Data sheet acquired from Harris Semiconductor SCHS193A January 1998 - Revised May 2003 NOT RECOMMENDED FOR NEW DESIGNS **High-Speed CMOS Logic** Octal Bus Transceiver/Register, Three-State # Features - · Independent Registers for A and B Buses - Non-Inverting - · Three-State Outputs - Drives 15 LSTTL Loads - Typical Propagation Delay = 12ns (A to B, B to A) at $V_{CC} = 5V, C_1 = 15pF, T_{\Delta} = 25^{\circ}C$ - Fanout (Over Temperature Range) - Standard Outputs........... 10 LSTTL Loads - Bus Driver Outputs 15 LSTTL Loads - Wide Operating Temperature Range . . . -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at $V_{CC} = 5V$ # **Pinout** CD74HC646 (SOIC) TOP VIEW # Description The CD74HC646 is an octal bus transceiver/register with three-state non-inverting outputs. This device is a bus transceiver with D-type flip-flops which act as internal storage registers. Data on the A bus or the B bus can be clocked into the registers on the Low-to-High transition of either CAB or CBA clock inputs. Outputs enable (OE) and direction (DIR) inputs control the transceiver functions. Data present at the high impedance output can be stored in either register or both but only one of the two buses can be enabled as outputs at any one time. The select controls (SAB and SBA) can multiplex stored and transparent (real time) data. The direction control determines which data bus will receive data when the output enable (OE) is Low. In the high impedance mode (output enable High), A data can be stored in one register and B data can be stored in the other register. The clocks are not gated with the direction (DIR) and output enable (OE) terminals: data at the A or B terminals can be clocked into the storage flip-flops at any time. # Ordering Information | PART NUMBER | TEMP.
RANGE (^O C) | PACKAGE | |--------------|----------------------------------|------------| | CD74HC646M | -55 to 125 | 24 Ld SOIC | | CD74HC646M96 | -55 to 125 | 24 Ld SOIC | NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. # Functional Diagram ### **FUNCTION TABLE** | | | INP | UTS | | | DATA I/O | (NOTE 1) | | |----|-----|--------|----------|-----|-----|---------------|---------------|---------------------------| | ŌĒ | DIR | CAB | СВА | SAB | SBA | A0 THRU A7 | B0 THRU B7 | OPERATION OR FUNCTION | | Х | Х | 1 | Х | Х | Х | Input | Not Specified | Store A, B Unspecified | | Х | Х | Х | ↑ | Х | Х | Not Specified | Input | Store B, A Unspecified | | Н | Х | 1 | 1 | Х | Х | Input | Input | Store A and B Data | | Н | Х | H or L | H or L | Х | Х | | | Isolation, Hold Storage | | L | L | Х | Х | Х | L | Output | Input | Real-Time B Data to A Bus | | L | L | Х | H or L | Х | Н | | | Stored B Data to A Bus | | L | Н | Х | Х | L | Х | Input | Output | Real-Time A Data to B Bus | | L | Н | H or L | Х | Н | Х | | | Stored A Data to B Bus | # NOTE: The data output functions may be enabled or disabled by various signals at the OE and DIR inputs. Data inputs functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs. To prevent excess currents in the High-Z modes all I/O terminals should be terminated with 10kΩ resistors. # **CD74HC646** # **Absolute Maximum Ratings** # DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ± 20 mA DC Drain Current, per Output, I $_{O}$ For -0.5V < V $_{O}$ < V $_{CC}$ + 0.5V ± 35 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$... ± 50 mA ### **Thermal Information** | Thermal Resistance (Typical) | θ _{JA} (°C/W) | |--|------------------------| | M (SOIC) Package (Note 2) | . 46 | | Maximum Junction Temperature | | | Maximum Storage Temperature Range | -65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) | 300°C | | (SOIC - Lead Tips Only) | | | | | # **Operating Conditions** | Temperature Range, T _A | |---| | Supply Voltage Range, V _{CC} | | HC Types2V to 6V | | DC Input or Output Voltage, V _I , V _O 0V to V _{CC} | | Input Rise and Fall Time | | 2V | | 4.5V 500ns (Max) | | 6V | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ### NOTE 2. The package thermal impedance is calculated in accordance with JESD 51-7. # **DC Electrical Specifications** | | | | TEST
CONDITIONS | | | 25°C | | -40°C TO 85°C | | -55°C TO 125°C | | | |--------------------------------|-----------------|------------------------------------|---|------------------------|------|------|------|---------------|------|----------------|------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | V _{CC}
(V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | | | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | CIVIOS LOAGS | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | High Level Output | 1 | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | -6 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | TTL LOads | | | -7.8 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | CIVIOS LOADS | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output | 1 | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | 6 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | TTL LOads | | | 7.8 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | Ι _Ι | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μΑ | | Three-State Leakage
Current | loz | V _{IL} or V _{IH} | V _O =
V _{CC} or
GND | 6 | - | - | ±0.5 | - | ±5 | - | ±10 | μΑ | # CD74HC646 # **Prerequisite for Switching Specifications** | | | | | 25°C | | -40°C TO 85°C | | | -55°C TO 125°C | | | | |--------------------------|------------------|---------------------|-----|------|-----|---------------|-----|-----|----------------|-----|-----|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | HC TYPES | | - | | | | | | | | | | | | Maximum Frequency | f _{MAX} | 2 | 6 | - | - | 5 | - | - | 4 | - | - | MHz | | | | 4.5 | 30 | - | - | 25 | - | - | 20 | - | - | MHz | | | | 6 | 35 | - | - | 29 | - | - | 23 | - | - | MHz | | Setup Time Data to Clock | tsu | 2 | 60 | - | - | 75 | - | - | 90 | - | - | ns | | | | 4.5 | 12 | - | - | 15 | - | - | 18 | - | - | ns | | | | 6 | 10 | - | - | 13 | - | - | 15 | - | - | ns | | Hold Time Data to Clock | t _H | 2 | 35 | - | - | 45 | - | - | 55 | - | - | ns | | | | 4.5 | 7 | - | - | 9 | - | - | 11 | - | - | ns | | | | 6 | 6 | - | - | 8 | - | - | 9 | - | - | ns | | Clock Pulse Width | t _W | 2 | 80 | - | - | 100 | - | - | 120 | - | - | ns | | | | 4.5 | 16 | - | - | 20 | - | - | 24 | - | - | ns | | | | 6 | 14 | - | - | 17 | - | - | 20 | - | - | ns | # **Switching Specifications** $C_L = 50 pF$, Input t_f , $t_f = 6 ns$ | | | TEST | | 25°C | | | -40°C TO
85°C | | -55°C TO
125°C | | | | |---|-------------------------------------|-----------------------|---------------------|------|-----|-----|------------------|-----|-------------------|-----|-------|--| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | HC TYPES | · | | | | | | | | | | | | | Propagation Delay Store A Data to B Bus | t _{PHL} , t _{PLH} | C _L = 50pF | 2 | - | - | 220 | - | 275 | - | 330 | ns | | | Store B Data to B Bus | | | 4.5 | - | - | 44 | - | 55 | - | 66 | ns | | | | | C _L = 15pF | 5 | - | 18 | - | - | - | = | - | ns | | | | | C _L = 50pF | 6 | - | - | 37 | - | 47 | - | 56 | ns | | | A Data to B Bus | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 135 | - | 170 | - | 205 | ns | | | B Data to A Bus | | | 4.5 | - | - | 27 | - | 34 | - | 41 | ns | | | | | C _L = 15pF | 5 | - | 12 | - | - | - | - | - | ns | | | | | C _L = 50pF | 6 | - | - | 23 | - | 29 | - | 35 | ns | | | Select to Data | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 170 | - | 215 | - | 255 | ns | | | | | | 4.5 | - | - | 34 | - | 43 | - | 51 | ns | | | | | C _L = 15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | | C _L = 50pF | 6 | - | - | 29 | - | 37 | - | 43 | ns | | # **CD74HC646** # Switching Specifications $C_L = 50 pF$, Input t_f , $t_f = 6 ns$ (Continued) | | | TEST | | | 25°C | | | C TO
°C | | C TO
5°C | | |--|-------------------------------------|-----------------------|---------------------|-----|------|-----|-----|------------|-----|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Three-State Disabling Time
Bus to Output or Register to | t _{PLZ} , t _{PHZ} | C _L = 50pF | 2 | - | - | 175 | - | 220 | - | 265 | ns | | Output Of Register to | | | 4.5 | - | - | 35 | - | 44 | - | 53 | ns | | | | C _L = 15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 30 | - | 37 | - | 45 | ns | | Three-State Enabling Time Bus to Output or Register to | t _{PZL} , t _{PZH} | C _L = 50pF | 2 | - | - | 175 | - | 220 | - | 265 | ns | | Output Output | | | 4.5 | - | - | 35 | - | 44 | - | 53 | ns | | | | C _L = 15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 30 | - | 37 | - | 45 | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 2 | - | - | 60 | - | 75 | - | 90 | ns | | | | | 4.5 | - | - | 12 | - | 15 | - | 18 | ns | | | | C _L = 50pF | 6 | - | - | 10 | - | 13 | - | 15 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | 10 | - | 10 | - | 10 | - | 10 | pF | | Three-State Output
Capacitance | CO | - | - | - | - | 20 | - | 20 | - | 20 | pF | | Maximum Frequency | f _{MAX} | C _L = 15pF | 5 | - | 60 | - | - | - | - | - | MHz | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | - | 5 | - | 52 | - | - | - | - | - | pF | # NOTES: - 3. C_{PD} is used to determine the dynamic power consumption, per package. 4. P_D = V_{CC}² C_{PD} f_i ∑ V_{CC}² C_L f_o where f_i = Input Frequency, f_o = Output Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage. # Test Circuits and Waveforms NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%. FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH FIGURE 2. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC FIGURE 3. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS FIGURE 4. HC THREE-STATE PROPAGATION DELAY WAVEFORM NOTE: Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$. FIGURE 5. HC THREE-STATE PROPAGATION DELAY TEST CIRCUIT # NT (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE # **24 PINS SHOWN** NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. # DW (R-PDSO-G24) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AD. ### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | e | |-----------------| | d | | trol | | | | work | | | | | | | | | | d
trol
wo | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated