TELEDYNE

A Unit of Teledyne Electronic Technologies

Part Number*	Relay Description
KA00HF	2 A, 250 Vrms, AC Solid-State Relay
KA58HF	2 A, 250 Vrms, AC Solid-State Relay with Thermal Protection and Thermal TRIP Status
LA00HL	7.5 A, 250 Vrms, AC Solid-State Relay
LA58HL	7.5 A, 250 Vrms, AC Solid-State Relay with Thermal Protection and Thermal TRIP Status

The Y suffix denotes parameters tested to MIL-PRF-28750 test methods. The W suffix denotes parameters tested to Teledyne specifications.

ELECTRICAL SPECIFICATIONS

(-55°C TO +110°C UNLESS OTHERWISE SPECIFIED)

INPUT (CONTROL) CHARACTERISTICS

INPUT (CONTROL) CHARACTERISTICS					
2 Terminal Configuration (See Fig. 1)	Min	Max	Units		
Input Voltage (See note 2)	3.8	32	Vdc		
Input Current (See Figure 1)					
V _{IN} = 5 Vdc		15	mA dc		
Turn-Off Voltage (Guaranteed Off)		1.5	Vdc		
Turn-On Voltage (Guaranteed On)	3.8		Vdc		
Reverse Voltage Protection		-32	Vdc		
INPUT (CONTROL) CHARACTERISTICS					
3 Terminal Configuration (See Fig. 1)	Min	Max	Units		
Bias Voltage (See note 2)	3.8	32	Vdc		
Bias Current (V _{IN} =32 Vdc)		16	mA		
Control Voltage Range	0	18	Vdc		
Control Current (at 5 Vdc)		250	μAdc		
Turn-On Control Voltage		0.3	Vdc		
Turn-Off Control Voltage	3.2		Vdc		
OUTPUT (LOAD) SPECIFICATIONS					
	Min	Мах	Units		
Load Voltage	20	250	Vrms		
Frequency Range	40	440	Hz		
Continuous Load Current (See Figure 3)					
KA and LA without Heat Sink		2.0	Arms		
LA with Heat Sink		7.5	Arms		
Output Voltatge Drop		1.2	Vrms		

2.0 to 7.5A, 250 Vrms Optically Isolated

Series KA/LA

AC Solid-State Relay

FEATURES/BENEFITS

SMART

- Available with thermal protection and thermal TRIP status: Provides self-protection from thermal runaway conditions and indicates protection state for system BIT.
- · Optical Isolation: Isolates control elements from load transients with reduced EMI.
- Fully Floating Output: Eliminates ground potential loops and allows the output to sink or source current.
- Buffered Control: Relay can be controlled directly from TTL or CMOS logic circuits.
- Integral Snubber Circuit: Enhances dV/dt capability while minimizing EMI.

DESCRIPTION

The Series KA/LA solid-state relays (SSRs) is designed for use in AC power switching applications where safety and reliability are primary concerns. These SSRs are rated for load voltages up to 250 Vrms from 40 to 440 Hz and are ideal for resistive and reactive loads with power factors as low as 0.2. Inverse parallel SCRs are configured for zero voltage turn on. Optical isolation to 1250 Vrms between the control (input) and load (output) allows the load to be safely controlled by logic circuitry. The KA/LA series is available with thermal protection and thermal TRIP status. In case of a thermal runaway condition, the SSR will shut down the output switch and latch off until the input is reset and the junction temperature returns to a safe level. When the output does latch off, the TRIP status line will yield a logic level output indicating the protection state of the SSR. This feature provides the user with failure mode indication while enhancing the system diagnostic capability. These SSRs are available to the Y screening level of MIL-PRF-28750 and are packaged in low-profile hermetically sealed cases.

© 2002 TELEDYNE RELAYS

A Unit of Teledyne Electronic Technologies

Series KA/LA

OUTPUT 12

11 OUTPUT

IDENTIFICATION MARKING (BOTTOM VIEW) CONTROL

CONTROL STATUS STATU

0.725 REF (18.415) DATA CODE

0.81 (20.57 MAX

ė

۲

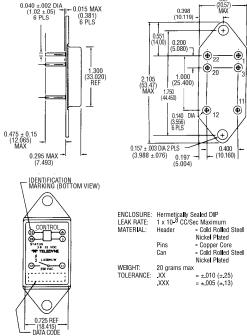
0.400

= ±.010 (±.25) = ±.005 (±.13)

۲

۲

DIA 12


OUTPUT (LOAD) SPECI	OUTPUT (LOAD) SPECIFICATIONS			BLOCK DIAGRAM		
	Min	Мах	Units	TRIP		
Off-State Leakage Current (250 Vac, 400 Hz)		10	mA	BIAS STATUS OR N/C	0	
Turn-On Time		1/2	Cycle		1	
Turn-Off Time		1	Cycle		 √	
Transient Voltage (5 sec, 25°C)		<u>+</u> 500	V pk		1	
Zero Voltage Turn-On Point		<u>+</u> 15	V pk			
dv/dt	100		V/µs		1	
Surge Current	MIL	-PRF-28	750	RETURN	0	
Load Power Factor	0.2			-		
Insulation Resistance @ 500 Vdc	10 ⁹		Ohm	MECHANICAL SPECIFICATI		
Input to Output Capacitance		15	pF	$\begin{array}{c} 0.186 \\ (4.724) \\ \hline 1,5080 \\ \hline 1 \\ \hline \end{array} \begin{array}{c} 0.200 \\ (20345) \\ MX \\ \hline \\ MX \\ \hline \\ \hline \end{array} \begin{array}{c} 0.040 \\ DA \\ \hline \\ 0.3811 \\ \hline \\ 0.151 \\ \hline 0.$	x [
Dielectric Withstanding Voltage (60Hz)	1250		Vrms	$\begin{array}{c} 1 \\ 1.000 \\ (25,400) \end{array} + \begin{array}{c} 22 \\ 0 \\ 20 \\ 0 \\ 1.30 \end{array} + \begin{array}{c} 1 \\ 0 \\ 20 \\ 0 \\ 1.30 \end{array}$	00	
Junction Temperature at Rated Current	(T _J Max)	125	°C	(25.400) 1.375 (34.925) MAX (3566) DIA HI HI HI HI HI HI HI HI HI HI	20) F	
Thermal Resistance Junction to Ambien	t (θ _{JA})	30	°C/W	$0.197 \rightarrow -0.400 - 0.295 \text{ MAX} \rightarrow -0.400 - 0.40$	(
Thermal Resistance Junction to Case (6),_)	5	°C/W	- (5.004) (10.160) (7.493) KA SERIES		

STATUS OUTPUT TRUTH TABLE

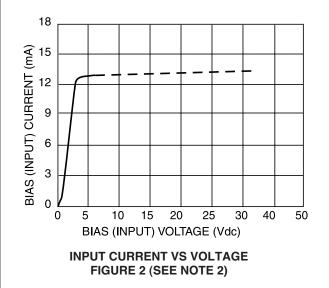
Status	Control	Output	
Output State	Input	(Load) State	
Off (High)	Low	On	
On (Low)	Low	Tripped (Off)	
Off (High)	High	Off	
On (Low)	High	Non-applicable condition	

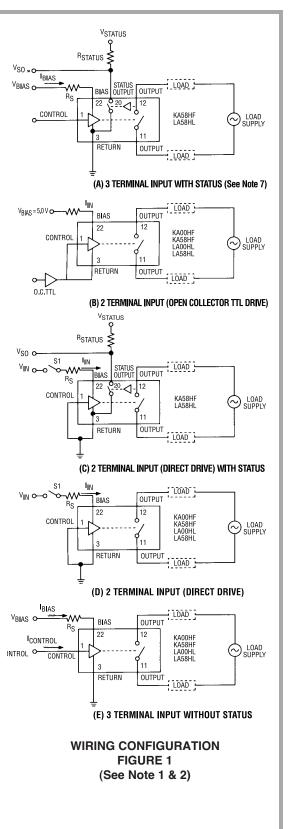
STATUS OUTPUT SPECIFICATIONS

	Min	Max	Units
Status Supply Voltage		32	Vdc
Status "OFF" Leakage Current @ 32 Vdc		10	μAdc
Status Sink Current (V _{so} ≤ 0.4 Vdc)		10	mAdc
Status "ON" State Voltage @10mAdc		0.4	Vdc

LA SERIES DIMENSIONS ARE SHOWN IN INCHES (MILLIMETERS)

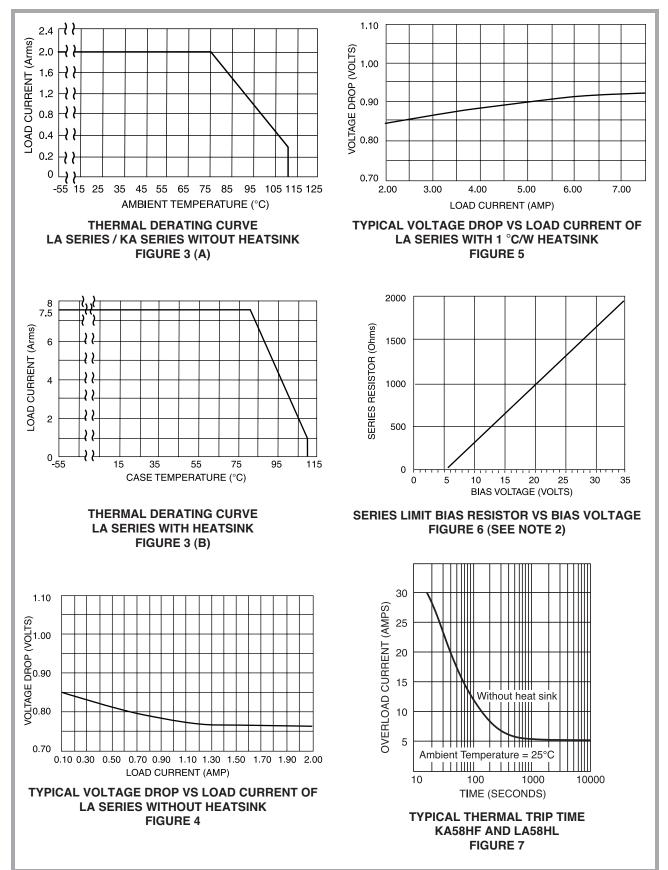
TELEDYNE


RELAYS


A Unit of Teledyne Electronic Technologies

Series KA/LA

	Min	Max	Units
Ambient Temperature			
Operating	-55	+110	°C
Storage	-55	+125	°C
Shock (0.5 ms Pulse)		1500	g
Vibration (100 g)	10	3000	Hz
Acceleration		5000	g


NOTES:

- 1. Control input is compatible with CMOS or open collector TTL (with pull up resistor).
- 2. For bias voltages above 6 Vdc, a series resistor is recommended. Use a standard resistor value equal to or less than the value found from Figure 6.
- 3. Unless otherwise noted, the input voltage for functional tests shall be 5 Vdc.
- 4. Output may temporarily lose blocking capability during and after a surge, until ${\rm T_{J}}$ falls below maximum.
- Transient suppression must be used to limit the voltage to < 500 Vpeak when switching inductive loads.

A Unit of Teledyne Electronic Technologies

Series KA/LA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Teledyne Relays:

LA00HLY LA58HLY LA00HLW LA58HLW KA58HFY KA58HFW