				H_SEL		
FILTER	0x505h [15:8]	0x80h	CLEAR	CLEAR UNUSED COUNT2_MODE				ODE		
STATS	0x505h [23:16]	0x00h		COUNT1_MODE			C	H_SEL		
	0x505h [31:24]	0x80h	CLEAR	UNUSED			COUI	NT2_M	ODE	
	0x508h [7:0]	0x7Fh			TAP_L	ENGTH				
FILTER TAP (READ-	0x508h [15:8]	0x00h			UN	JSED				
ONLY)	0x508h [23:16]	0x00h			UNU	JSED				
	0x508h [31:24]	0x00h			UN	JSED				
ACCUML	0x509h [7:0]	0x00h			DBG_A	CCL [7:0]				
DEBUG (READ-	0x509h [15:8]	0x00h			DBG_A0	CCL [15:8]				
ONLY)	0x509h [23:16]	0x00h			DBG_AC	CL [23:16]				
	0x509h [31:24]	0x00h			DBG_AC	CL [31:24]				
ACCUMH	0x50Ah [7:0]	0x00h			DBG	_ACCH				
DEBUG (READ-	0x50Ah [15:8]	0x00h			BDG_	_ACCH				
(READ- ONLY)	0x50Ah [23:16]	0x00h			UNI	JSED				
	0x50Ah [31:24]	0x00h			UNI	JSED				
DBG SAT	0x50Bh [7:0]	0x00h			DBG_S	SAT [7:0]				
(READ-	0x50Bh [15:8]	0x00h			DBG_S	AT [15:8]				
ONLY)	0x50Bh [23:16]	0x00h			DBG_S/	AT [23:16]				
	0x50Bh [31:24]	0x00h			UNI	JSED				
STAT	0x50Ch [7:0]	0x00h		COUNT [7:0]						
PCNT1 (READ-	0x50Ch [15:8]	0x00h			COUN	IT [15:8]				
ONLY)	0x50Ch [23:16]	0x00h			COUN	T [23:16]				
	0x50Ch [31:24]	0x00h	OVF			COUNT [30:24	l]			
STAT	0x50Dh [7:0]	0x00h			COU	NT [7:0]				
PCNT2 (READ-	0x50Dh [15:8]	0x00h			COUN	IT [15:8]				
ONLY)	0x50Dh [23:16]	0x00h			COUN	T [23:16]				
	0x50Dh [31:24]	0x00h	OVF			COUNT [30:24	ŀ]			
STAT	0x50Eh [7:0]	0x00h			COU	NT [7:0]				
ACNT1 (READ-	0x50Eh [15:8]	0x00h				IT [15:8]				
ONLY)	0x50Eh [23:16]	0x00h				T [23:16]				
	0x50Eh [31:24]	0x00h	OVF			COUNT [30:24	l]			
STAT	0x50Fh [7:0]	0x00h			COU	NT [7:0]				
ACNT2 (READ-	0x50Fh [15:8]	0x00h			COUN	IT [15:8]				
ONLY)	0x50Fh [23:16]	0x00h	 			T [23:16]				
	0x50Fh [31:24]	0x00h	OVF			COUNT [30:24	l]			
	0x530h [7:0]	0x30h	CONFIG _CLK_	CONFIG _CLK_ DEVICE_ID						
SYS		0.001	ENABLE ALTID_							
CONFIG	0x530h [15:8]	0x00h	ENABLE CL_		Α	LT_DEVICE_	טו			
	0x530h [23:16]	0x8Ch	ENABLE	UNUSED		CL_PAGE			CL_W	CL_RE
	0x530h [31:24]	0x00h		10	NUSED				MBIST1_	MBIST
								ENABLE	ENABL	

Copyright © 2011–2012, Texas Instruments Incorporated

www.ti.com

Texas Instruments

Table 4. Register Map (continued)

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x531h [7:0]	0x00h		TRANS_LENGTH [7:0]						
CL REG0	0x531h [15:8]	0x10h				TRANS_LE	NGTH [15:8]			
OLINEOU	0x531h [23:16]	0x00h					T_ADDR [7:0]			
	0x531h [31:24]	0x00h					ADDR [16:8]			
	0x532h [7:0]	0x00h					_ADDR [7:0]	-		
CL REG1	0x532h [15:8]	0x00h				E2_START_	_ADDR [15:8]			
	0x532h [23:16]	0x00h				UNL	JSED			
	0x532h [31:24]	0x00h				UNL	JSED			
	0x533h [7:0]	0x00h	UNI	USED			E2_0	FFSET		
E2_	0x533h [15:8]	0x00h				UNL	JSED			
OFFSET	0x533h [23:16]	0x00h				UNU	JSED			
	0x533h [31:24]	0x00h				UNU	JSED			
	0x534h [7:0]	0x00h	l ² C _EnXT	UNUSED			E2NXT_	OFFSET		
I ² C_EnXT	0x534h [15:8]	0x00h		1		UNL	JSED			
	0x534h [23:16]	0x00h				UNL	JSED			
	0x534h [31:24]	0x00h				UNL	JSED			
MBIST	0x538h [7:0]	0x7Fh	UNI	UNUSED				MBIST_DONE		
STAT	0x538h [15:8]	0x80h				UNL	JSED			
(READ- ONLY)	0x538h [23:16]	0x00h				UNU	JSED			
	0x538h [31:24]	0x80h				UNU	JSED			
	0x520h [7:0]	0x06h				POWER_UP	2_DELAY [7:0]			
DELAY	0x520h [15:8]	0x00h				POWER_UP	_DELAY [15:8]		
	0x520h [23:16]	0x20h				DEGLITC	H_DELAY			
	0x520h [31:24]	0x09h				STATE	_DELAY			
	0x521h [7:0]	0x00h		UNU	SED		VREF_ DELAY	PULSE	FORCE	ENABLE
				QSA_		PCM_				
ENABLE & CLOCKS	0x521h [15:8]	0x00h	UNUSED	CLK_ STOP	HIFI	CLK_SEL	I2S_CLK	r	MCLK_RATE	
	0x521h [23:16]	0x00h				UNUSED				ADC_
	0,02 11 [20.10]	0,00011				UNUGED				SYNC
	0x521h [31:24]	0x00h		1		UNL	JSED			
	0x522h [7:0]	0x33h	ZERO_ CROSS	MUTE			ADC	LVL		
	0x522h [15:8]	0x33h	k33h UNUSED			I ² S_	_LVL			
MIXER	0x522h [23:16]	0x00h	I ² SB_ON	I ² SA_ON	I ² SB	TX_SEL		TX_SEL	ADC_DSP	I ² S_DSP
	0x522h [31:24]	0x00h	_	4_SEL		3_SEL		2_SEL	_	I_SEL
	0x523h 0x00h		BYPASS_ MOD	AUTO _SD	ADC TRIM	ZERO _DIG	ZERO_ ANA	PARALLEL		_LVL
	[7:0]		1				7 11 11/71			
ANALOG	[7:0] 0x523h [15:8]	0x00h		UNUSED		SE_MOD	PMC_	TSD_DIS	SCKT DIS	TST_SH
ANALOG		0x00h 0x00h		UNUSED		_	PMC_ TEST JSED	- TSD_DIS	SCKT _DIS	TST_SH

www.ti.com	

Table 4. Register Map (continued)

			Tabi	e 4. Regis	iel map	Continue	u)			
Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x524h	0x01h	SYNC_	STEREO_S YNC_	CLOCK_	SYNC	CLK_MS	TX_	RX_	STEREO
	[7:0]		MODE	PHASE	PHASE	_MS		ENABLE	ENABLE	
	0x524h [15:8]	0x00h	UN	USED			HALF_CYCI	_E_DIVIDER		
	0x524h [23:14]	0x00h		LINI	ISED		SYNTH_		YNTH NUM	
	0x52411 [23.14]	0x0011		UNC	ISED		DENOM	5		
I ² S PORT	0x524h [31:24]	0x00h	UN	USED	MC	NO_SYNC_W	IDTH	S	SYNC_RATE	
I S PORT	0x525h [7:0]	0x00h	тх	C_BIT		TX_WIDTH			RX_WIDTH	
	0x525h [15:8]	0x02h	RX_	RX_		ים	K MSB POSIT			RX
	0x52511[15.6]	0x0211	A/µLAW	COMPAND		κ,	~_IVISB_FUSI I	ION		_MODE
	0v525h [23·16]	525h [23:16] 0x02h	TX_	TX_		Т	(_MSB_POSIT			ΤХ
	0x32311 [23.10]		A/µLAW	COMPAND			_MODE			
	0x525h [31:24]	0x00h				UN	JSED			
	0x526h [7:0]	0x00h				ADC_COMP_	COEFF_C0 [7:	0]		
	0x526h [15:8]	0x00h				ADC_COMP_C	COEFF_C0 [15	:8]		
ADC TRIM	0x526h [23:14]	0x00h				ADC_COMP_	COEFF_C1 [7:	0]		
CO-EF FICIENT	0x526h [31:24]	0x00h				ADC_COMP_C	OEFF_C1 [15	:8]		
	0x527h [7:0]	0x00h				ADC_COMP_	COEFF_C2 [7:	0]		
	0x527h [15:8]	0x00h				ADC_COMP_C	OEFF_C2 [15	:8]		
	0x528h	0x00h	UN	USED	I2SL _LVL	I2SR _LVL	ADCL _LVL	ADCR _LVL	ADCL_	ADCR_
READBACK	[7:0]				CLIP	CLIP	CLIP	CLIP	CLIP	CLIP
(READ- ONLY)	0x528h [15:8]	0x00h		UNUSED	I.	THERMAL	SHORT4	SHORT3	SHORT2	SHORT1
UNET)	0x528h [23:14]	0x00h		SPARE						
	0x528h [31:24]	0x00h				UN	JSED			
	0x529h [7:0]	0x00h		UNL	ISED			CE_ST	ATE	
READBACK (READ-	0x529h [15:8]	0x00h				SP	ARE			
ONLY)	0x529h [23:14]	0x00h				UN	JSED			
	0x529h [31:24]	0x00h				UN	JSED			

FILTER CONTROL REGISTER (0x500h)

Configures the LM48901 Array and Pre-Array filters (Spatial Engine). The Filter Control Register sets the length of the Array and Pre-Array filter taps, and selects the filter channel source for each audio output. Set PRE_BYPASS and ARRAY_BYPASS to 1 to bypass the Spatial Engine, disabling the spatial effect without modifying the coefficients. Set PRE_ENABLE and ARRAY_ENABLE to 1 to enable the Spatial Engine. Set PRE_ENABLE and ARRAY_ENABLE to 0 to disable the spatial engine. Disabling the Spatial Engine does not affect the register contents. Disable the Spatial Engine during coefficient programming.

Table 5. Filter Control Register

BIT	NAME	VALUE	DESCRIPTION
7:0	ARRAY_TAP		Array Filter Tap Length
14:8	PRE_TAP		Pre-filter Tap Length. Pre-filter tap length should be less than or equal to the Array filter tap length
15	UNUSED		

_ . .

- ----

_

. –

.

.

. .

EXAS

www.ti.com

	Table 5. Filter Control Register (continued)								
BIT	NAME	VALUE	DESCRIPTION						
			Channel 1 Output Routing Selection						
		00	Array Filter Channel 0 Output Select						
17:16	CH1_SEL	01	Array Filter Channel 1 Output Select						
		10	Array Filter Channel 2 Output Select						
		11	Array Filter Channel 3 Output Select						
			Channel 2 Output Routing Selection						
		00	Array Filter Channel 0 Output Select						
19:18	CH2_SEL	01	Array Filter Channel 1 Output Select						
		10	Array Filter Channel 2 Output Select						
		11	Array Filter Channel 3 Output Select						
			Channel 3 Output Routing Selection						
		00	Array Filter Channel 0 Output Select						
21:20	CH3_SEL	01	Array Filter Channel 1 Output Select						
		10	Array Filter Channel 2 Output Select						
		11	Array Filter Channel 3 Output Select						
			Channel 4 Output Routing Selection						
		00	Array Filter Channel 0 Output Select						
23:22	CH4_SEL	01	Array Filter Channel 1 Output Select						
		10	Array Filter Channel 2 Output Select						
		11	Array Filter Channel 3 Output Select						
27:24	UNUSED								
28		0	Pre-Array filter not bypassed						
28	PRE_BYPASS	1	Pre-Array filter bypassed						
29		0	Array filter not bypassed						
29	ARRAY_BYPASS	1	Array filter bypassed						
30	PRE_ENABLE	0	Pre-Array filter disabled. Disable the Pre-Array Filter during filter and coefficient programming. Disabling the Pre-Array Filter does not affect the device memory contents.						
		1	Pre-Array filter enabled						
31	ARRAY_ENABLE	0	Array filter disabled. Disable the Array Filter during filter and coefficient programming. Disabling the Array Filter does not affect the device memory contents.						
		1	Array filter enabled						

COMPRESSOR CONTROL REGISTER 1 (FILTER COMP1) (0x501h)

Table 6. Compressor Control Register

BIT	NAME	VALUE	DESCRIPTION
			Pre-Filter Compressor Threshold
		00000	0
		00001	0.3125
		00010 0.0625	0.0625
4.0		-	-
4:0	COMP_TH	10000	0.5
		-	-
		11000	0.75
		-	-
		11111	0.96875

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

BIT	NAME	VALUE	DESCRIPTION
			Pre-Compression Gain (V/V)
		000	2
		001	4
		010	8
7:5	G1_GAIN	011	16
	-	100	32
		101	64
		110	128
		111	256
			Compression Ratio
		000	1:1
		001	2:1
		010	2.66:1
10:8	COMP_RATIO	011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
11	UNUSED		
			Post Compression Gain (V/V)
		000	1
		001	1.25
		010	1.5
14:12	POST_GAIN	011	2
		100	2.5
		101	3
		110	4
		111	8
15	UNUSED		
23:16	ARRAY_COMP_SELECT		Array Filter Compression Control Register Select. The Array Filter has four channels, each channel can choose one of two Array Filter Compression Threshold, Pre-Compression Gain, Compression Ratio, and Post Compression Gain settings from the FILTER_COMP2 register Table 4.
		0000	Select Setting 0
		-	-
		1111	Select Setting 1
31:24	UNUSED		

COMPRESSOR CONTROL REGISTER 2 (FILTER COMP2) (0x502h)

BIT	NAME	VALUE	DESCRIPTION
			Array Filter Compressor Threshold (Setting 0)
		00000	0
		00001	0.03125
		00010	0.0325
4.0		-	-
4:0	COMP_TH	10000	0.5
		-	-
		11000	0.75
		-	-
		11111	0.96875
			Pre-Compression Gain (V/V) (Setting 0)
		000	2
		001	4
		010	8
7:5	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio (Setting 0)
		000	1:1
		001	2:1
		010	2.66:1
10:8	COMP_RATIO	011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
11	UNUSED		
			Post Compression Gain (V/V) (Setting 0)
		000	1
		001	1.25
		010	1.5
14:12	POST_GAIN	011	2
		100	2.5
		101	3
		110	4
		111	8
15	UNUSED		

Table 7. Compressor Control Register 2

www.ti.com

Table 7. Compressor Control Register 2 (continued)

BIT	NAME	VALUE	DESCRIPTION
			Pre-Filter Compressor Threshold (Setting 1)
		00000	0
		00001	0.03125
		00010	0.0325
00.40		-	-
20:16	COMP_TH	10000	0.5
		-	-
		11000	0.75
		-	-
		11111	0.96875
			Pre-Compression Gain (V/V) (Setting 1)
		000	2
		001	4
		010	8
23:21	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio (Setting 1)
		000	1:1
		001	2:1
		010	2.66:1
24:26	COMP_RATIO	011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
27	UNUSED		
			Post Compression Gain (V/V) (Setting 1)
		000	1
		001	1.25
		010	1.5
30:28	POST_GAIN	011	2
		100	2.5
		101	3
		110	4
		111	8
31	UNUSED		

FILTER DEBUG REGISTER 1 (FILT_DBG1) (0x504h)

Table 8. Filter Debug Register 1

BIT	NAME	VALUE	DESCRIPTION
3:0	ACC_ADDR		Accumulator Address. Selects which accumulator is read during debug mode
4		0	Selects Pre-Filter Accumulators
4	FILTER_SELECT	1	Selects Array Filter Accumulators

Copyright © 2011–2012, Texas Instruments Incorporated

Table 8. Filter Debug Register 1 (continued)

BIT	NAME	VALUE	DESCRIPTION
5	UNUSED		
6		0	Single Step Disabled
6	STEP_ENABLE	1	Single Step Enabled
7		0	Debug Mode Disabled. Coefficient memory is inaccessible with Debug mode is disabled.
1	DBG_ENABLE	1	Debug Mode Enabled. Coefficient memory is accessible when Debug mode is enabled.
31:8	UNUSED		

FILTER STATISTICS CONTROL REGISTER (FILT_STC) (0x505h)

BIT	NAME	VALUE	DESCRIPTION
PRE-FILTER Counter			
			Channel Select
		000	Channel 0
		001	Channel 1
		010	Channel 2
3:0	CH_SEL	011	Channel 3
		100	Channel 4
		101	Channel 5
		110	Channel 6
		111	Channel 7
			Counter 1 Mode Select. Specifies input of Counter 1
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7}
7:4	COUNT1_MODE	1001	MAGN[7:6]
	_	1010	MAGN[7:5]
		1011	MAGN[7:4]
		1100	MAGN[7:3]
		1101	MAGN[7:2]
		1110	MAGN[7:1}
		1111	MAGN[7:0]
			Counter 2 Mode Select. Specifies input of Counter 2
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7]
11:8	COUNT2_MODE	1001	MAGN[7:6]
	_	1010	MAGN[7:5]
		1011	MAGN[7:4}
		1100	MAGN[7:3}
		1101	MAGN[7:2]
		1110	MAGN[7:1}
		1111	MAGN[7:0]

Table 9. Filter Statistics Control Register

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

Table 9. Filter Statistics Control Register (continued)
---	------------

BIT	NAME	VALUE	DESCRIPTION
14:12	UNUSED		
		0	Counter Enabled
15	CLEAR	1	Counter Cleared
ARRAY-FILTER Cour	iter		
			Channel Select
		000	Channel 0
		001	Channel 1
		010	Channel 2
19:16	CH_SEL	011	Channel 3
		100	Channel 4
		101	Channel 5
		110	Channel 6
		111	Channel 7
			Counter 1 Mode Select. Specifies input of Counter 1
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7]
23:20	COUNT1_MODE	1001	
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3}
		1101	MAGN[7:2]
		1110	MAGN[7:1]
		1111	MAGN[7:0]
			Counter 2 Mode Select. Specifies input of Counter 2
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7]
27:24	COUNT2_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3]
		1101	MAGN[7:2]
		1110	MAGN[7:1]
		1111	MAGN[7:0]
30:28	UNUSED		
		0	Counter Enabled
31	CLEAR	1	Counter Cleared

DELAY REGISTER (DELAY) (0x520h)

Table 10. Delay Register

			-
BIT	NAME	VALUE	DESCRIPTION
15:0	POWER_UP_DELAY		Sets I2C Delay Time. Default 10ms delay.

www.ti.com

Table 10. Delay Register (continued)

BIT	NAME	VALUE	DESCRIPTION
23:16	DEGLITCH_DELAY		Sets ENABLE Bit Polling Timeout. Default 32ms delay
31:24	STATE_DELAY		Sets Delay Between Power Up/Down States

ENABLE AND CLOCK CONFIGURATION REGISTER (ENABLE & CLOCKS) (0x521h)

BIT	NAME	VALUE	DESCRIPTION
0		0	Device Disabled in I ² C Mode
0	ENABLE	1	Device Enabled in I ² C Mode
4	FORCE	0	Device Enabled Via SHDN < <overbar>> Pin</overbar>
1	FORCE	1	Device Enabled Via I ² C
0		0	SHDN< <overbar>> Requires a Stable Logic Level</overbar>
2	PULSE	1	SHDN< <overbar>> Accepts a Pulse Input</overbar>
3	RELY_ON_VREF	0	Device waits for delay time determined by STATE_DELAY to enable.
		1	Device waits for stable VREF
7:4	UNUSED		
			Selects PLL Input Divider
		000	32fs (1.536MHz)
		001	64fs (3.072MHz)
		010	128fs (6.114MHz)
10:8	MCLK_RATE	011	256fs (12.288MHz)
		100	512fs (24.576MHz)
		101	UNUSED
		110	UNUSED
		111	UNUSED
		0	MCLK Input to PLL
11	I2S_CLK	1	I ² S_CLK Input to PLL
		0	Oscillator Clock Input to Power Management Circuitry
12	PMC_CLK_SEL	1	External Clock to Power Management Circuitry. Power management circuit uses MCLK or I ² S_CLK. Clock source depends on the state of I ² S_CLK. External Clock mode disables the internal oscillator.
13	HIFI	0	HiFi Mode Disabled
13		1	HiFi Mode Enabled. PLL always produces a 4096fs clock.
4.4		0	QSA Clock Enabled
14	QSA_CLK_STOP	1	QSA Clock Disabled Following Device Configuration
15	UNUSED		
		0	Normal Operation
16	ADC_SYNC_SEL	1	Reverse ADC SYNC Signal for additional timing margin at low supply voltages.
31:17	UNUSED		

Table 11. Enable and Clock Configuration Register

DIGITAL MIXER CONTROL REGISTER (DIGITAL MIXER) (0x522h)

BIT	NAME	VALUE	DESCRIPTION
			Sets the Gain of the ADC Path (dB)
		000000	-76.5
		000001	-75
		-	1.5dB steps
5:0	ADC_LVL	110010	-1.5
		110011	0
		110100	1.5
		-	1.5dB Steps
		111111	18
		0	Normal Operation
6	MUTE	1	Mute
_		0	Zero Crossing Detection Enabled
7	ZXD_DISABLE	1	Zero Crossing Detection Disabled
			Sets the Gain of the I ² S Path (dB)
		000000	-76.5
		000001	-75
		-	1.5dB steps
13:8	I ² S_LVL	110010	-1.5
	_	110011	0 (V _{OUT} = 3.36V _{RMS} with 0dBFS input)
		110100	1.5
		-	1.5dB Steps
		111111	18
15:14	UNUSED		
		0	I ² S Data Not Passed to DSP
16	I2S_DSP	1	I ² S Data Passed to DSP
		0	ADC Output Not Passed to DSP
17	ADC_DSP	1	ADC Output Passed to DSP
			Selects Input of Primary I ² S Transmitter
		00	None
19:18	ISA_TX_SEL	01	ADC
		10	DSP1/2
		11	DSP3/4
			Selects Input of Secondary I ² S Transmitter
		00	None
21:20	ISB_TX_SEL	01	ADC
		10	DSP1/2
		11	DSP3/4
		0	l ² SA Data NOT Output on SHDN
22	I ² SA_ON	1	l ² SA Data Output on SHDN
		0	l ² SB Data NOT Output on SHDN
23	I ² SB_ON	1	l ² SB Data Output on SHDN

Table 12. Digital Mixer Control Register

www.ti.com

BIT	NAME	VALUE	
			Selects OUT1 Amplifier Input Source
		00	OUT1 Disabled
25:24	OUT1_SEL	01	DSP
		10	12\$
		11	ADC
			Selects OUT2 Amplifier Input Source
		00	OUT2 Disabled
27:26	OUT2_SEL	01	DSP
		10	12\$
		11	ADC
			Selects OUT3 Amplifier Input Source
		00	OUT3 Disabled
29:28	OUT3_SEL	01	DSP
		10	I2S
		11	ADC
			Selects OUT4 Amplifier Input Source
		00	OUT4 Disabled
31:30	OUT4_SEL	01	DSP
		10	12S
		11	ADC

Table 12. Digital Mixer Control Register (continued)

ANALOG CONFIGURATION REGISTER (ANALOG) (0x523h)

Table 13. Analog Configuration Register

BIT	NAME	VALUE	DESCRIPTION
			Sets ADC Preamplifier Gain (dB)
		00	0
1:0	ANA_LVL	01	2.4
		10	3.5
		11	6
2	PARALLEL	0	Normal Operation. OUT2 and OUT3 operate as separate amplifiers.
2	PARALLEL	1	Parallel Operation. OUT2 and OUT3 operate in parallel as a single amplifier.
		0	Normal Operation
3	ZERO_ANA	1	Auto-Shutdown Mode. Automatically disables the amplifiers when no analog input is detected.
		0	Normal Operation
4	ZERO_DIG	1	Auto-Shutdown Mode. Automatically disables the amplifiers when there is no I2S input.
		0	ADC Trim Disabled
5	ADCTRIM	1	ADC Trim Enabled. Use ADC_COMP_COEFF_C0-C2 to trim ADC.
6		0	Normal Operation
6	AUTO_SD	1	Fault Conditions Disable the Amplifiers
		0	Normal Operation
7	BYPASS_MOD	1	Pulse Correction Bypass. Amplifier output stages act as a buffer, passing PWM signal without correction to output.

www.ti.com

	Table 13. Analog Configuration Register (continued)				
BIT	NAME	VALUE	DESCRIPTION		
		0	Normal Operation		
8	TST_SHT	1	Short Amplifier Inputs. Sets amplifier outputs to 50% duty cycle, minimizing click and pop during power up/down.		
0		0	Normal Operation		
9	SCKT_DIS	1	Output Short Circuit Protection Disabled		
10		0	Normal Operation		
10	TSD_DIS	1 0 1	Thermal Shutdown Disabled		
44		0	Normal Operation		
11	PMC_TEST	1	PMC uses PLL Source Clock		
40		0	Normal Operation		
12	SE_MOD	1	Single Edge Modulation Mode		
31:13	UNUSED				

I²S PORT CONFIGURATION REGISTER (I²S PORT) (0x524h/0x525h)

BIT	NAME	VALUE	DESCRIPTION		
	0x524h				
0	STEREO	0	Mono Mode		
		1	Stereo Mode		
1	RX_ENABLE	0	Receive Mode Disabled		
		1	Receive Mode Enabled		
2	TX_ENABLE	0	Transmit Mode Disabled		
2		1	Transmit Mode Enabled		
3	CLK_MS	0	I2S Clock Slave. Device requires an external SCLK for proper operation.		
5		1	I2S Clock Master. Device generates SCLK and transmits when either RX or TX mode are enabled.		
	SYNC_MS	0	I2S WS Slave. Device requires an external WS for proper operation.		
4		1	I2S WS Master. Device generates WS and transmits when either RX or TX mode are enabled.		
_	CLOCK_PHASE	0	I2S Clock Phase. Transmit on falling edge, receive on rising edge.		
5		1	PCM Clock Phase. Transmit on rising edge, receive on falling edge.		
6	STEREO_SYNC _PHASE	0	I2S Data Format: Left, Right		
0		1	I2S Data Format: Right, Left		
	SYNC_MODE	Mono	Rising edge indicates start of data word.		
7		0	SYNC low = Left, SYNC high = Right		
		1	SYNC low = Right, SYNC high = left		
	HALF_CYCLE _DIVIDER		Configures the I2S port master clock half-cycle divider. Program the half-cycle divider by: (ReqDiv*2) 1		
		000000	BYPASS		
		000001	1		
		000010	1.5		
13:8		000011	2		
		-	-		
		111101	31		
		111110	31.5		
		111111	32		

Texas Instruments

BIT	NAME	VALUE	DESCRIPTION
15:14	UNUSED		
			Sets the Clock Generator Numberator
		000	SYNTH_DENOM (1/)
	SYNTH_NUM	001	100/SYNTH_DENOM
		010	96/SYNTH_DENOM
18:16		011	80/SYNTH_DENOM
		100	72/SYNTH_DENOM
		101	64/SYNTH_DENOM
		110	48/SYNTH_DENOM
		111	0/SYNTH_DENOM
19		0	Clock Generator Denominator = 128
19	SYNTH_DENOM	1	Clock Generator Denominator = 125
23:20	UNUSED		Sets number of clock cycles before SYNC pattern repeats. MONO MODE
		000	8
	SYNC_RATE	001	12
		010	16
		011	18
		100	20
		101	24
		110	25
26:24		111	32
			STEREO MODE
		000	16
		01	24
		010	32
		011	36
		100	40
		101	48
		110	50
		111	64
	MONO_SYNC_WIDTH		Sets SYNC symbol width in Mono Mode
		000	1
		001	2
		010	4
29:27		011	7
		100	8
		101	11
		110	15
		111	16
31:30	UNUSED		
		0x52	5h

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

BIT	NAME	VALUE	DESCRIPTION
			Sets number of valid RECEIVE bits.
		000	24
		001	20
		010	18
2:0	RX_WIDTH	011	16
		100	14
		101	13
		110	12
		111	8
			Sets number of TRANSMIT bits.
		000	24
		001	20
		010	18
5:3	TX_WIDTH	011	16
		100	14
		101	13
		110	12
		111	8
			Sets number of pad bits after the valid Transmit bits.
		00	0
7:6	TX_BIT	01	1
		10	High-Z
		11	High-Z
8		0	MSB Justified Receive Mode
o	RX_MODE	1	LSB Justified Receive Mode

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

Texas Instruments

BIT	NAME	VALUE	DESCRIPTION
			MSB location from the frame start (MSB Justified) or LSB location from the frame end (LSB Justified)
		00000	0 (DSP/PCM LONG)
		00001	1 (I2S/PCM SHORT)
		00010	2
		00011	3
		00100	4
		00101	5
		00110	6
		00111	7
		01000	8
		01001	9
		01010	10
		01011	11
		01100	12
		01101	13
		01110	14
13:9	RX_MSB_POSITION	01111	15
		10000	16
		10001	17
		10010	18
		10011	19
		10100	20
		10101	21
		10110	22
		10111	23
		11000	24
		11001	25
		11010	26
		11011	27
		11100	28
		11101	29
		11110	30
		11111	31
		0	Normal Operation
14	RX_COMPAND	1	Audio Data Companded
		0	μLaw Compand Mode
15	RX_A/µLAW	1	A-Law Compand Mode
	· · · · · ·	0	MSB Justified Transmit Mode
16	TX_MODE	1	LSB Justified Transmit Mode

TEXAS INSTRUMENTS

www.ti.com

SNAS520C - OCTOBER 2011 - REVISED JANUARY 2012

BIT	NAME	VALUE	DESCRIPTION
			MSB location from the frame start (MSB Justified) or LSB location from the frame end (LSB Justified)
		00000	0 (DSP/PCM LONG)
		00001	1 (I2S/PCM SHORT)
		00010	2
		00011	3
		00100	4
		00101	5
		00110	6
		00111	7
		01000	8
		01001	9
		01010	10
		01011	11
		01100	12
		01101	13
		01110	14
21:17	TX_MSB_POSITION	01111	15
		10000	16
		10001	17
		10010	18
		10011	19
		10100	20
		10101	21
		10110	22
		10111	23
		11000	24
		11001	25
		11010	26
		11011	27
		11100	28
		11101	29
		11110	30
		11111	31
22	TX_COMPAND	0	Normal Operation
		1	Audio Data Companded
23	TX_A/µLAW	0	µLaw Compand Mode
23	ιν_Ανμέανν	1	A-Law Compand Mode
31:24	UNUSED		

ADC TRIM COEFFICIENT REGISTER (ADC_TRIM) (0x526h/0x527)

Table 14. ADC Trim Coefficient Register

NAME	VALUE	DESCRIPTION		
	0x526h			
ADC_COMP_COEFF_C0		Sets ADC Trim Coefficient C0		
ADC_COMP_COEFF_C1		Sets ADC Trim Coefficient C1		
0x527h				
ADC_COMP_COEFF_C2		Sets ADC Trim Coefficient C2		
	ADC_COMP_COEFF_C0 ADC_COMP_COEFF_C1	0x526h ADC_COMP_COEFF_C0 ADC_COMP_COEFF_C1 0x527h		

READBACK REGISTER (READBACK) (0x528h) READ-ONLY

Table 15. Readback Register

BIT	NAME	VALUE	DESCRIPTION
0	ADCR_CLIP	1	Right Channel ADC Input Clipped
1	ADCL_CLIP	1	Left Channel ADC Input Clipped
2	ADCR_LVLCLIP	1	Right Channel ADC Output Clipped
3	ADCL_LVLCLIP	1	Left Channel ADC Output Clipped
4	I2SR_LVLCLIP	1	Right Channel I2S Output Clipped
5	I2SL_LVLCLIP	1	Left Channel I2S Output Clipped
7:6	UNUSED		
8	SHORT1	1	OUT1 Output Short Circuit
9	SHORT2	1	OUT2 Output Short Circuit
10	SHORT3	1	OUT3 Output Short Circuit
11	SHORT4	1	OUT4 Output Short Circuit
12	THERMAL	1	Thermal Shutdown Threshold Exceeded
23:13	SPARE		
31:24	UNUSED		

SYSTEM CONFIGURATION REGISTER (SYS_CONFIG) (0x530h)

Table 16. System Configuration Register

BIT	NAME	VALUE	DESCRIPTION
6:0	DEVICE_ID		Sets LM48901 Device ID in slave mode
7	CONFIG_CLK	0	Configuration Loader Clock Disabled
7	_ENABLE	1	Configuration Loader Clock Enabled
14:8	ALT_DEVICE_ID		Sets Alternate Device ID in Slave Mode.
15		0	Selects DEVICE_ID
15	ALTID_ENABLE	1	Selects ALT_DEVICE_ID
		0	Configuration Loader Access not Requested
16	CL_REQ	1	Configuration Loader Access Requested. I2C Master Transaction Enabled
47	01.111	0	Configuration Loader Set to READ-ONLY
17	CL_W	1	Configuration Loader Set to WRITE
			Sets I2C Page Mode Length
		00	Single Byte
20:18	CL_PAGE	01	4 Bytes
		10	8 Bytes
		11	16 Bytes
22:21	UNUSED		
		0	Device Configured as I2C Slave
23	CL_ENABLE	1	Device Configured as I2C Master
		0	Memory BIST Controller 0 Disabled
24	MBIST0_ENABLE	1	Memory BIST Control 0 Enabled.
		0	Memory BIST Controller 1 Disabled
25	MBIST1_ENABLE	1	Memory BIST Control 1 Enabled.
31:26	UNUSED		

I²C MASTER CONFIGURATION LOADER REGISTER 0 (CL_REG0) (0x531h)

Table 17. Filter Debug Register 0

BIT	NAME	VALUE	DESCRIPTION
15:0	TRANS_LENGTH		Sets I2C Master Transaction Length
31:16	REG_START_ADDR		Starting Address of LM48901 Memory

I²C MASTER CONFIGURATION LOADER REGISTER 1 (CL_REG1) (0x532h)

Table 18. Filter Debug Register 1

BIT	NAME	VALUE	DESCRIPTION
15:0	E2_START_ADDR		Sets EEPROM Address. Indicates EEPROM start address where data is stored
31:16	UNUSED		

EEPROM ADDRESS OFFSET REGISTER (E2_OFFSET) (0x533h)

Table 19. EEPROM Address Offset Register

BIT	NAME	VALUE	DESCRIPTION
5:0	E2_OFFSET		EEPROM Address Offset Value.
31:6	UNUSED		

I²C EnXT REGISTER (I²CEnXT) (0x534h)

Table 20. I²C EnXT Register

BIT	NAME	VALUE	DESCRIPTION
5:0	E2NXT_OFFSET		Sets EEPROM Address Offset for Following LM48901 when devices are Daisy Chained.
6	UNUSED		
7		0	Next Device in Daisy Chain Disabled. I2C_EX driven Low.
/	I2C_EnXT	1	Next Device in Daisy Chain Enabled. I2C_EX driven HIGH.
31:8	UNUSED		

READ-ONLY MBIST STATUS REGISTER (MBIST_STAT) (0x538h)

Table 21. MBIST Status Register

BIT	NAME	VALUE	DESCRIPTION
1:0	MBIST_DONE		Logic HIGH indicates memory test complete
3:2	BIST_GO		Logic Low indicates memory fault when MBIST_DONE is HIGH
		0	MBIST Read-back Disabled
5:4	MBIST_EN	1	MBIST Read-back Enabled
31:6	UNUSED		

DAISY CHAINING

PC_EN/PC_EX

The LM48901 supports daisy chaining up to 127 devices from a single I²C bus utilizing I²C_EN and I²C_EX in a chain enable scheme. I²C_EX is a push/pull logic output that drives the I²C_EN of the following device in the chain Figure 14. At power up, I²C_EnXT (bit 8, I²C_EnXT Register [0x534h]) is set to 0, resulting in I²C_EN driven low, disabling the I²C interface of the following device. Once device configuration is complete, and I²C_EnXT is set to 1, I²C_EN is driven high, enabling the I²C interface of the following device. Driving I²C_EN high enables the device's I²C interface, driving I²C_EN low disables the device's I²C interface.

SNAS520C - OCTOBER 2011 - REVISED JANUARY 2012

www.ti.com

Figure 14. I²C_EN/I²C_EX Daisy Chaining Example

Device Address

The 0110000X is the default LM48901 I²C address hard coded into the device. Two alternate device addresses can be programmed, via the SYS CONFIG (0x530h) Register. Use the default address during initial device configuration.

GENERAL AMPLIFIER FUNCTION

Class D Amplifier

The LM48901 features four high-efficiency Class D audio power amplifiers that utilizes Texas Instruments' filterless modulation scheme external component count, conserving board space and reducing system cost. The Class D outputs transition from V_{DD} to GND with a 384kHz switching frequency. With no signal applied, the outputs switch with a 50% duty cycle, in phase, causing the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.

With the input signal applied, the duty cycle (pulse width) of the LM48901 outputs changes. For increasing output voltage, the duty cycle of OUT_+ increases while the duty cycle of OUT_- decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yield the differential output voltage.

Edge Rate Control (ERC)

The LM48901 features Texas Instruments' advanced edge rate control (ERC) that reduces EMI, while maintaining high quality audio reproduction and efficiency. The LM48901 ERC greatly reduces the high frequency components of the output square waves by controlling the output rise and fall times, slowing the transitions to reduce RF emissions, while maximizing THD+N and efficiency performance. The overall result of the E²S system is a filterless Class D amplifier that passes FCC Class B radiated emissions standards with 24in of twisted pair cable, with excellent 0.06% THD+N and high 89% efficiency.

POWER DISSIPATION AND EFFICIENCY

The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48901 is attributed to the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.

ANALOG INPUT

The LM48901 features a differential input, stereo ADC for analog systems. A differential amplifier amplifies the difference between the two input signals. Traditional audio power amplifiers have typically offered only singleended inputs resulting in a 6dB reduction of SNR relative to differential inputs. The LM48901 also offers the possibility of DC input coupling which eliminates the input coupling capacitors. A major benefit of the fully differential amplifier is the improved common mode rejection ratio (CMRR) over single ended input amplifiers. The increased CMRR of the differential amplifier reduces sensitivity to ground offset related noise injection, especially important in noisy systems.

PARALLEL MODE

In Parallel mode, channels OUT2 and OUT3 are driven from the same audio source, allowing the two channels to be connected in parallel, increasing output power to 3.2W into 4Ω at 10% THD+N. Set bit 2 (PARALLEL) of the Analog Configuration Register (0x532h) = 1 to configured the device in Parallel mode. After the device is set to Parallel mode, make an external connection between OUT2+ and OUT3+, and a connection between OUT2- and OUT3- (Figure 2). In Parallel mode, the combined channels are driven from the OUT2 source. OUT1 and OUT4 are unaffected. Signal routing, mixing, filtering, and equalization are done through the Spatial Engine.

Make sure the device is configured in Parallel mode, before connecting OUT2 and OUT3 and enabling the outputs. Do not make a connection between OUT2 and OUT3 together while the outputs are enabled. Disable the outputs first, then make the connections between OUT2 and OUT3.

GAIN SETTING

The LM48901 has three gain stages, the ADC preamplifier, and two independent volume controls in the Digital Mixer, one for the ADC path and one for the l^2 S path. The ADC preamplifier has four gain settings (0dB, 2.4dB, 3.5dB, and 6dB). The preamplifier gain is set by bits 0 and 1 (ANA_LVL) of the Analog Configuration Register (0x523h). The Digital Mixer has two 64 step volume controls. The ADC path volume control is set by bits 5:0 (ADC_LVL) in the Digital Mixer Control Register (0x522h). The l^2 S path volume control is set by bits 13:8 (l^2 S_LVL) in the Digital Mixer Control Register (0x522h). Both volume controls have a range of -76.5dB to 18dB in 1.5dB increments.

MODULATOR POWER SUPPLY (AV_{DD1})

The AV_{DD1} (R_L package: bump C2, SQ package: pin 12) powers the class D modulators. For maximum output swing, set AV_{DD1} and PV_{DD} to the same voltage. Table 22 shows the output voltage for different AV_{DD1} levels.

	· · ·	
AV _{DD1} (V)	V _{OUT} (V _{RMS}) @ PV _{DD} = 5V, THD+N = 1%	$V_{OUT} (V_{RMS}) @ PV_{DD} = 3.6V, THD+N = 1\%$
5	3.3	-
4.5	3.1	-
4.2	2.9	-
4	2.7	-
3.6	2.5	2.4
3.3	2.3	2.2
3	2.1	2.1
2.8	2	1.9

Table 22. Amplifier Output Voltage with Variable AV_{DD1} Voltage

SNAS520C-OCTOBER 2011-REVISED JANUARY 2012

CLOCK REQUIREMENTS

The LM48901 requires an external clock source for proper operation, regardless of input source or device configuration. The device derives the ADC, digital mixer, DSP, I²S port, and PWM clocks from the external clock. The clock can be derived from either MCLK or SCLK inputs. Set bit 11 (I²S_CLK) of the Enable and Clock configuration register (0x521h) to 0 to select MCLK, set I²S_CLK to 1 to select SCLK. The LM48901 accepts five different clock frequencies, 1.536, 3.072, 6.114, 12.288, and 24.576MHz. Set bits 10:8 (MCLK_RATE) of the Enable and Clock Configuration Register to the appropriate clock frequency. In systems where both MCLK and SCLK are available, choose the lower frequency clock for improved power consumption.

SHUTDOWN FUNCTION

There are two ways to shutdown the LM48901, hardware mode, and software mode. The default is hardware mode.

Set bit 1 (FORCE) of the Enable and Clock Configuration Register (0x521h) to 0 to enable hardware shutdown mode. In hardware mode, the device is enabled and disabled through SHDN. Connect SHDN to V_{DD} for normal operation. Connect SHDN to GND to disable the device. Hardware shutdown mode supports a one shot, or momentary switch SHDN input. When bit 2 (PULSE) of the Enable and Clock Configuration Register (0x521h) is set to 1, the LM48901 responds to a rising edge on SHDN to change the device state. When PULSE = 0, the device requires a stable logic level on SHDN.

Set FORCE = 1 to enable software shutdown mode. In software shutdown mode, the device is enabled and disabled through bit 0 (ENABLE) of the Enable and Clock Configuration Register (0x512h). Set ENABLE = 0 to disable the LM48901. Set ENABLE = 1 to enable the LM48901.

In either hardware or software mode, the content of the LM48901 memory registers is retained after the device is disabled, as long as power is still applied to the device. Minimize power consumption by disabling the PMC clock oscillator when the LM48901 is shutdown. Set bit 12 (PMC_CLK_SEL) and bit 14 (QSA_CLK_STOP) of the Enable and Clock configuration Register (0x521h) = 1 to disable the PMC clock oscillator.

EXTERNAL CAPACITOR SELECTION

Power Supply Bypassing and Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Typical applications employ a voltage regulator with 10µF and 0.1µF bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM48901 supply pins. A 1µF capacitor is recommended for IOV_{DD} , $PLLV_{DD}$, DV_{DD} , and AV_{DD} . A 2.2µF capacitor is recommended for PV_{DD} .

REF and BYPASS Capacitor Selection

For best performance, bypass REF with a 4.7µF ceramic capacitor.

INPUT CAPACITOR SELECTION

The LM48901 analog inputs require input coupling capacitors. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM48901. The input capacitors create a high-pass filter with the input resistors R_{IN} . The -3dB point of the high pass filter is found using Equation (1) below.

$$f = 1 / 2\pi R_{IN}C_{IN}$$

(1)

Where the value of R_{IN} is $20k\Omega$.

The input capacitors can also be used to remove low frequency content from the audio signal. Small speakers cannot reproduce, and may even be damaged by low frequencies. High pass filtering the audio signal helps protect the speakers. When the LM48901 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

PCB LAYOUT GUIDELINES

As output power increases, interconnect resistance (PCB traces and wires) between the amplifier, load, and power supply create a voltage drop. The voltage loss due to the traces between the LM48901 and the load results in lower output power and decreased efficiency. Higher trace resistance between the supply and the LM48901 has the same effect as a poorly regulated supply, increasing ripple on the supply line, and reducing peak output power. The effects of residual trace resistance increases as output current increases due to higher output power, decreased load impedance or both. To maintain the highest output voltage swing and corresponding peak output power, the PCB traces that connect the output pins to the load and the supply pins to the power supply should be as wide as possible to minimize trace resistance.

The use of power and ground planes will give the best THD+N performance. In addition to reducing trace resistance, the use of power planes creates parasitic capacitors that help to filter the power supply line.

The inductive nature of the transducer load can also result in overshoot on one of both edges, clamped by the parasitic diodes to GND and V_{DD} in each case. From an EMI standpoint, this is an aggressive waveform that can radiate or conduct to other components in the system and cause interference. In is essential to keep the power and output traces short and well shielded if possible. Use of ground planes beads and micros-strip layout techniques are all useful in preventing unwanted interference.

As the distance from the LM48901 and the speaker increases, the amount of EMI radiation increases due to the output wires or traces acting as antennas become more efficient with length. Ferrite chip inductors places close to the LM48901 outputs may be needed to reduce EMI radiation.

Revision History

Rev	Date	Description
1.0	10/31/11	Initial Web released.
1.01	12/02/11	Fixed a typo (LM488901 to LM48901) on page 45.
1.02	12/12/11	Added two sections "Modulator Power Supply" and Clock Requirements.
1.03	12/16/11	Changed National to Texas Instruments.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LM48901RL/NOPB	ACTIVE	DSBGA	YPG	36	250	Green (RoHS & no Sb/Br)	SNAG	Level-1-260C-UNLIM	-40 to 85	GO2	Samples
LM48901RLX/NOPB	ACTIVE	DSBGA	YPG	36	1000	Green (RoHS & no Sb/Br)	SNAG	Level-1-260C-UNLIM	-40 to 85	GO2	Samples
LM48901SQ/NOPB	ACTIVE	WQFN	RTV	32	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L48901	Samples
LM48901SQE/NOPB	ACTIVE	WQFN	RTV	32	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L48901	Samples
LM48901SQX/NOPB	ACTIVE	WQFN	RTV	32	4500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L48901	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

11-Apr-2013

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM48901RL/NOPB	DSBGA	YPG	36	250	178.0	12.4	3.43	3.59	0.76	8.0	12.0	Q1
LM48901RLX/NOPB	DSBGA	YPG	36	1000	178.0	12.4	3.43	3.59	0.76	8.0	12.0	Q1
LM48901SQ/NOPB	WQFN	RTV	32	1000	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
LM48901SQE/NOPB	WQFN	RTV	32	250	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
LM48901SQX/NOPB	WQFN	RTV	32	4500	330.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

21-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM48901RL/NOPB	DSBGA	YPG	36	250	210.0	185.0	35.0
LM48901RLX/NOPB	DSBGA	YPG	36	1000	210.0	185.0	35.0
LM48901SQ/NOPB	WQFN	RTV	32	1000	210.0	185.0	35.0
LM48901SQE/NOPB	WQFN	RTV	32	250	210.0	185.0	35.0
LM48901SQX/NOPB	WQFN	RTV	32	4500	367.0	367.0	35.0

MECHANICAL DATA

RTV0032A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated