

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

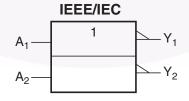
June 2008

NC7WZU04 TinyLogic[®] UHS Dual Unbuffered Inverter

Features

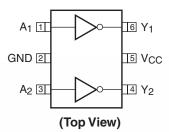
- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Unbuffered for crystal oscillator and analog applications
- Balanced output drive: ±8mA at 4.5V V_{CC}
- Broad V_{CC} operating range: 1.65V to 5.5V
- Low quiescent power: I_{CC} < 1µA at 5V V_{CC}, T_A = 25°C

General Description

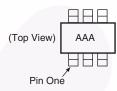

The NC7WZU04 is a dual unbuffered inverter from Fairchild's Ultra High Speed Series of TinyLogic[®] in the space saving SC70 6-lead package. The special purpose unbuffered circuit design is intended for crystal oscillator or analog applications. The internal circuit consists of only one-stage, the output, to allow for this part to be used in these oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs are high impedance when V_{CC} operating voltages.

Ordering Information

Order Number	Package Number	Package Code Top Mark	Package Description	Supplied As
NC7WZU04P6X	MAA06A	ZU4	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7WZU04L6X	MAC06A	B5	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

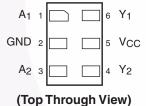

All packages are lead free per JEDEC: J-STD-020B standard.

Logic Symbol



Connection Diagrams

Pin Assignment for SC70


Pin One Orientation Diagram

AAA represents Product Code Top Mark – see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pin Descriptions

Pin Name	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Outputs

Function Table

$Y = \overline{A}$					
Input	Output				
Α	Y				
L	Н				
Н	L				

H = HIGH Logic Level L = LOW Logic Level

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7V
V _{IN}	DC Input Voltage	-0.5V to +7V
V _{OUT}	DC Output Voltage	-0.5V to +7V
I _{IK}	DC Input Diode Current @ $V_{IN} \le -0.5V$	–50mA
I _{ОК}	DC Output Diode Current @ $V_{OUT} < -0.5V$ $V_{OUT} > 0.5V$, $V_{CC} = GND$	–50mA +50mA
I _{OUT}	DC Output Current	±50mA
I _{CC} /I _{GND}	DC V _{CC} /GND Current	±100mA
T _{STG}	Storage Temperature	–65°C to +150°C
TJ	Junction Temperature under Bias	150°C
TL	Junction Lead Temperature (Soldering, 10 seconds)	260°C
P _D	Power Dissipation @ +85°C SC70-6 Micropak-6	215mW 215mW

Recommended Operating Conditions⁽¹⁾

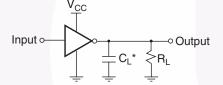
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage Operating	1.8V to 5.5V
V _{CC}	Supply Voltage Data Retention	1.5V to 5.5V
V _{IN}	Input Voltage	0V to 5.5V
V _{OUT}	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
θ _{JA}	Thermal Resistance SC70-6 Micropak-6	350°C/W 350°C/W

Note:

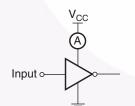
1. Unused inputs must be held HIGH or LOW. They may not float.

							T _A =				
						+25°C	;	-40°C t	o +85°C	1	
Symbol	Parameter	V _{CC} (V)	Conditions		Min .	Тур.	Max.	Min.	Max.	Units	
V _{IH}	HIGH Level	1.8 to 2.7			0.85 V _{CC}			0.85 V _{CC}		V	
	Input Voltage	3.0 to 5.5	-		0.8 V _{CC}			0.8 V _{CC}			
V _{IL}	LOW Level	1.8 to 2.7					0.15 V _{CC}		0.15 V _{CC}	V	
	Input Voltage	3.0 to 5.5					0.2 V _{CC}		0.2 V _{CC}		
V _{OH}	HIGH Level	1.65	$V_{IN} = V_{IL}$	I _{OH} = -100μA	1.55	1.65		1.55		V	
	Output Voltage	1.8			1.6	1.79		1.6			
		2.3			2.1	2.29		2.1			
		3.0			2.7	2.99		2.7			
		4.5			4.0	4.48		4.0			
		1.65	V _{IN} = GND	I _{OH} = -2mA	1.29	1.52	<u> </u>	1.29		V	
		2.3		I _{OH} = -2mA	1.9	2.19		1.9			
		3.0		I _{OH} = -4mA	2.4	2.82		2.4			
		3.0		I _{OH} = -6mA	2.3	2.73		2.3			
		4.5		I _{OH} = -8mA	3.8	4.24		3.8			
VOL	LOW Level Output Voltage	1.65	$V_{IN} = V_{IH}$	Ι _{ΟL} = 100μΑ		0.01	0.2		0.2	V	
		1.8				0.01	0.2		0.2		
		2.3				0.01	0.2		0.2		
		3.0				0.01	0.3		0.3		
		4.5				0.01	0.5		0.5	Ī	
		1.65	$V_{IN} = V_{CC}$	I _{OL} = 2mA		0.10	0.24		0.24	V	
		2.3		I _{OL} = 2mA		0.12	0.3		0.3		
		3.0		I _{OL} = 4mA		0.19	0.4		0.4		
		3.0		I _{OL} = 6mA		0.29	0.55		0.55		
		4.5		I _{OL} = 8mA		0.29	0.55		0.55		
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} = 5.5V,	GND			±0.1		±1.0	μA	
I _{CC}	Quiescent Supply Current	1.65 to 5.5	V _{IN} = 5.5V,	GND			1.0		10	μA	
ICCPEAK	Peak Supply	1.8	V _{OUT} = Ope	en		0.2				mA	
	Current in Analog	2.5	V _{IN} = Adjus I _{CC} Current	t for Peak		2					
	Operation	3.3	CC Current			5					
		5.0	1			15					


						T _A =				
					+25°C		–40°C t	o +85°C		Figure
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Number
t _{PLH} , t _{PHL}	Propagation Delay	1.65	C _L = 15pF,	1.5	5.5	9.8	1.5	11.0	ns	Figure 1
		1.8	R _L = 1MΩ	1.5	4.6	8.1	1.5	8.9		Figure 3
		2.5 ± 0.2		1.2	3.3	5.7	1.2	6.3		
		3.3 ± 0.3		0.8	2.7	4.1	0.8	4.5		
		5.0 ± 0.5		0.5	2.2	3.3	0.5	3.6		
		3.3 ± 0.3	C _L = 50pF,	1.2	4.0	6.4	1.2	7.0	ns	Figure 1
		5.0 ± 0.5	$R_L = 500\Omega$,	0.8	3.4	5.6	0.8	6.2		Figure 3
C _{IN}	Input Capacitance	0			3				pF	
C _{PD}	Power Dissipation	3.3	Note 2		3.5				pF	Figure 2
	Capacitance	5.0			5.5		E.			

Note:

 C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:


 $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).$

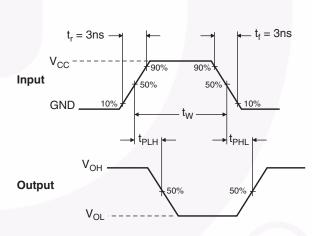
AC Loading and Waveforms

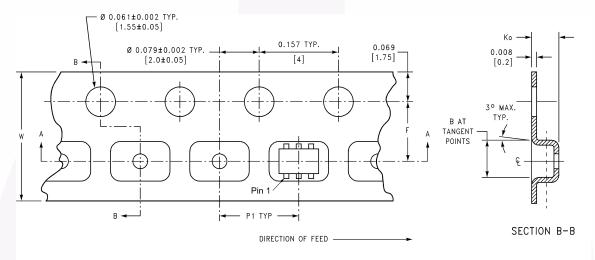
 C_{L} includes load and stray capacitance. Input PRR = 1.0MHz; t_{W} = 500ns

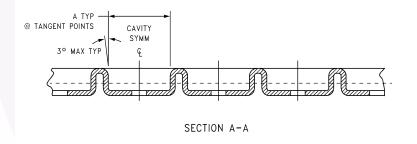
Figure 1. AC Test Circuit

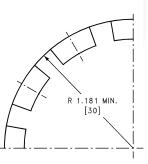
Application Note: When operating the NC7WZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the I_{CCPEAK} specification on page 2.

Input = AC Waveform; t_r , t_f = 1.8ns; PRR = 10MHz; Duty Cycle = 50%




Figure 3. AC Waveforms

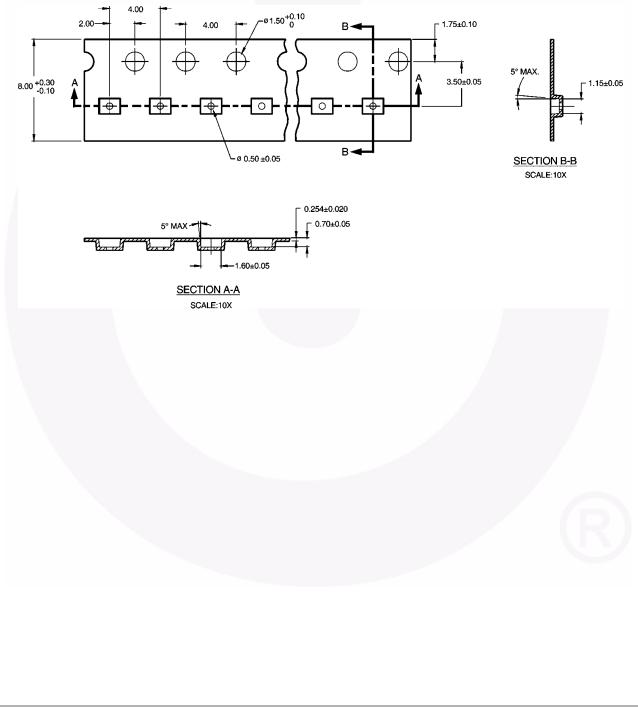

Tape and Reel Specification

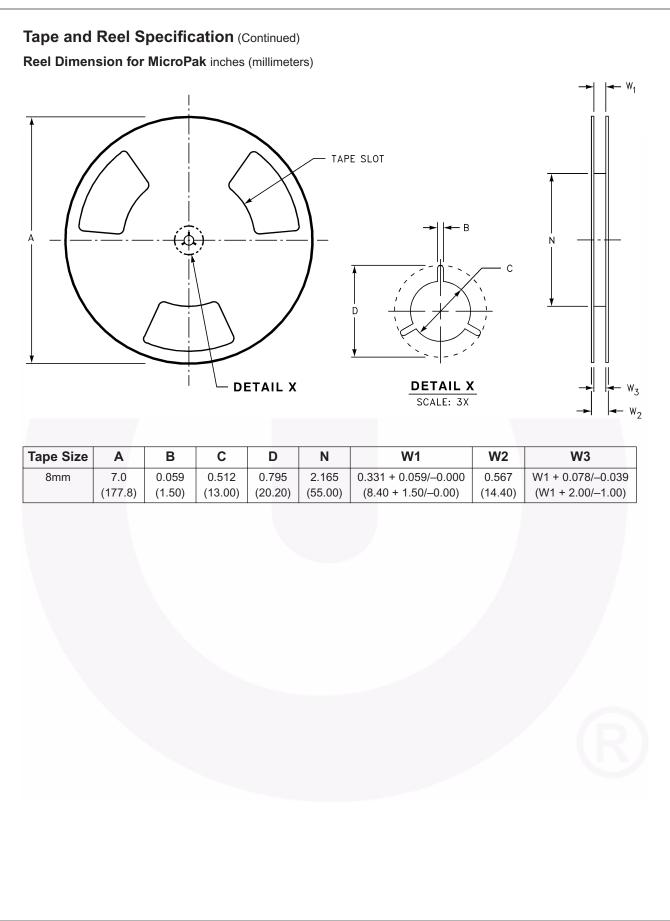

Tape Format for SC70

Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
P6X	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

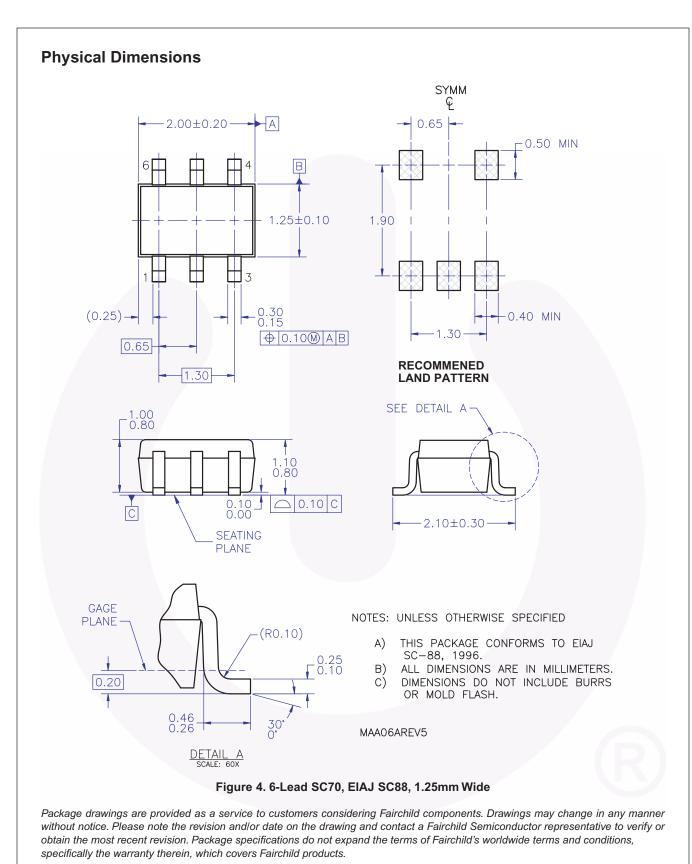
Tape Dimension inches (millimeters)

BEND RADIUS NOT TO SCALE

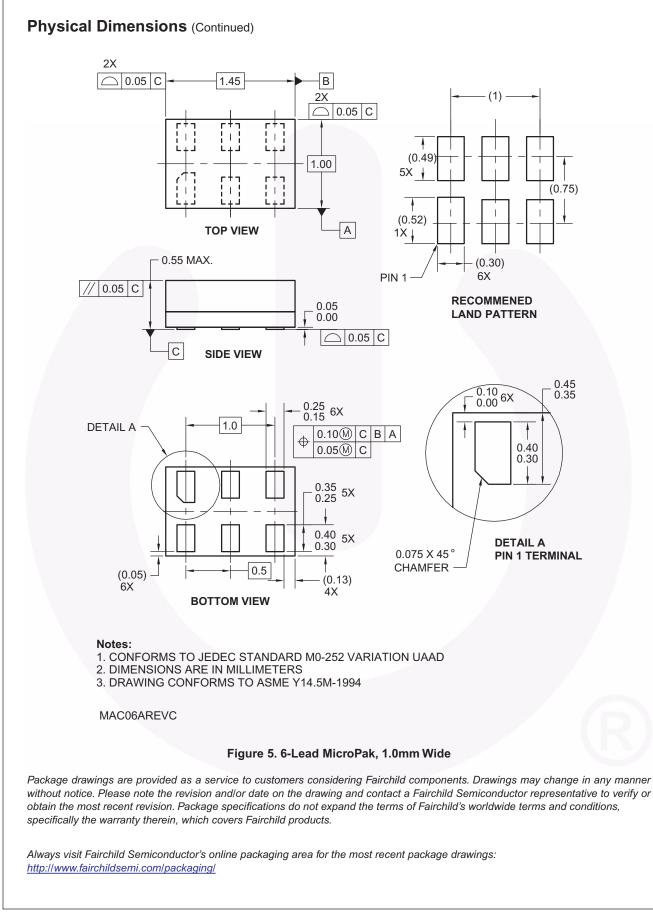

Package	Tape Size	Dim A	Dim B	Dim F	Dim K _O	Dim P1	Dim W
SC70-6	8mm	0.093	0.096	0.138 ± 0.004		0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)


Tape and Reel Specification (Continued)

Tape Format for MicroPak


Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
L6X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimension inches (millimeters)



NC7WZU04 — TinyLogic[®] UHS Dual Unbuffered Inverter

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACFx® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] EfficentMax™ EZSWITCH™ *

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastvCore™ FlashWriter®

F-PFS™ FRFET® Global Power Resource[™] Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX[™] ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ **OPTOLOGIC® OPTOPLANAR[®]**

FPS™

PDP SPM™ Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET**[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ®

The Power Franchise[®] the franchise p TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ U UHC Ultra FRFET™ UniFET™ VCX™

VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition	of	Terms	

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	1	Rev. 134

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NC7WZU04P6 NC7WZU04P6X NC7WZU04L6X