MOSFET – Single, N-Channel, Small Signal, SC-70

30 V, 270 mA

Features

- Low Gate Charge for Fast Switching
- Small Footprint 30% Smaller than TSOP–6
- ESD Protected Gate
- AEC-Q101 Qualified and PPAP Capable NVS4001N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Li-Ion Battery Supplied Devices Cell Phones, PDAs, DSC
- Buck Converters
- Level Shifts

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady State	T _A = 25 °C	I _D	270	mA
		T _A = 85 °C		200	
Power Dissipation (Note 1)	Steady State	T _A = 25 °C	PD	330	mW
Pulsed Drain Current t =10 μs			I _{DM}	800	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			IS	270	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max
30 V	1.0 Ω @ 4.0 V	270 mA
	1.5 Ω @ 2.5 V	270 MA

SC-70/SOT-323 (3 LEADS)

(Top View)

(Note: Microdot may be in either location) *Date Code orientation may vary depending

upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS4001NT1G	SC-70 (Pb-Free)	3000 / Tape & Reel
NVS4001NT1G	SC-70 (Pb-Free)	3000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 100 μ A		30			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				60		mV/ °C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V	_{DS} = 30 V			1.0	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±10 V				±1.0	μΑ	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$) = 100 μA	0.8	1.2	1.5	V	
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-3.4		mV/ °C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.0 V, I	_D = 10 mA		1.0	1.5	Ω	
		V _{GS} = 2.5 V, I	_D = 10 mA		1.5	2.0		
Forward Transconductance	9 FS	V _{DS} = 3.0 V, I	_D = 10 mA		80		mS	
CHARGES AND CAPACITANCES					·			
Input Capacitance	C _{ISS}				20	33	pF	
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = V _{DS} = 5	1.0 MHz, .0 V		19	32		
Reverse Transfer Capacitance	C _{RSS}				7.25	12		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$ $I_D = 0.1 \text{ A}$			0.9	1.3	nC	
Threshold Gate Charge	Q _{G(TH)}				0.2			
Gate-to-Source Charge	Q _{GS}				0.3			
Gate-to-Drain Charge	Q _{GD}		Ī		0.2			
SWITCHING CHARACTERISTICS (Not	e 3)							
Turn-On Delay Time	td _(ON)				17		ns	
Rise Time	tr	Vcs = 4.5 V. Vpp = 5.0 V.			23			
Turn-Off Delay Time	td _(OFF)	$I_{\rm D} = 10 {\rm mA}, {\rm F}$	R _G = 50 Ω		94			
Fall Time	tf		Ī		82			
DRAIN-SOURCE DIODE CHARACTERISTICS								
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, \\ I_{S} = 10 \text{ mA} \qquad T_{J} = 25^{\circ}C \\ T_{J} = 125^{\circ}C$			0.65	0.7	V	
					0.43			
Reverse Recovery Time	t _{RR}	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ dI_S/dt = 8.0 \ A/\mu s, \\ I_S = 10 \ mA \end{array}$			5.0		ns	

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

Figure 7. Capacitance Variation

Gate Charge

Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE N

EN

NOTES: 1 DIM

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF			0.028 REF		
q	0.30	0.35	0.40	0.012	0.014	0.016	
c	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.10	2.20	0.071	0.083	0.087	
Е	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC			0.026 BSC			
L	0.20	0.38	0.56	0.008	0.015	0.022	
Ηc	2.00	2 10	2 40	0.079	0.083	0.095	

STYLE 8: PIN 1. GATE 2. SOURCE 3. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asosciated with such unintended or unauthorized use to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>NTS4001NT1G</u>