
SLLS003E - OCTOBER 1985 - REVISED JUNE 1998

- Meets or Exceeds the Requirements of TIA/EIA-422-B, TIA/EIA-485-A, and ITU Recommendation V.11
- Bus Voltage Range . . . -7 V to 12 V
- Positive- and Negative-Current Limiting
- Driver Output Capability . . . 60 mA Max
- Driver Thermal-Shutdown Protection
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates From Single 5-V Supply
- Low Power Requirements

D OR P PACKAGE (TOP VIEW)

description

The SN75179B is a differential driver and receiver pair designed for balanced transmission-line applications and meets TIA/EIA-422-B, TIA/EIA-485-A, and ITU Recommendation V.11. It is designed to improve the performance of full-duplex data communications over long bus lines.

The SN75179B driver output provides limiting for both positive and negative currents. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -7 V to 12 V. The driver provides thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The SN75179B is designed to drive current loads of up to 60 mA maximum.

The SN75179B is characterized for operation from 0°C to 70°C.

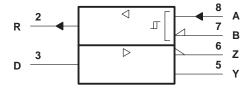
Function Tables

DRIVER

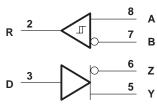
INPUT	OUT	PUTS
D	Υ	Z
Н	Н	L
L	L	Н

RECEIVER

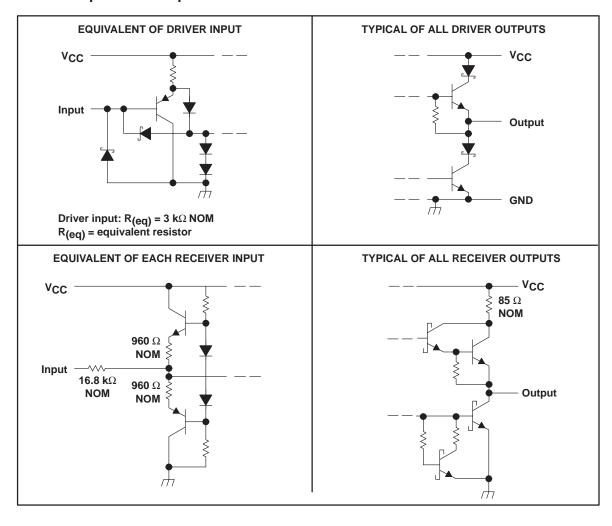
DIFFERENTIAL INPUTS A – B	OUTPUT R
V _{ID} ≥ 0.2 V	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$?
$V_{ID} \le -0.2 V$	L
Open	?


H = high level, L = low level, ? = indeterminate

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

SN75179B DIFFERENTIAL DRIVER AND RECEIVER PAIR

SLLS003E - OCTOBER 1985 - REVISED JUNE 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Voltage range at any bus terminal	
Differential input voltage, V _{ID} (see Note 2)	±25\
Package thermal impedance, θ_{JA} (see Note 3): D package	197°C/V
P package	104°C/V
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

- NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.
 - 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
 - 3. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	Driver	2			V
Low-level input voltage, V _{IL}	Driver			0.8	V
Common-mode input voltage, V _{IC}		- 7‡		12	V
Differential input voltage, V _{ID}				±12	V
ligh-level input voltage, V _{IH} .ow-level input voltage, V _{IL} Common-mode input voltage, V _{IC}	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μА
Love lovel output output lov	Driver			60	A
Low-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA		0		70	°C

[‡] The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP†	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V
VO	Output voltage	IO = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5		6	V
VOD2 Differential output voltage		$R_L = 100 \Omega$	See Figure 1	1/2V _{OD1} or 2‡			٧
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	See Note 4		1.5		5	V
△ V _{OD} I	Change in magnitude of common-mode output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			3 –1	V
∆l V _{OC} l	Change in magnitude of common-mode output voltage§					±0.2	V
IO	Output current	$V_{CC} = 0$,	$V_0 = -7 \text{ V to } 12 \text{ V}$			±100	μΑ
lН	High-level input current	V _I = 2.4 V				20	μΑ
I _I L	Low-level input current	V _I = 0.4 V				-200	μΑ
laa	Chart aircuit autaut aurrent	$V_O = -7 V$				-250	mA
los	Short-circuit output current	$V_O = V_{CC}$ or 12 V			250		
ICC	Supply current (total package)	No load			57	70	mA

NOTE 4: See TIA/EIA-485-A, Figure 3.5, Test Termination Measurement 2.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
t _d (OD)	Differential output delay time	D: -54 O	See Figure 3		15	22	ns
t _t (OD)	Differential output transition time	$R_L = 54 \Omega$,	See Figure 3		20	30	ns

Symbol Equivalents

DATA-SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
VOD1	Vo	Vo
V _{OD2}	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
V _{OD3}		V _t (Test Termination Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
Δ VOC	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
los	$ I_{sa} , I_{sb} $	
IO	_{xa} , _{xb}	l _{ia} , l _{ib}

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ The minimum V_{OD2} with 100- Ω load is either 1/2 V_{OD2} or 2 V, whichever is greater.

[§] Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input changes from a high level to a low

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TE	TEST CONDITIONS					UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 V$,	$I_0 = -0.4 \text{ mA}$				0.2	V
VIT-	Negative-going input threshold voltage	$V_0 = 0.5 V$,	I _O = 8 mA		-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})					50		mV
Vон	High-level output voltage	$V_{ID} = 200 \text{ mV},$	$I_{OH} = -400 \mu A$,	See Figure 2	2.7			V
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	$I_{OL} = 8 \text{ mA},$	See Figure 2			0.45	V
1.	Line input current	Other input at 0 V,	See Note 5	V _I = 12 V			1	mA
<u> </u>	Line input current	Other input at 0 v,	See Note 5	$V_I = -7 V$			-0.8	IIIA
rį	Input resistance				12			kΩ
los	Short-circuit output current				-15		-85	mA
ICC	Supply current (total package)	No load				57	70	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 5: Refer to TIA/EIA-422-B for exact conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		19	35	ns
^t PHL	Propagation delay time, high- to low-level output	C _L = 15 pF, See Figure 4		30	40	ns

PARAMETER MEASUREMENT INFORMATION

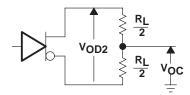


Figure 1. Driver V_{DD} and V_{OC}

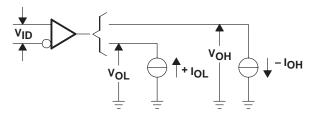
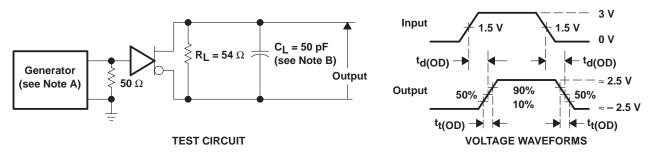
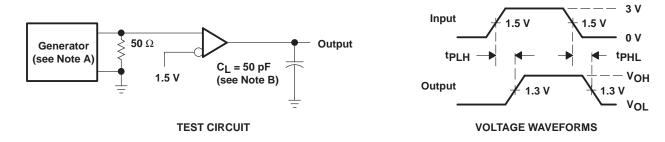



Figure 2. Receiver VOH and VOL

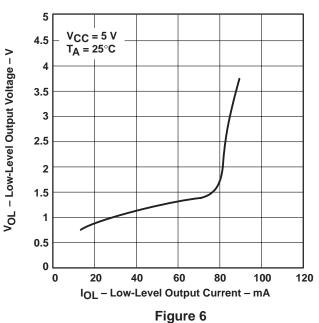

[‡] The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

PARAMETER MEASUREMENT INFORMATION (CONTINUED)

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \le 6 \text{ ns}, Z_O = 50 \Omega.$
 - B. C_L includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Voltage Waveforms

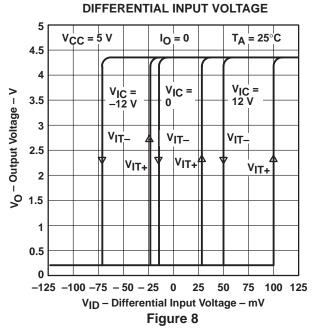
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \le 6 \text{ ns}, Z_O = 50 \Omega.$
 - B. C₁ includes probe and jig capacitance.


Figure 4. Receiver Test Circuit and Voltage Waveforms

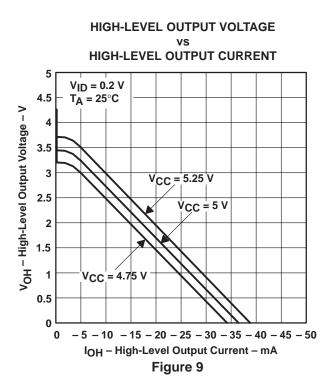
TYPICAL CHARACTERISTICS

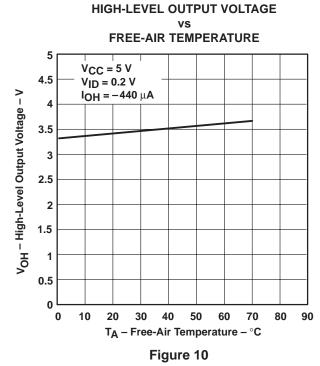
DRIVER **HIGH-LEVEL OUTPUT VOLTAGE** vs **HIGH-LEVEL OUTPUT CURRENT** 5 V_{CC} = 5 V 4.5 T_A = 25°C VOH - High-Level Output Voltage - V 4 3.5 3 2.5 2 1.5 1 0.5 0 0 - 20 -40-60- 80 -100-120IOH - High-Level Output Current - mA

DRIVER
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT


DRIVER

DIFFERENTIAL OUTPUT VOLTAGE
vs
OUTPUT CURRENT


Figure 5



RECEIVER
OUTPUT VOLTAGE
VS

TYPICAL CHARACTERISTICS

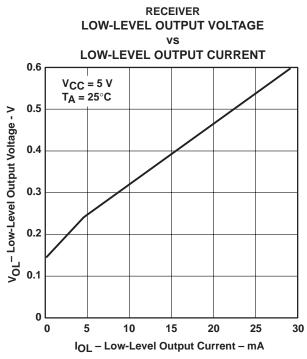
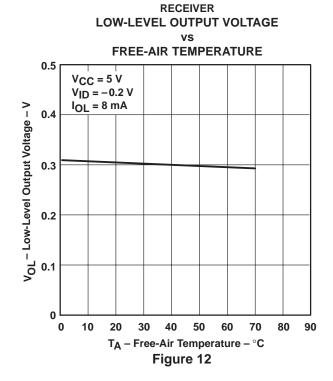



Figure 11

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN75179BD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75179B	Samples
SN75179BDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75179B	Samples
SN75179BDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75179B	Samples
SN75179BDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75179B	Samples
SN75179BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75179BP	Samples
SN75179BPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75179BP	Samples
SN75179BPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	A179B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

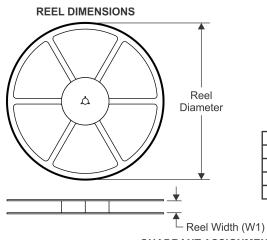
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

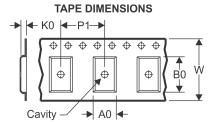
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

24-Aug-2018

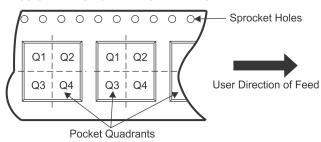
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

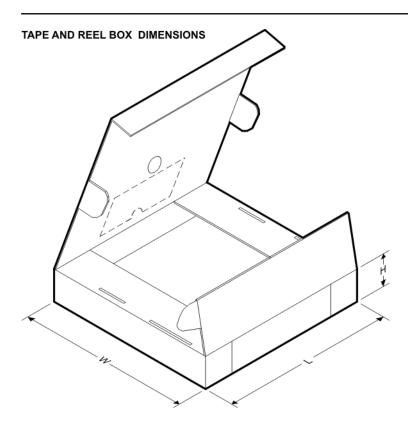

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Dec-2018


TAPE AND REEL INFORMATION

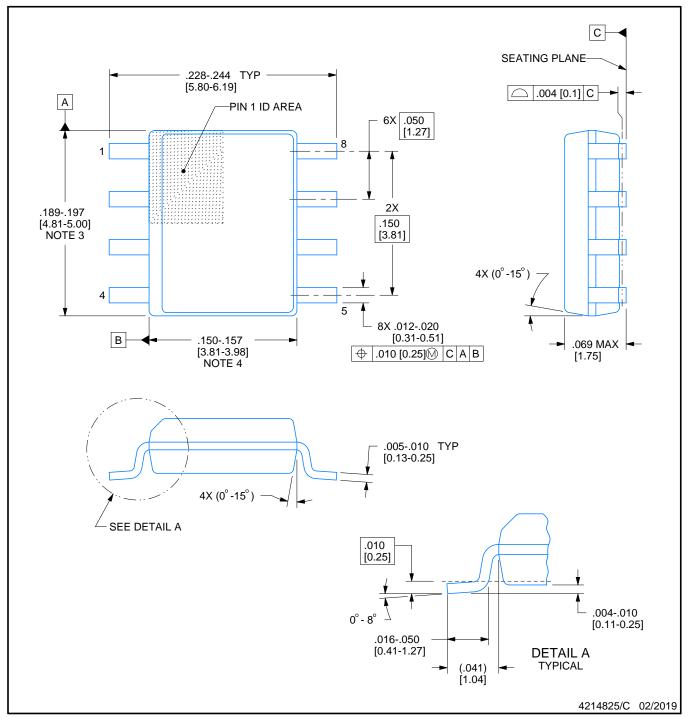
Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75179BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

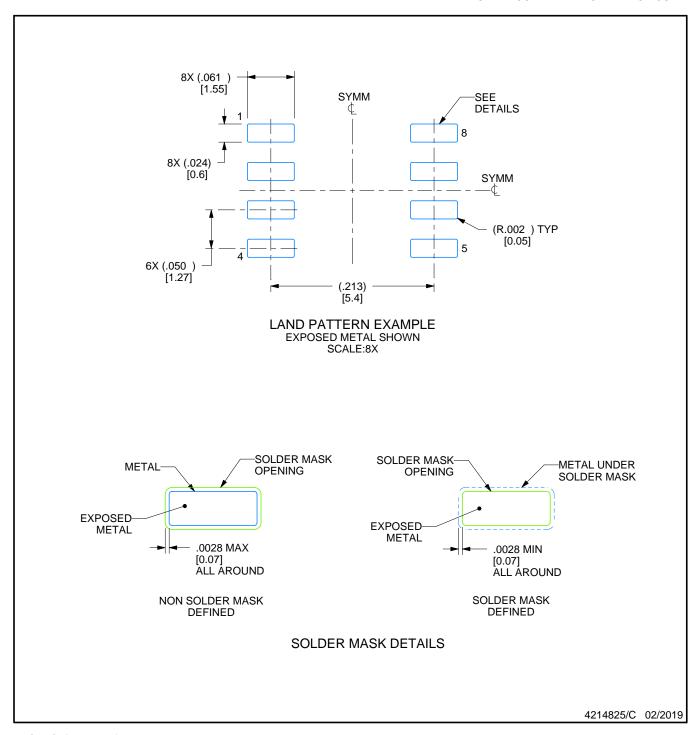
www.ti.com 20-Dec-2018



*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	SN75179BDR	SOIC	D	8	2500	340.5	338.1	20.6

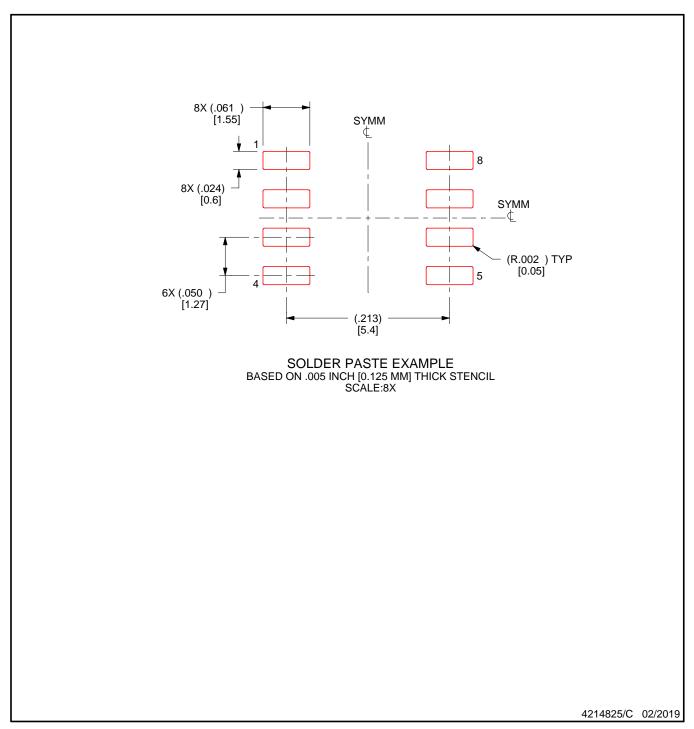
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

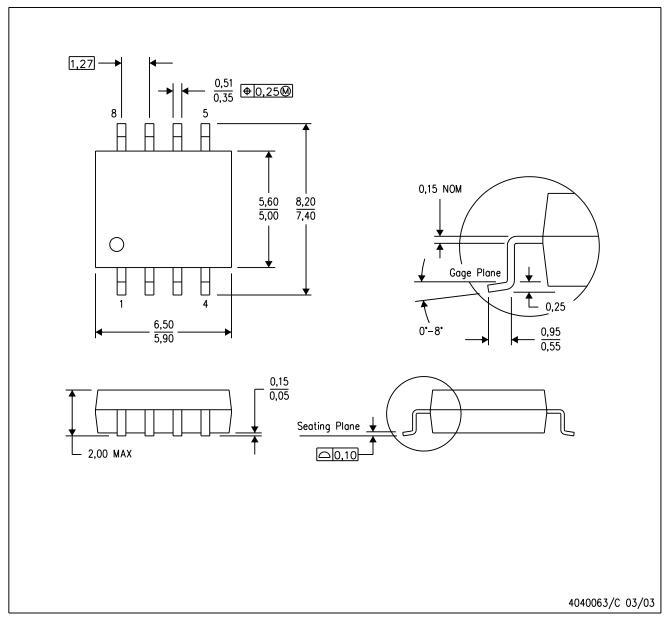
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

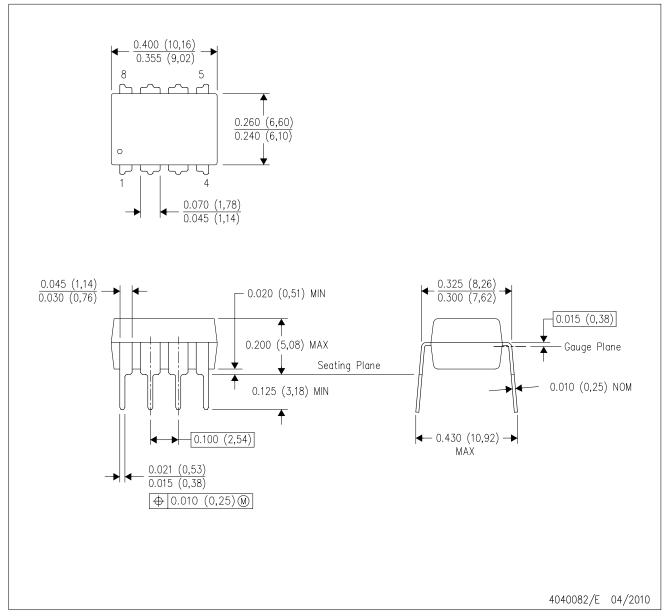
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated