VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X663

Date:

K-no.: 24513 6 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

11.08.2014

Customer: Standard type Customers Part no.:

Page 1 of 2

Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- · Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- · Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	6	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625*I_P/I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	V _{Ref} ± 0.0053	V
V_{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ±0.005	V
K_N	Turns ratio	13 : 2000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±20			
X	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
ϵ_{L}	Linearity			0.1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±5.3	mV
$\Delta V_o / V_{Ref} / \Delta T$	Temperature drift of V_{out} @ $I_P=0$, $V_{Ref}=2.5V$, $T_A=-40$	085°C	6	30	ppm/°C
t_r	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC 200			kHz

General data

		min.	typ.	max.	Unit
T _A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature	-40		+85	°C
m	Mass		12		g
V_{C}	Supply voltage	4.75	5	5.25	V
lc.	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 - 6 to Pin 7 – 10) Reinforced insulation, Insulation material group 1, Pollution degree 2

S _{clear}	Clearance (compor	nent without solder pad)	7.4		mm
Screep	Creepage (compon	ent without solder pad)	8.0		mm
V_{sys}	System voltage	overvoltage category 3	RMS	300	V
V_{work}	Working voltage	(tabel 7 acc. to EN61800-5-1)			
		overvoltage category 2	RMS	650	V
U_{PD}	Rated discharge v	oltage	peak value	1320	V

Note: "According UL 508: Max. potential difference = 600 V_{AC}

Date	Name	Issue	Amendment						
11.08.14	KRe.	83	Marking char	arking changed from 4646X663-83 → 4646-X663-83. Electrical data: Vout changed. Accuracy-Dynamic:					
			Vout changed	out changed. CN-14-076					
Hrsg.: KB	-E		arb: DJ		KB-PM: Sn.			freig.: HS released	

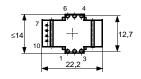
SPECIFICATION

Item no.: T60404-N4646-X663

K-no.: 24513

6 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 11.08.2014

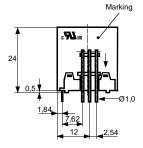

Customer: Standard type

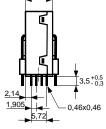
Customers Part no.:

Page 2 of 2

Mechanical outline (mm):

General tolerances DIN ISO 2768-c

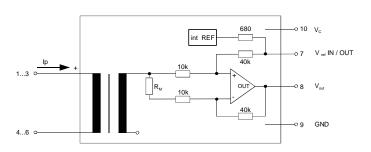



Tolerances grid distance ±0,2 mm

Connections: 1...6: Ø 1 mm 7..10: 0,46*0,46 mm

Marking:

UL-sign 4646-X663-83 F DC



DC = Date Code F = Factory

Schematic diagram

Possibilities of wiring

 $(@ T_A = 85^{\circ}C)$

primary windings N _P	primary RMS	/ current maximal Î _{P,max} [A]	output voltage RMS V _{out} (I _P) [V]	turns ratio	primary resistance R _P [mΩ]	wiring
1	6	±20	2.5±0.625	1:2000	0.33	> ³ · ¹ · ³
2	3	±10	2.5±0.625	2:2000	1.5	3 1
3	2	±6.7	2.5±0.625	3:2000	3	3 1

Temperature of the primary conductor should not exceed 110°C. Additional information is obtainable on request.

This specification is no declaration of warranty acc. BGB §443

Hrsg.: KB-E	Bearb: DJ	KB-PM: Sn.		freig.: HS
editor	designer	check		released

Additional Information

Item No.: T60404-N4646-X663

K-No.: 24513 6 A Current Sensor for 5V- Supply Voltage

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Date: 11.08.2014

Customers Part No.: Page 1 of 2

Electrical Data

Customer:

<u> </u>					
	<mark>n</mark>	nin.	typ.	max.	Unit
V _{Ctot}	Maximum supply voltage (without function)			7	V
Ic	Supply Current with primary current	15mA	$+I_p*K_N+V_o$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
R_P	Resistance / primary winding @ T _A =25°C		1		$m\Omega$
R _S	Secondary coil resistance @ T _A =85°C			67	Ω
$R_{i,Ref}$	Internal resistance of Reference input		670		Ω
R_{i} ,(V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of V _{out} 1				$k\Omega$
CL	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti} / \Delta T$	Temperature drift of X @ T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		5	15	mV
V_{0t}	Longtermdrift of V ₀		3		mV
V _{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		3		mV
V_{0H}	Hysteresis of V_{out} @ I_P =0 (after an overload of 10 x I_{PN})			7.5	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)			55	mV
V _{oss}	Offsetripple (with 100 kHz- filter firdt order)		9	15	mV
Voss	Offsetripple (with 20 kHz- filter first order)		2.5	4	mV
C_k	Maximum possible coupling capacity (primary – seco	ndary)	5	10	pF
	Mechanical stress according to M3209/3			30g	
	Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours				

Inspection (Measurement after temperature balance of the samples at room temperature), SC = significant characteristic

V _{out} (SC)	(V) M3011/6	6: Output voltage vs. external reference (I _P =6A, 40-80Hz)	625±0.7%	mV
V_{out} - V_{Ref} (I_P =	0) (V) M3226:	Offset voltage	± 5.3	mV
V_d	(V) M3014:	Test voltage, rms, 1 s	1.5	kV
		pin 1 – 6 vs. pin 7 – 10		
Ve	(AQL 1/S4)	Partial discharge voltage acc.M3024 (RMS)	1400	V
		with Vyor (RMS)	1750	V

Type Testing (Pin 1 - 6 to Pin 7 - 10)

Designed according standard EN 50178 with insulation material group 1

-	· · · · · · · · · · · · · · · · · · ·			
V_W	HV transient test according to M3064 (1,2 μs / 50 μs	-wave form)	8	kV
V_d	Testing voltage,to M3014	(5 s)	3	kV
Ve	Partial discharge voltage acc.M3024 (RMS)		1400	V
	with V _{vor} (RMS)		1750	V

Applicable documents

Current direction: A positive output current appears at point V_{out}, by primary current in direction of the arrow. Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Further standards UL 508; file E317483, category NMTR2 / NMTR8

Datum	Name	Index	Ämendment						
11.08.14	KRe	83	Electrical data	lectrical data: Vctot changed. Inspection M3011/6 defined as SC-measure. Vout changed. CN-14-076					
21.12.12	Le	83	Applicable do	pplicable documents added. CN-572					
Hrsg.: KB	-E	Bea desi	arb: DJ		KB-PM: Sn.			freig.: HS released	

Additional Information

Item No.: T60404-N4646-X663

K-No.: 24513

6 A Current Sensor for 5V- Supply Voltage

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Date: 11.08.2014

Customer:

Customers Part No.:

Page 2 of 2

Explanation of several of the terms used in the tablets (in alphabetical order)

 t_r : Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9$ \cdot I_{PN} between a rectangular current and the output voltage V_{OUt} (I_p)

 $\Delta t \; (I_{Pmax})$: Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of dip/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2} * V_e / 1,5$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1,875 * U_{PD} / \sqrt{2}$

V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of V_{ref} = 2,5V.

 $V_o = V_{out}(0) - 2,5V$

V_{0H}: Zero variation of V₀ after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625V} - 1 \right| \%$$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$X_{\text{ges}} = 100 \cdot \left| \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad X_{\text{ges}} = 100 \cdot \left| \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - V_{\text{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$$

 $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{\rm I_P}{\rm I_{\rm PN}} - \frac{\rm V_{\it out}(\it I_{\it P})}{\rm V_{\it out}(\it I_{\it PN})} - \frac{\rm V_{\it out}(\it O)}{\rm V_{\it out}(\it I_{\it PN})} \right| \%$

This "Additional information" is no declaration of warranty according BGB §443.

Hrsg.: KB-E Bearb: DJ KB-PM: Sn. freig.: HS released

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vacuumschmelze: T60404-N4646-X663