

SBL1630PT - SBL1660PT

16A SCHOTTKY BARRIER RECTIFIER

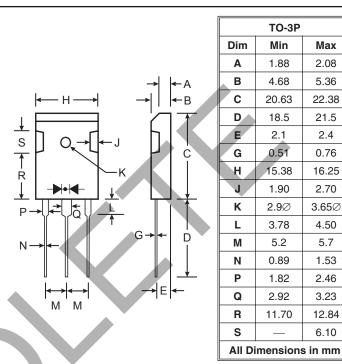
Features

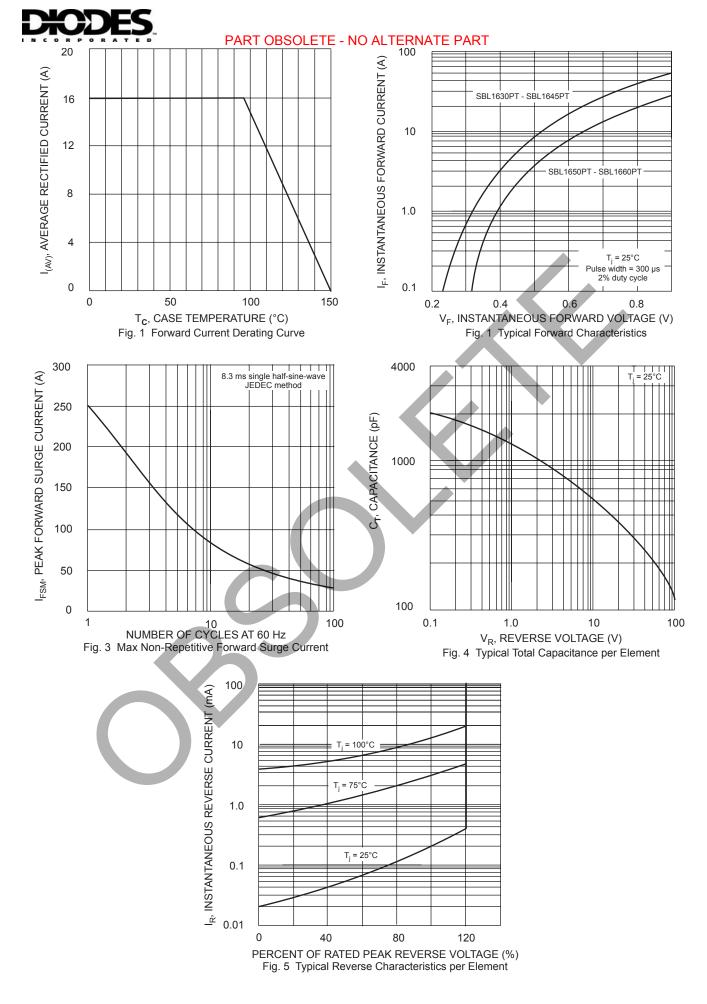
- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- Low Power Loss, High Efficiency
- High Surge Capability
- High Current Capability and Low Forward Voltage Drop
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Application
- Lead Free Finish, RoHS Compliant (Note 3)

Mechanical Data

- Case: TO-3P
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish Bright Tin. Plated Leads Solderable per MIL-STD-202, Method 208
- Polarity: As Marked on Body
- Ordering Information: See Last Page
- Marking: Type Number
- Weight: 5.6 grams (approximate)

Maximum Ratings and Electrical Characteristics @ T_A = 25°C unless otherwise specified


Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


Symbol	SBL 1630PT	SBL 1635PT	SBL 1640PT	SBL 1645PT	SBL 1650PT	SBL 1660PT	Unit
V _{RRM} V _{RWM} V _R	30	35	40	45	50	60	V
V _{R(RMS)}	21	24.5	28	31.5	35	42	V
lo	16					А	
I _{FSM}	250				A		
VFM	0.55 0.70			70	V		
I _{RM}	0.5 50					mA	
Ст	700			pF			
R _{0JC}	3.5			°C/W			
Tj, TSTG	-65 to +150			°C			
	VRRM VRWM VR VR(RMS) IO IFSM IFSM VFM IRM CT R ₀ JC	Symbol 1630PT VRRM VRWM VR 30 VR(RMS) 21 Io 1 Iss 1 VFM 1 Iss 1 Iss 1 VFM 1 Iss 1	$\begin{array}{ c c c c } \hline \textbf{Symbol} & \textbf{1630PT} & \textbf{1635PT} \\ \hline \textbf{V}_{RRM} \\ V_{RWM} \\ V_{R} & 30 & 35 \\ \hline \textbf{V}_{R} & 21 & 24.5 \\ \hline \textbf{I}_{O} & & \\ \hline \textbf{I}_{FSM} & & \\ \hline \textbf{V}_{FM} & & 0. \\ \hline \textbf{I}_{RM} & & \\ \hline \textbf{C}_{T} & & \\ \hline \textbf{R}_{\theta,JC} & & \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline Symbol & 1630PT & 1635PT & 1640PT \\ \hline V_{RRM} & 30 & 35 & 40 \\ \hline V_{R}WM & 30 & 35 & 40 \\ \hline V_{R}(RMS) & 21 & 24.5 & 28 \\ \hline Io & & & & & & & \\ Io & & & & & & & & \\ Io & & & & & & & & & \\ \hline IFSM & & & & & & & & & & \\ \hline IFSM & & & & & & & & & & & \\ \hline VFM & & & & & & & & & & & & \\ \hline VFM & & & & & & & & & & & & & \\ \hline IRM & & & & & & & & & & & & & \\ \hline IRM & & & & & & & & & & & & & & \\ \hline R_{HJC} & & & & & & & & & & & & & & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Symbol & 1630PT & 1635PT & 1640PT & 1645PT \\ \hline V_{RRM} \\ V_{RWM} \\ V_{R} & 30 & 35 & 40 & 45 \\ \hline V_{R(RMS)} & 21 & 24.5 & 28 & 31.5 \\ \hline I_{O} & & & & & & & \\ \hline I_{C} & & & & & & & \\ \hline I_{FSM} & & & & & & & & \\ \hline V_{FM} & & & & & & & & & \\ \hline V_{FM} & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & & & \\ \hline I_{RM} & & & & & & & & & & & & & & & \\ \hline I_{R0JC} & & & & & & & & & & & & & & & & \\ \hline I_{ROJC} & & & & & & & & & & & & & & & & & \\ \hline I_{ROJC} & & & & & & & & & & & & & & & & & \\ \hline I_{ROJC} & & & & & & & & & & & & & & & & & & \\ \hline I_{ROJC} & & & & & & & & & & & & & & & & & \\ \hline I_{ROJC} & & & & & & & & & & & & & & & & & & &$		

Notes: 1. Thermal resistance junction to case mounted on heatsink.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.

3. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.

PART OBSOLETE - NO ALTERNATE PART

Ordering Information (Note 4)

Device	Packaging	Shipping
SBL1630PT	TO-3P	30/Tube
SBL1635PT	TO-3P	30/Tube
SBL1640PT	TO-3P	30/Tube
SBL1645PT	TO-3P	30/Tube
SBL1650PT	TO-3P	30/Tube

Notes: 4. For packaging details, visit our website at http://www.diodes.com/datasheets/ap02008.pdf.

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated: <u>SBL1630PT</u> <u>SBL1640PT</u> <u>SBL1645PT</u> <u>SBL1650PT</u> <u>SBL1660PT</u>