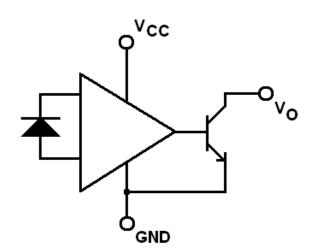
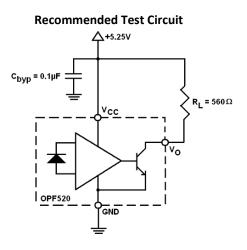
OPF520 Series

Features:

- Low Cost plastic cap package
- Designed to self align in the bore of standard fiber optic receptacles
- Press fit simplifies installation
- Optimized for fiber optic applications using 50 to 200 micron fiber

Description:


The OPF520 series fiber optic receiver is a high performance device packaged for data communications links. As such, it is designed to work with fiber core diameters from 50µm to 200µm and over a broad input power range. The construction contains a monolithic photo-IC comprised of a photodiode, biasing network, DC amplifier and an open collector output transistor. The output circuitry makes this device compatible with TTL and CMOS logic.

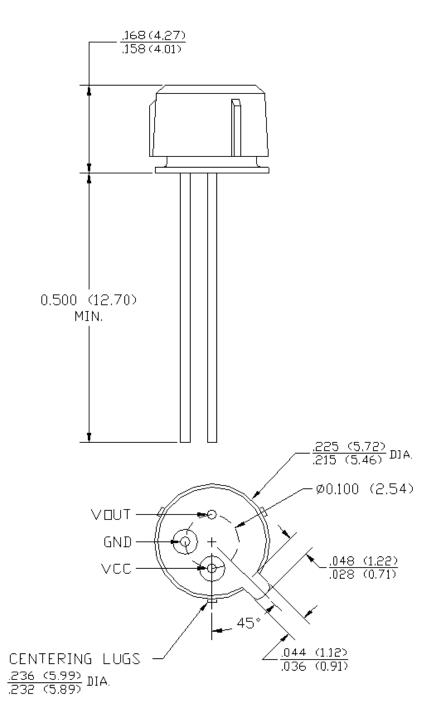

This receiver is designed to operate from a single 5V supply. It is essential that a bypass capacitor be connected from V_{CC} to GND in order to ensure the best possible operation.

Applications:

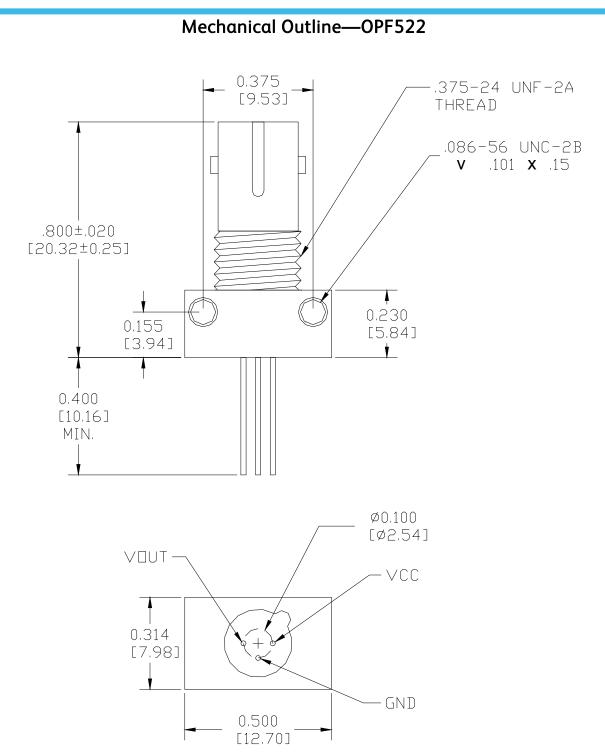
- Industrial Ethernet equipment
- Copper-to-fiber media conversion
- Intra-system fiber optic links
- Video surveillance systems

Part Ordering Information				
Part Number	Description			
OPF520	Plastic Cap Component			
OPF522	Metal ST Receptacle			

General Note


TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPF520 Series


Mechanical Outline—OPF520

General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPF520 Series

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPF520 Series

Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)				
Storage Temperature	55° C to +115° C			
Operating Temperature	-40° C to +85° C			
Lead Soldering Temperature (for 10 seconds)	260° C			
Supply Voltage	-0.5 V to +7.0 V			
Output Current	25 mA			
Output Voltage	-0.5 V to +18.0 V			
Open Collector Power Distribution	40mW			
Fan Out (TTL)	5 (1)			

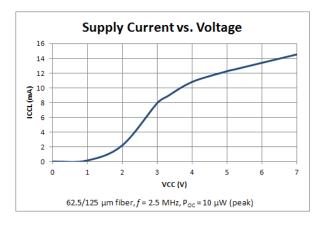
Electrico	Electrical Characteristics (T _A = 25° C unless otherwise noted)								
SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS			
I _{он}	High Level Output Current		5	250	μΑ	$V_0 = 18V$, $P_{OC} < -40$ dBm, See Note 2			
V _{OL}	Low Level Output Voltage		0.2	0.5	V	I _o = 8 mA, P _{oc} > +24 dBm, See Note2			
I _{CCH}	Supply Current, Output High		3.5	6.3	mA	V _{cc} = 5.25 V, P _{oc} < -40 dBm, See Note 2			
I _{CCL}	Supply Current, Output Low		6.9	10	mA	V _{cc} = 5.25 V, P _{oc} < -24 dBm, See Note 2			
D	Peak Input Power Level, Output High			-40	dBm	- λp = 850 nm			
Р _{ос(н)}	(Guaranteed Output High)			0.1	μW				
		-25.4		-9.2	dBm				
5	Peak Input Power Level, Output Low			120	μW	$\lambda p = 850 \text{ nm}, I_0 = 8 \text{ mA}$			
P _{OC(L)}	(Guaranteed Output Low)	-24		-10	dBm	λp = 850 nm, l _o = 8 mA			
		4.0		100	μW	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$			
t _r , t _f	Rise, Fall Time		30		ns				
t _{PDHL}	Propagation Delay, Output High to Low		65		ns	- P _{oc} = 20 dBm (peak), f = 2.5 MHz, See Note 3 -			
t _{PDLH}	Propagation Delay, Output Low to High		100		ns				
PWD	Pulse Width Distortion		±30		%				

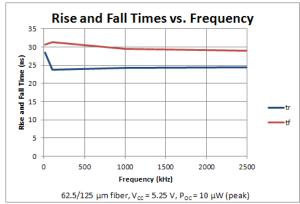
Notes:

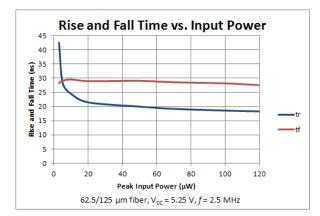
1. 8mA load (5 x 1.6 mA), R_L = 560 Ω

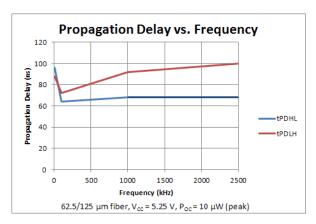
2. Use recommended test circuit below, but connect V_0 to an independent voltage source with $R_L = 0$.

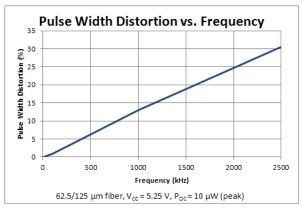
3. Use recommended test circuit below.

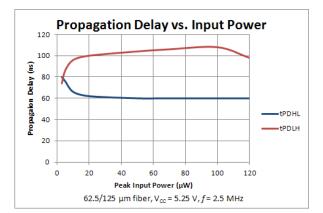

General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


OPF520 Series

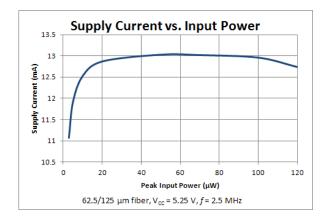


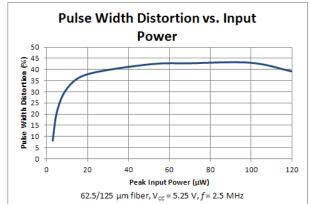

Performance


Switching Characteristics (See Recommended Test Circuit)



General Note


TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


OPF520 Series

Performance

Switching Characteristics (continued)

General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPF520 Series



Performance

Typical Waveforms for

Various Input Powers

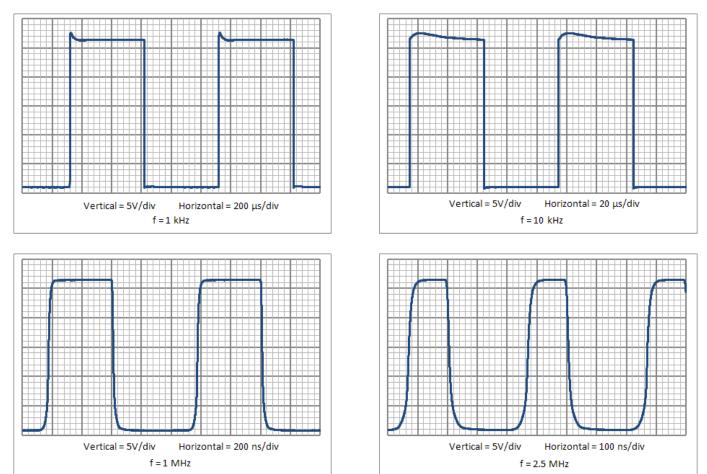
(62.5/125 μ m fiber, V_{cc} = 5.25 V, f = 2.5 MHz) (See Recommended Test Circuit)

Vertical = 5V/div Horizontal = 200 ns/div P_{oc} = 50 µW (peak)

Vertical = 5V/div Horizontal = 200 ns/div P_{oc} = 120 μW (peak)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


OPF520 Series

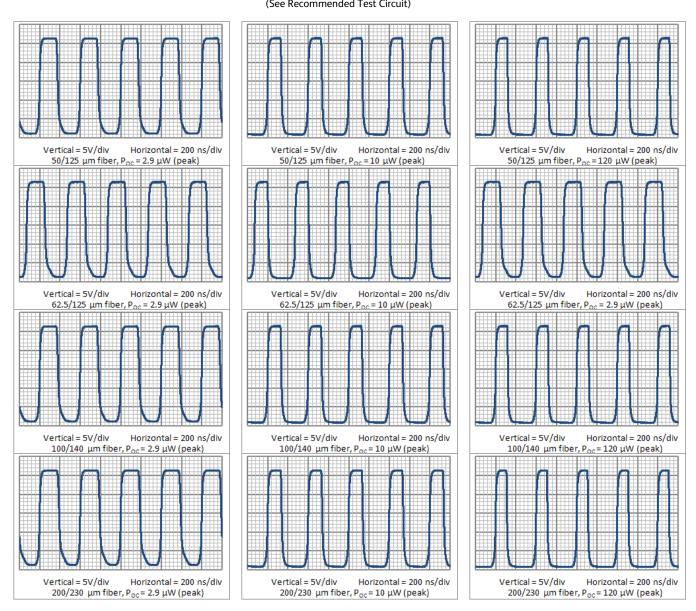
Performance

Typical Waveforms for Various Frequencies

(62.5/125 μm fiber, V_{cc} = 5.25 V, P_{oc} = 10μW (peak) (See Recommended Test Circuit)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


OPF520 Series

Performance

Typical Waveforms for Various Fiber Cables and Input Powers

 $(V_{cc} = 5.25 \text{ V}, f = 2.5 \text{ MHz})$ (See Recommended Test Circuit)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: OPF500 OPF520