NSR0240V2, NSVR0240V2

Schottky Barrier Diode

Schottky barrier diodes are optimized for very low forward voltage drop and low leakage current and are used in a wide range of dc–dc converter, clamping and protection applications in portable devices. NSR0240V2 in a SOD–523 miniature package enables designers to meet the challenging task of achieving higher efficiency and meeting reduced space requirements.

Features

- Very Low Forward Voltage Drop 480 mV @ 100 mA
- Low Reverse Current 0.2 μA @ 25 V VR
- 250 mA of Continuous Forward Current
- Power Dissipation of 200 mW with Minimum Trace
- Very High Switching Speed
- Low Capacitance -CT = 4 pF
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- LCD and Keypad Backlighting
- Camera Photo Flash
- Buck and Boost dc–dc Converters
- Reverse Voltage and Current Protection
- Clamping & Protection

Markets

- Mobile Handsets
- MP3 Players
- Digital Camera and Camcorders
- Notebook PCs & PDAs
- GPS

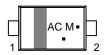
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	40	Vdc
Forward Continuous Current (DC)	١ _F	250	mA
Non-Repetitive Peak Forward Surge Current	I _{FSM}	2.0	А
ESD Rating: Human Body Model Machine Model	ESD Clas		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®


www.onsemi.com

40 VOLT SCHOTTKY BARRIER DIODE

MARKING DIAGRAM

AC = Device Code M = Date Code*

Date Code

= Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation position may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NSR0240V2T1G	SOD-523 (Pb-Free)	3,000 / Tape & Reel
NSVR0240V2T1G	SOD-523 (Pb-Free)	3,000 / Tape & Reel
NSR0240V2T5G	SOD-523 (Pb-Free)	8,000 / Tape & Reel
NSVR0240V2T5G	SOD-523 (Pb-Free)	8,000 / Tape & Reel

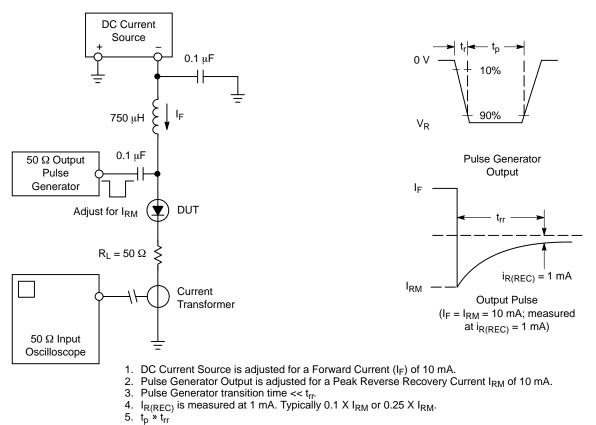
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Semiconductor Components Industries, LLC, 2014 August, 2018 – Rev. 4

NSR0240V2, NSVR0240V2

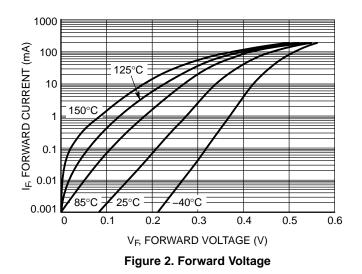
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$	R _{0JA} PD	600 200	°C/W mW
Thermal Resistance Junction–to–Ambient (Note 2) Total Power Dissipation @ T _A = 25°C	R _{0JA} PD	300 400	°C/W mW
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


1. Mounted onto a 4 in square FR-4 board 10 mm sq. 1 oz. Cu 0.06" thick single-sided. Operating to steady state.

2. Mounted onto a 4 in square FR-4 board 1 in sq. 1 oz. Cu 0.06" thick single-sided. Operating to steady state.

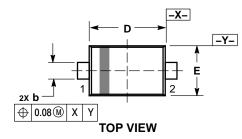
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

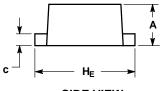

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Leakage $(V_R = 10 V)$ $(V_R = 25 V)$ $(V_R = 40 V)$	I _R	- - -	 0.2 0.5	0.55 2.0 10	μΑ
Forward Voltage $(I_F = 10 \text{ mA})$ $(I_F = 100 \text{ mA})$ $(I_F = 200 \text{ mA})$	V _F	- - -	345 485 580	390 550 700	mV
Total Capacitance ($V_R = 5.0 V, f = 1 MHz$)	СТ	-	4.0	_	pF
Reverse Recovery Time ($I_F = I_R = 10 \text{ mA}, I_R = 1.0 \text{ mA}$)	t _{rr}	_	3.0	_	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

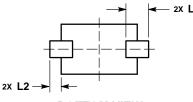
Figure 1. Recovery Time Equivalent Test Circuit

NSR0240V2, NSVR0240V2

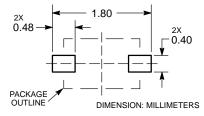



150°C 10 10 1.0 10.0 1.0 10.0 1 125°C 85°C 25°C 40°C 0.00001 V_R, REVERSE VOLTAGE (V) Figure 3. Leakage Current C_T, TOTAL CAPACITANCE (pF) $T_A = 25^{\circ}C$

> V_R, REVERSE VOLTAGE (V) Figure 4. Total Capacitance


PACKAGE DIMENSIONS

SOD-523 **CASE 502** ISSUE E


NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. 3. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PRO-TRUSIONS, OR GATE BURRS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	0.50	0.60	0.70
b	0.25	0.30	0.35
С	0.07	0.14	0.20
D	1.10	1.20	1.30
E	0.70	0.80	0.90
ΗE	1.50	1.60	1.70
L	0.30 REF		
L2	0.15	0.20	0.25

STYLE 1: PIN 1. CATHODE (POLARITY BAND) 2. ANODE

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NSR0240V2T1G NSR0240V2T5G