

PI74FCT16244T PI74FCT162244T

Product Features

Common Features

- PI74FCT16244T,PI74FCT162244T and PI74FCT162H244T are high-speed, low-power devices with high-current drive $V_{CC}=5V\pm10\%$
- Hysteresis on all inputs
- Packages available:
 - 48-pin 240 mil wide plastic TSSOP(A)
 - 48-pin 300 mil wide plastic SSOP(V)
 - 48-pin 173 mil wide plastic TVSOP(K)
- Device models available upon request

PI74FCT16244T Features

- High output drive: $I_{OH} = -32 \text{ mA}$; $I_{OL} = 64 \text{ mA}$
- Power off disable outputs permit "live insertion"
- Typical V_{OLP} (Output Ground Bounce) < 1.0V at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

PI74FCT162244T Features

- Balanced output drivers: ±24mA
- Reduced system switching noise
- Typical VOLP (Output Ground Bounce) < 0.6V at V_{CC} = 5V, T_A = 25°C

PI74FCT162H244T Features

- Bus Hold retains last active bus state during 3-State
- Eliminates the need for external pull-up resistors

Product Description

Pericom Semiconductor's PI74FCT series of logic circuits are produced using the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades.

Fast CMOS 16-Bit Buffer/Line Drivers

PI74FCT16244T, PI74FCT162244T, and PI74FCT162H244T are non-inverting 16-bit buffer/line drivers designed for applications driving high capacitance loads and low impedance backplanes. These high-speed, low power devices offer bus/backplane interface capability and a flow-through organization for ease of board layout. These devices are designed with three-state controls to operate in a Quad-Nibble, Dual-Byte, or a single 16-bit word mode.

The PI74FCT16244T output buffers are designed with a Power-Off disable allowing "live insertion" of boards when used as backplane drivers.

The PI74FCT162244T has \pm 24mA balanced output drivers. It is designed with current limiting resistors at its outputs to control the output edge rate resulting in lower ground bounce and undershoot. This eliminates the need for external terminating resistors for most interface applications.

The PI74FCT162H244T has "Bus Hold" which retains the input's last state whenever the input goes to high-impedance preventing "floating" inputs and eliminating the need for pull-up/down resistors.

Logic Block Diagram

Product Pin Description

Description
3-State Output Enable Inputs (Active LOW)
Inputs ⁽¹⁾
3-State Outputs
Ground
Power

Note:

1. For the PI74FCT162H244T, these pins have "Bus Hold." All other pins are standard, outputs, or I/Os.

Truth Table

Inpu	ıts ⁽¹⁾	Outputs ⁽¹⁾
xOE	xAx	xYx
L	L	L
L	Н	Н
Н	Х	Z

Note:

1. H = High Voltage Level, X = Don't Care,

L = Low Voltage Level, Z = High Impedance

Product Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied -40° C to $+85^{\circ}$ C
Supply Voltage to Ground Potential (Inputs & Vcc Only)0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only) -0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current 120mA
Power Dissipation

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Note:

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5.0V \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
VIH	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level				0.8	V
Іін	Input HIGH Current	Standard Input, Vcc = Max.	VIN = VCC			1	μΑ
Іін	Input HIGH Current	Standard I/O, Vcc = Max.	VIN = VCC			1	μΑ
Іін	Input HIGH Current	Bus Hold Input ⁽⁴⁾ , $VCC = Max$.	VIN = VCC			±100	μΑ
Іін	Input HIGH Current	Bus Hold I/ $O^{(4)}$, Vcc = Max.	VIN = VCC			±100	μΑ
IIL	Input LOW Current	Standard Input, Vcc = Min.	$V_{IN} = GND$			-1	μΑ
IIL	Input LOW Current	Standard I/O, Vcc = Min.	Vin = GND			-1	μA
IIL	Input LOW Current	Bus Hold Input ⁽⁴⁾ , $VCC = Min$.	Vin = GND			±100	μΑ
IIL	Input LOW Current	Bus Hold I/ $O^{(4)}$, Vcc = Min.	$V_{IN} = GND$			±100	μΑ
Івнн	Bus Hold	Bus Hold Input ⁽⁴⁾ , $VCC = Min$.	VIN = 2.0V	-50			μA
IBHL	Sustain Current		$V_{IN} = 0.8V$	+50			
Iozh ⁽⁵⁾	High Impedance	$V_{CC} = Max.$	Vout = 2.7V			1	μΑ
Iozl ⁽⁵⁾	Output Current	$V_{CC} = Max.$	Vout = 0.5V			-1	μΑ
Vik	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$			-0.7	-1.2	V
Ios	Short Circuit Current	$V_{CC} = Max.^{(3)}, V_{OUT} = GND$		-80	-140	-200	mA
Io	Output Drive Current	$V_{CC} = Max.^{(3)}, V_{OUT} = 2.5V$		-50		-180	mA
VH	Input Hysteresis				100		mV

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. Pins with Bus Hold are identified in the pin description.

5. This specification does not apply to bi-directional functionalities with Bus Hold.

PI74FCT16244T Output Drive Characteristics (Over the Operating Range)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	
Voh	Output HIGH Voltage	VCC = Min., VIN = VIH or VIL	2.5	3.5		V	
			$I_{OH} = -15.0 \text{mA}$	2.4	3.5		
			Iон = -32.0mA	2.0	3.0		
Vol	Output LOW Voltage	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	IOL = 64mA		0.2	0.55	V
IOFF	Power Down Disable	$V_{CC} = 0V$, VIN or Vout - 4.5V	·			±100	μΑ

PI74FCT162244T/162H244T Output Drive Characteristics (Over the Operating Range)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	
Voh	Output HIGH Voltage	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	2.4	3.3		V	
Vol	Output LOW Voltage	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$		0.3	0.55	V	
Iodl	Output LOW Current	$V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , Vout	$= 1.5 V^{(3)}$	60	115	150	mA
Iodh	Output HIGH Current	$V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , Vout	-60	-115	-150	mA	

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽⁴⁾	Description	Test Conditions	Тур	Max.	Units
CIN	Input Capacitance	$V_{IN} = 0V$	4.5	6	pF
Cout	Output Capacitance	$V_{OUT} = 0V$	5.5	8	pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	5 Description	Test Condi	tions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units	
Icc	Quiescent Power Supply Current	Vcc = Max.	VIN = GND or Vcc		0.1	500	μΑ	
ΔΙcc	Supply Current per Input @ TTL HIGH	Vcc = Max.	$V_{IN} = 3.4 V^{(3)}$		0.5	1.5	mA	
Іссъ	Supply Current per Input per MHz ⁽⁴⁾	Vcc = Max., Outputs Open $x\overline{OE} = GND$ One Bit Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$		60	100	µA/ MHz	
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open $f_1 = 10 \text{ MHz}$ 50% Duty Cycle $x\overline{OE} = GND$	$V_{IN} = V_{CC}$ $V_{IN} = GND$		0.6	1.5 ⁽⁵⁾	mA	
		One Bit Toggling	$V_{IN} = 3.4V$ $V_{IN} = GND$		0.9	2.3 ⁽⁵⁾		
		Vcc = Max., Outputs Open $f_1 = 2.5 \text{ MHz}$ 50% Duty Cycle $x\overline{OE} = GND$	$V_{IN} = V_{CC}$ $V_{IN} = GND$		2.4	4.5 ⁽⁵⁾		
		16 Bits Toggling	$V_{IN} = 3.4V$ $V_{IN} = GND$		6.4	16.5 ⁽⁵⁾		

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.

3. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at Vcc or GND.

- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.

6. IC =IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fINI)$

 ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

 $D_H = Duty Cycle for TTL Inputs High$

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

NI = Number of Inputs at fI

All currents are in milliamps and all frequencies are in megahertz.

PI74FCT16244T Switching Characteristics over Operating Range

			16244T		16244AT		16244CT		16244DT		16244ET			
			Co	Com.		Com.		Com.		om.	Com.			
Parameters	Description	Conditions ⁽¹⁾	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	
t PLH	Propagation Delay ⁽²⁾	$C_L = 50 \ pF$	1.5	6.5	1.5	4.8	1.5	4.1	1.5	3.8	1.5	3.2	ns	
t PHL	xAx to xYx	$R_L = 500\Omega$												
t PZH	Output Enable Time		1.5	8.0	1.5	6.2	1.5	5.8	1.5	4.8	1.5	4.4	ns	
t PZL	$x\overline{OE}$ to xAx or xYx													
tphz	Output Disable Time ⁽³⁾		1.5	7.0	1.5	5.6	1.5	5.2	1.5	4.0	1.5	4.0	ns	
t PLZ	$x\overline{OE}$ to xAx or xYx													
tsk(o)	Output Skew ⁽⁴⁾		_	0.5	_	0.5	_	0.5	_	0.5	_	0.5	ns	

PI74FCT162244T Switching Characteristics over Operating Range

			162244T		162244AT 16224		162244CT		44DT	162244ET			
			Co	m.	Com.		Com.		Com.		Com.		
Parameters	Description	Conditions ⁽¹⁾	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t PLH	Propagation Delay ⁽²⁾	$C_L = 50 \ pF$	1.5	6.5	1.5	4.8	1.5	4.1	1.5	3.8	1.5	3.2	ns
t PHL	xAx to xYx	$R_L = 500\Omega$											
tpzh	Output Enable Time		1.5	8.0	1.5	6.2	1.5	5.8	1.5	4.8	1.5	4.4	ns
tpzl	$x\overline{OE}$ to xAx or xYx												
tphz	Output Disable Time ⁽³⁾		1.5	7.0	1.5	5.6	1.5	5.2	1.5	4.0	1.5	4.0	ns
t PLZ	$x\overline{OE}$ to xAx or xYx												
tsк(o)	Output Skew ⁽⁴⁾			0.5		0.5		0.5	_	0.5	—	0.5	ns

PI74FCT162H244T Switching Characteristics over Operating Range

			162H244T		162H244AT 162H2440		244CT	СТ 162Н244DT		T 162H244ET			
			Co	om.	Com.		Com.		Com.		Com.		
Parameters	Description	Conditions ⁽¹⁾	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t PLH	Propagation Delay ⁽²⁾	CL = 50 pF	1.5	6.5	1.5	4.8	1.5	4.1	1.5	3.8	1.5	3.2	ns
t PHL	xAx to xYx	$R_L = 500\Omega$											
tрzн	Output Enable Time		1.5	8.0	1.5	6.2	1.5	5.8	1.5	4.8	1.5	4.4	ns
t PZL	$x\overline{OE}$ to xAx or xYx												
tphz	Output Disable Time ⁽³⁾		1.5	7.0	1.5	5.6	1.5	5.2	1.5	4.0	1.5	4.0	ns
t PLZ	$x\overline{OE}$ to xAx or xYx												
tsк(o)	Output Skew ⁽⁴⁾			0.5	—	0.5	_	0.5		0.5		0.5	ns

Notes:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. This parameter is guaranteed but not production tested.
- 4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com