SN54ABT543A, SN74ABT543A OCTAL REGISTERED TRANSCEIVERS
 WITH 3-STATE OUTPUTS

SCBS157F - JANUARY 1991 - REVISED MAY 1997

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathbf{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32 -mA $\mathrm{IOH}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{IOL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (NT) and Ceramic (JT) DIPs

description

The 'ABT543A octal transceivers contain two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{O E B A})$ inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable ($\overline{\mathrm{CEAB}}$) input must be low to enter data from A or to output data from B. If $\overline{C E A B}$ is low and LEAB is low, the A-to-B latches are transparent; a subsequent low-to-high transition of $\overline{\text { LEAB }}$ puts the A latches in the storage mode. With CEAB and OEAB both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar, but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT543A . . . JT OR W PACKAGE
SN74ABT543A ... DB, DW, NT, OR PW PACKAGE
(TOP VIEW)

$\overline{\text { LEBA }} 1$	\cup_{24}	V_{CC}
OEBA 2	23	CEBA
A1 ${ }^{3}$	22	B1
A2 4	21	B2
A3 5	20	B3
A4 ${ }^{6}$	19	B4
A5 ${ }^{\text {7 }}$	18	B5
A6 [8	17	B6
A7 ${ }^{\text {a }}$	16	B7
A8 10	15	B8
CEAB 11	14	LEAB
GND 12	13	$\overline{O E A B}$

SN54ABT543A... FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN54ABT543A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT543A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE \dagger

INPUTS				
	OUTPUT			
B				
CEAB	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A	
H	X	X	X	Z
X	X	H	X	Z
L	H	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	L	L
L	L	L	H	H

\dagger A-to-B data flow is shown; B-to-A flow control is the same except that it uses $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$.
\ddagger Output level before the indicated steady-state input conditions were established

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the $\mathrm{DB}, \mathrm{DW}, \mathrm{JT}, \mathrm{NT}, \mathrm{PW}$, and W packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) ... }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT543A ... } 96 \mathrm{~mA} \\
& \text { SN74ABT543A } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {... } 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 2): DB package } 104^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DW package } 81^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { NT package } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { PW package .. } 120^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

			SN54AB	543A	SN74A	543A	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\text {IOH }}$	High-level output current			-24		-32	mA
${ }^{\text {IOL }}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT543A	SN74ABT543A	UNIT		
		MIN	TYP \dagger MAX	MIN MAX	MIN MAX					
VIK				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	II $=-18 \mathrm{~mA}$		-1.2	-1.2	-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5		2.5	2.5	V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3		3	3			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$1 \mathrm{OH}=-24 \mathrm{~mA}$	2		2				
		$\mathrm{IOH}=-32 \mathrm{~mA}$	2*			2				
$\mathrm{V}_{\text {OL }}$			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$		0.55	0.55		V	
		$\mathrm{IOL}=64 \mathrm{~mA}$			0.55*		0.55			
$\mathrm{V}_{\text {hys }}$					100			mV		
!	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		± 1	± 1	± 1	$\mu \mathrm{A}$		
	A or B ports				± 100	± 100	± 100			
lOZH^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		10§	10§	10§	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {OZL }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-10§	-10§	-10§	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$		± 100		± 100	$\mu \mathrm{A}$		
${ }^{\text {I CEX }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	Outputs high		50	50	50	$\mu \mathrm{A}$		
10 l		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50*	-100 -180*	-50 -200	-50 -180	mA		
${ }^{\text {ICC }}$	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{I}^{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1 250*	350	250	$\mu \mathrm{A}$		
			Outputs low		24 30*	34	30	mA		
			Outputs disabled		0.5 250*	350	250	$\mu \mathrm{A}$		
${ }^{\mathrm{LI}} \mathrm{CC}{ }^{\#}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA		
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		4				pF		
C_{io}	A or B ports	$\mathrm{V}=2.5 \mathrm{~V} 0 \mathrm{0} 0.5 \mathrm{~V}$			7			pF		

* On products compliant to MIL-PRF-38535, this parameter does not apply.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger The parameters IOZH^{2} and IOZL include the input leakage current.
§ This data sheet limit may vary among suppliers.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ABT543A					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
tPLH	A or B	B or A	$1.6 \dagger$	4.4	4.4	$1.6 \dagger$	5.5	ns
tpHL			1.6	4.4	5.1	1.6	6.2	
tPLH	$\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	A or B	$1.6 \dagger$	4.1	5.1	$1.6 \dagger$	6.6	ns
tPHL			1.6	4.6	5.4	1.6	6.4	
tPZH	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	1.4	3.9	4.1	1.4	5.1	ns
tPZL			2	5	4.9	2	5.8	
tPHZ	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	$2.5 \dagger$	5.9	5.8	$2.5{ }^{\dagger}$	6.9	ns
tpLZ			$2.5 \dagger$	5.5	6.1	$2.5 \dagger$	7.6	
tPZH	$\overline{\text { CEBA }}$ or $\overline{\mathrm{CEAB}}$	A or B	1.4	3.9	4.7	1.4	5.6	ns
tPZL			2	5	5.7	2	6.2	
tPHZ	$\overline{\text { CEBA }}$ or CEAB	A or B	$3.2 \dagger$	5.9	6.5	3.2†	7.3	ns
tpLZ			$2.5 \dagger$	5.5	6.7	$2.5{ }^{\dagger}$	7.8	

\dagger This data sheet limit may vary among suppliers.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN74ABT543A					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
tPLH	A or B	B or A	$1.8 \dagger$	4.4	5.9	$1.8{ }^{\dagger}$	6.9	ns
tPHL			1.9	4.4	5.9	1.9	6.9	
tPLH	$\overline{\text { LEBA }}$ or $\overline{L E A B}$	A or B	$1.5 \dagger$	4.1	5.6	$1.5 \dagger$	6.6	ns
tPHL			2.1	4.6	6.1	2.1	7.1	
tPZH	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B	1.4	3.9	5.4	1.4	6.4	ns
tPZL			2.5	5	6.5	2.5	7.5	
tPHZ	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B	$2.5 \dagger$	5.9	7.4	$2.5 \dagger$	8.4	ns
tpLZ			$2.5 \dagger$	5.5	7	$2.5 \dagger$	8	
tPZH	$\overline{\text { CEBA }}$ or $\overline{C E A B}$	A or B	1.4	3.9	5.4	1.4	6.4	ns
tPZL			2.5	5	6.5	2.5	7.5	
tPHZ	$\overline{\text { CEBA }}$ or $\overline{C E A B}$	A or B	$2.9 \dagger$	5.9	7.4	$2.9 \dagger$	8.4	ns
tPLZ			$2.4 \dagger$	5.5	7	$2.4 \dagger$	8	

† This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tpHL tpLZ/tpZL ${ }^{\text {tpHZ }} / \mathrm{t}^{\mathrm{P}} \mathrm{ZH}$	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-9231402Q3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & 9231402 Q 3 A \\ & \text { SNJ54 } \\ & \text { ABT543AFK } \end{aligned}$	Samples
SN74ABT543ADBR	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB543A	Samples
SN74ABT543ADBRG4	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB543A	Samples
SN74ABT543ADW	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT543A	Samples
SN74ABT543ADWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT543A	Samples
SN74ABT543APW	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB543A	Samples
SN74ABT543APWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB543A	Samples
SNJ54ABT543AFK	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & 9231402 \mathrm{Q} 3 \mathrm{~A} \\ & \text { SNJ54 } \\ & \text { ABT543AFK } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. INSTRUMENTS
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annul basis.

OTHER QUALIFIED VERSIONS OF SN54ABT543A, SN74ABT543A :

- Catalog: SN74ABT543A
- Military: SN54ABT543A

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 $\mathbf{W 1}(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74ABT543ADBR | SSOP | DB | 24 | 2000 | 330.0 | 16.4 | 8.2 | 8.8 | 2.5 | 12.0 | 16.0 | Q1 |
| SN74ABT543ADWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 |
| SN74ABT543APWR | TSSOP | PW | 24 | 2000 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABT543ADBR	SSOP	DB	24	2000	367.0	367.0	38.0
SN74ABT543ADWR	SOIC	DW	24	2000	350.0	350.0	43.0
SN74ABT543APWR	TSSOP	PW	24	2000	367.0	367.0	38.0

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

