SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

•	Single Chip With Easy Interface Between
	UART and Serial-Port Connector of IBM™
	PC/AT and Compatibles

- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Designed to Support Data Rates up to 120 kbit/s
- Pinout Compatible With SN75C185 and SN75185

•	DB, DW, N, OR PW PACKAGE P VIEW)
V _{DD} [1	20] V _{CC}
RA1 [2	19] RY1
RA2 [3	18] RY2
RA3 [4	17] RY3
DY1 [5	16] DA1
DY2 [6	15] DA2
RA4 [7	14] RY4
DY3 [8	13] DA3
RA5 [9	12] RY5
V _{SS} [10	11] GND

description/ordering information

The GD65232 and GD75232 combine three drivers and five receivers from the Texas Instruments trade-standard SN75188 and

SN75189 bipolar quadruple drivers and receivers, respectively. The pinout matches the flow-through design of the SN75C185 to decrease the part count, reduce the board space required, and allow easy interconnection of the UART and serial-port connector of an IBM[™] PC/AT and compatibles. The bipolar circuits and processing of the GD65232 and GD75232 provide a rugged, low-cost solution for this function at the expense of quiescent power and external passive components relative to the SN75C185.

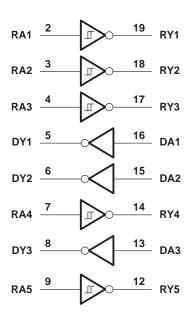
The GD65232 and GD75232 comply with the requirements of the TIA/EIA-232-F and ITU (formerly CCITT) V.28 standards. These standards are for data interchange between a host computer and a peripheral at signaling rates up to 20 kbit/s. The switching speeds of these devices are fast enough to support rates up to 120 kbit/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be expected unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates up to 120 kbit/s, use of TIA/EIA-423-B (ITU V.10) and TIA/EIA-422-B (ITU V.11) standards is recommended.

Τ _Α	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING							
	PDIP (N)	Tube of 20	GD65232N	GD65232N							
		Tube of 25	GD65232DW	0.005000							
	SOIC (DW)	Reel of 2000	GD65232DWR	GD65232							
–40°C to 85°C	SSOP (DB)	Reel of 2000	GD65232DBR	GD65232							
		Tube of 70	GD65232PW								
	TSSOP (PW)	Reel of 2000	GD65232PWR	GD65232							
	PDIP (N)	Tube of 20	GD75232N	GD75232N							
		Tube of 25	GD75232DW	0075000							
aaa / T aaa	SOIC (DW)	Reel of 2000	GD75232DWR	GD75232							
0°C to 70°C	SSOP (DB)	Reel of 2000	GD75232DBR	GD75232							
	T0000 (DM)	Tube of 70	GD75232PW	0075000							
	TSSOP (PW)	Reel of 2000	GD75232PWR	GD75232							

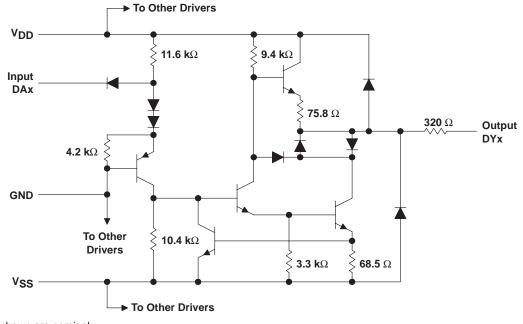
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


IBM is a trademark of International Business Machines Corporation.

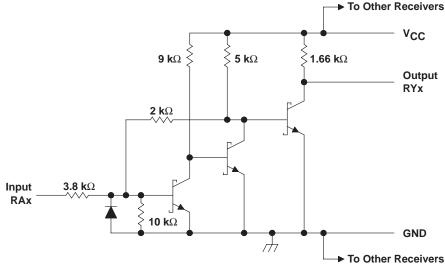
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

logic diagram (positive logic)

schematic (each driver)



Resistor values shown are nominal.

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

schematic (each receiver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage (see Note 1): V _{CC}	
V _{DD}	15 V
V _{SS}	
Input voltage range, V _I : Driver	
Receiver	
Driver output voltage range, V _O	–15 V to 15 V
Receiver low-level output current, IOL	
Package thermal impedance, θ_{JA} (see Notes 2 and 3): DB pack	
DW pac	kage 58°C/W
	ge 69°C/W
· · · · · · · · · · · · · · · · · · ·	kage 83°C/W
Operating virtual junction temperature, T _J	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to the network ground terminal.

2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

recommended operating conditions

		MIN	NOM	MAX	UNIT	
V _{DD}	Supply voltage (see Note 4)	7.5	9	15	V	
VSS	Supply voltage (see Note 4)	-7.5	-9	-15	V	
VCC	Supply voltage (see Note 4)	4.5	5	5.5	V	
VIH	High-level input voltage (driver only)	1.9			V	
VIL	Low-level input voltage (driver only)			0.8	V	
lavi	Driver			-6	A	
ЮН	High-level output current Receiver			-0.5	mA	
1	Driver			6	A	
IOL	Low-level output current Receiver			16 mA		
т.	GD65232	-40		85	ŝ	
Τ _Α	Operating free-air temperature GD75232	0		70	°C	

NOTE 4: When powering up the GD65232 and GD75232, the following sequence should be used:

1. V_{SS}

2. V_{DD} 3. V_{CC} 4. I/Os

Applying V_{CC} before V_{DD} may allow large currents to flow, causing damage to the device. When powering down the GD65232 and GD75232, the reverse sequence should be used.

supply currents over recommended operating free-air temperature range

• •	•	•	•	•	•		
	PARAMETER		TEST CO	ONDITIONS		MIN MAX	UNIT
	Supply current from V _{DD}			V _{DD} = 9 V,	$V_{SS} = -9 V$	15	
		All inputs at 1.9 V,	No load	V _{DD} = 12 V,	$V_{SS} = -12 V$	19	
				V _{DD} = 15 V,	$V_{SS} = -15 V$	25	
IDD				V _{DD} = 9 V,	$V_{SS} = -9 V$	4.5	mA
		All inputs at 0.8 V,	No load	V _{DD} = 12 V,	$V_{SS} = -12 V$	5.5	
				V _{DD} = 15 V,	$V_{SS} = -15 V$	9	
				V _{DD} = 9 V,	$V_{SS} = -9 V$	–15	
		All inputs at 1.9 V,	No load	V _{DD} = 12 V,	$V_{SS} = -12 V$	-19	Э
	Cumply ourrant from V = -			V _{DD} = 15 V,	$V_{SS} = -15 V$	-25	
ISS	Supply current from V_{SS}			V _{DD} = 9 V,	$V_{SS} = -9 V$	-3.2	mA
		All inputs at 0.8 V,	No load	V _{DD} = 12 V,	$V_{SS} = -12 V$	-3.2	
				V _{DD} = 15 V,	$V_{SS} = -15 V$	-3.2	
	Supply current from V _{CC}	All inputs at 5 V,	No load,	V _{CC} = 5 V	GD65232	38	mA
ICC		All inputs at 5 V,	NU IUdu,	VCC = 5 V	GD75232	30	IIIA

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

DRIVER SECTION

electrical characteristics over recommended operating free-air temperature range, V_{DD} = 9 V, V_{SS} = -9 V, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	V _{IL} = 0.8 V,	$R_L = 3 k\Omega$,	See Figure 1	6	7.5		V
VOL	Low-level output voltage (see Note 5)	V _{IH} = 1.9 V,	$R_L = 3 k\Omega$,	See Figure 1		-7.5	-6	V
IIH	High-level input current	V _I = 5 V,	See Figure 2				10	μA
١ _{IL}	Low-level input current	$V_{I} = 0,$	See Figure 2				-1.6	mA
IOS(H)	High-level short-circuit output current (see Note 6)	V _{IL} = 0.8 V,	$V_{O} = 0,$	See Figure 1	-4.5	-12	-19.5	mA
IOS(L)	Low-level short-circuit output current	V _{IH} = 2 V,	$V_{O} = 0,$	See Figure 1	4.5	12	19.5	mA
r _o	Output resistance (see Note 7)	$V_{CC} = V_{DD} =$	$V_{SS} = 0,$	$V_{O} = -2 V$ to 2 V	300			Ω

NOTES: 5. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only (e.g., if –10 V is maximum, the typical value is a more negative voltage).

6. Output short-circuit conditions must maintain the total power dissipation below absolute maximum ratings.

7. Test conditions are those specified by TIA/EIA-232-F and as listed above.

switching characteristics, V_{CC} = 5 V, V_{DD} = 12 V, V_{SS} = –12 V, T_A = 25°C

	PARAMETER		TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output	$R_L = 3 k\Omega$ to 7 kΩ,	C _L = 15 pF,	See Figure 3		315	500	ns
^t PHL	Propagation delay time, high- to low-level output	$R_L = 3 k\Omega$ to 7 kΩ,	C _L = 15 pF,	See Figure 3		75	175	ns
	Transition time,		C _L = 15 pF,	See Figure 3		60	100	ns
^t TLH	low- to high-level output	$R_L = 3 k\Omega$ to 7 k Ω	C _L = 2500 pF,	See Figure 3 and Note 8		1.7	2.5	μs
+	Transition time,	$R_{\rm I} = 3 \rm k\Omega$ to 7 $\rm k\Omega$	C _L = 15 pF,	See Figure 3		40	75	ns
^t THL	high- to low-level output	$K_{L} = 5 K_{22} 10 7 K_{22}$	C _L = 2500 pF,	See Figure 3 and Note 8		1.5	2.5	μs

NOTE 8: Measured between ±3-V and ±3-V points of the output waveform (TIA/EIA-232-F conditions); all unused inputs are tied either high or low.

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

RECEIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TES	ST CONDITIONS		MIN	түр†	MAX	UNIT
	Desitive sectors include the she bit with	T _A = 25°C,	See Figure 5		1.75	1.9	2.3	
V_{IT+}	Positive-going input threshold voltage	$T_A = 0^{\circ}C$ to $70^{\circ}C$,	See Figure 5		1.55		2.3	V
V_{IT-}	Negative-going input threshold voltage				0.75	0.97	1.25	V
V _{hys}	Input hysteresis voltage (V _{IT+} – V _{IT} –)				0.5			V
			VIH = 0.75 V		2.6	4	5	
VOH	High-level output voltage	I _{OH} = -0.5 mA	Inputs open	2.6			V	
VOL	Low-level output voltage	I _{OL} = 10 mA,	V _I = 3 V			0.2	0.45	V
			0 5 5	GD65232	3.6		11	
ιн	High-level input current	V _I = 25 V,	See Figure 5	GD75232	3.6		8.3	mA
		V _I = 3 V,	See Figure 5		0.43			
			0 5 5	GD65232	-3.6		-11	
۱	Low-level input current	V _I = -25 V,	See Figure 5	GD75232	-3.6		-8.3	mA
	· · ·	V _I = −3 V,	See Figure 5	-0.43				
los	Short-circuit output current	See Figure 4				-3.4	-12	mA

[†] All typical values are at $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{DD} = 9$ V, and $V_{SS} = -9$ V.

switching characteristics, V_{CC} = 5 V, V_{DD} = 12 V, V_{SS} = –12 V, T_A = 25°C

	PARAMETER	T	EST CONDITIO	NS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output					107	250	ns
^t PHL	Propagation delay time, high- to low-level output	C 50 pE	$R_L = 5 k\Omega$,	See Figure 6		42	150	ns
^t TLH	Transition time, low- to high-level output	C _L = 50 pF,				175	350	ns
^t THL	Transition time, high- to low-level output					16	60	ns
^t PLH	Propagation delay time, low- to high-level output					100	160	ns
^t PHL	Propagation delay time, high- to low-level output	C 15 pE	$\mathbf{P}_{\mathbf{k}} = 1 \mathbf{E} \mathbf{k} 0$	Soo Eiguro 6		60	100	ns
^t TLH	Transition time, low- to high-level output	CL = 15 pr,	RL = 1.5 kΩ,	See rigule o		90	175	ns
^t THL	Transition time, high- to low-level output					15	50	ns

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

PARAMETER MEASUREMENT INFORMATION

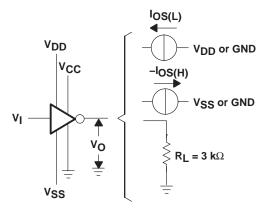


Figure 1. Driver Test Circuit for V_{OH} , V_{OL} , $I_{OS(H)}$, and $I_{OS(L)}$

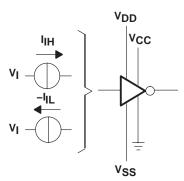
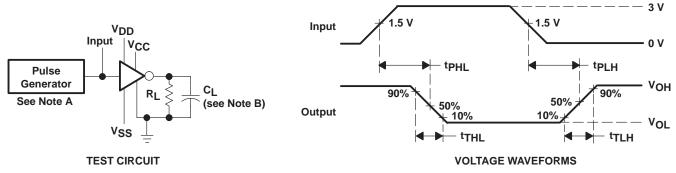
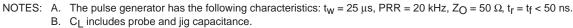
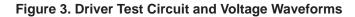





Figure 2. Driver Test Circuit for IIH and IIL

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

PARAMETER MEASUREMENT INFORMATION

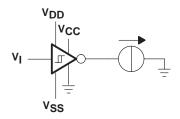


Figure 4. Receiver Test Circuit for IOS

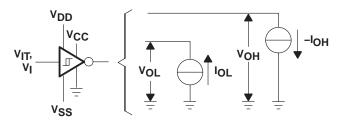
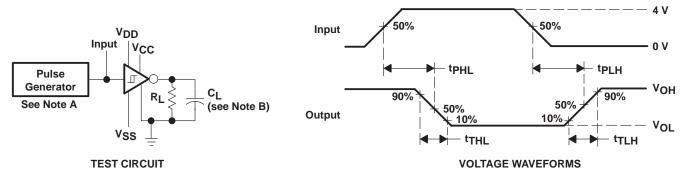



Figure 5. Receiver Test Circuit for VIT, VOH, and VOL

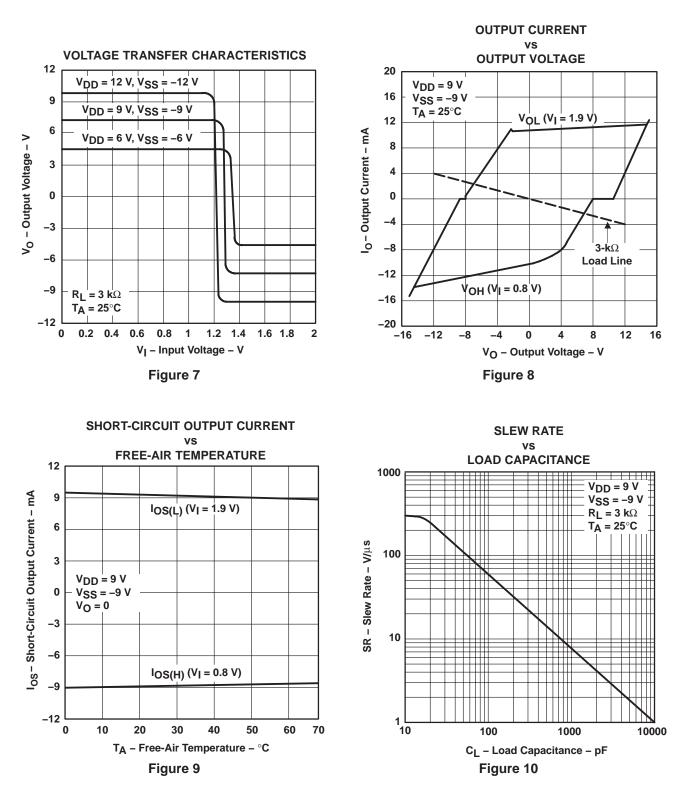

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu$ s, PRR = 20 kHz, $Z_O = 50 \ \Omega$, $t_T = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.

Figure 6. Receiver Propagation and Transition Times

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

TYPICAL CHARACTERISTICS

DRIVER SECTION

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

INPUT THRESHOLD VOLTAGE INPUT THRESHOLD VOLTAGE vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 2.4 2 2.2 VIT+ 1.8 V_{IT} – Input Threshold Voltage – V V_{IT} – Input Threshold Voltage – V 2 1.6 VIT+ 1.8 1.4 1.6 1.2 1.4 1 VIT-1.2 0.8 1 VIT-0.6 0.8 0.4 0.6 0.2 0.4 0 10 40 0 20 30 50 60 70 3 10 2 4 5 6 7 8 9 T_A – Free-Air Temperature – °C V_{CC} – Supply Voltage – V Figure 11 Figure 12 **NOISE REJECTION** 6 MAXIMUM SUPPLY VOLTAGE $V_{CC} = 5 V$ vs T_A = 25°C FREE-AIR TEMPERATURE 5 See Note A 16 C_C = 300 pF 14 4 V_{DD} – Maximum Supply Voltage – V Amplitude – V 12 $= 500 \, \text{pF}$ ററ 3 10 C_C = 12 pF 2 8 C_C = 100 pF 6 1 4 0 10 40 100 400 1000 4000 10000 2 tw - Pulse Duration - ns $R_L \ge 3 \ k\Omega$ (from each output to GND) 0 NOTE A: This figure shows the maximum amplitude of a 10 20 30 40 50 60 70 0 positive-going pulse that, starting from 0 V, does not cause a change of the output level. T_A – Free-Air Temperature – °C

TYPICAL CHARACTERISTICS

Figure 13

Figure 14

SLLS206J - MAY 1995 - REVISED NOVEMBER 2004

APPLICATION INFORMATION

Diodes placed in series with the V_{DD} and V_{SS} leads protect the GD65232 and GD75232 in the fault condition in which the device outputs are shorted to ± 15 V and the power supplies are at low and provide low-impedance paths to ground (see Figure 15).

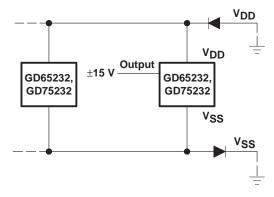


Figure 15. Power-Supply Protection to Meet Power-Off Fault Conditions of TIA/EIA-232-F

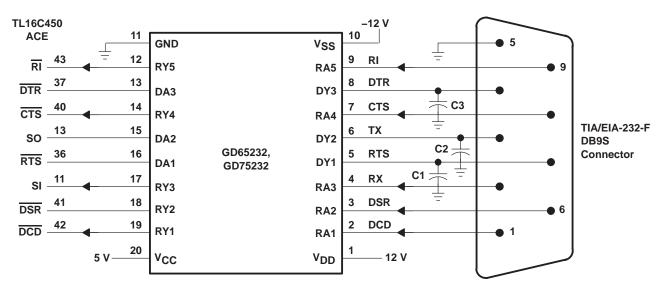


Figure 16. Typical Connection

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
GD65232DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GD65232	Samples
GD65232DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GD65232	Samples
GD65232PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GD65232	Samples
GD75232DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	GD75232N	Samples
GD75232PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232PWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	GD75232	Samples
GD75232PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	GD75232	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

24-Aug-2018

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

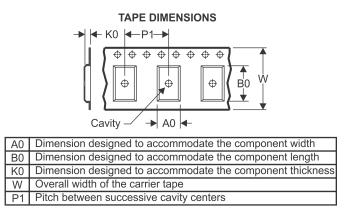
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

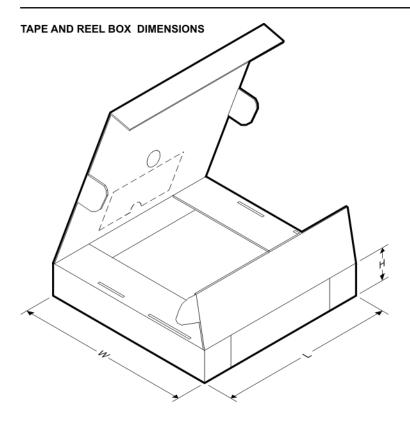

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

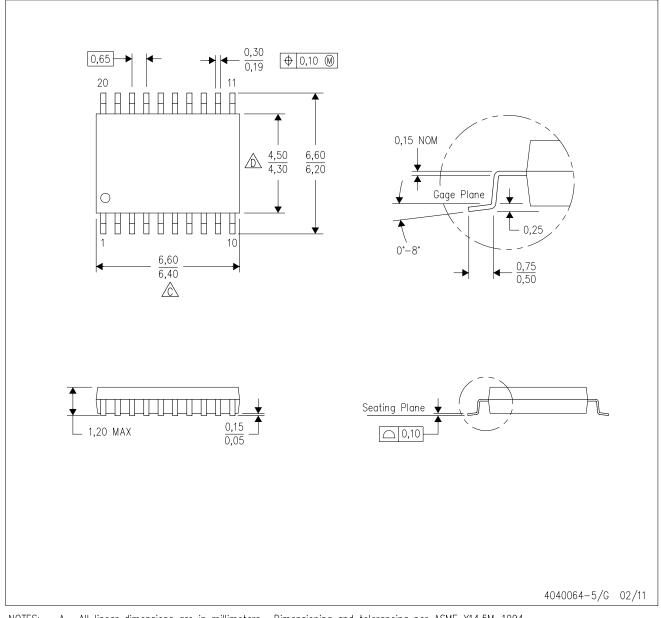

*All dimensions are nominal Device	1	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
GD65232DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
GD75232DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
GD75232DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
GD75232PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Oct-2018



*All dimensions are nominal

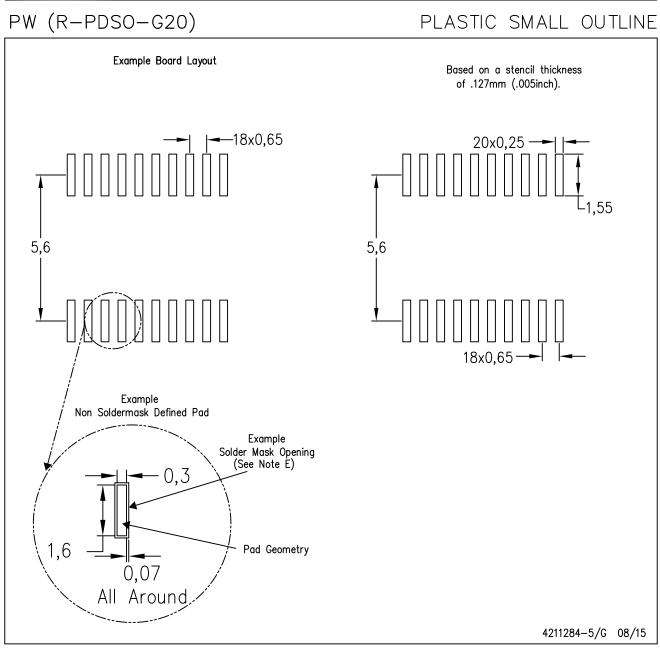
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
GD65232DWR	SOIC	DW	20	2000	367.0	367.0	45.0
GD75232DBR	SSOP	DB	20	2000	367.0	367.0	38.0
GD75232DWR	SOIC	DW	20	2000	367.0	367.0	45.0
GD75232PWR	TSSOP	PW	20	2000	364.0	364.0	27.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

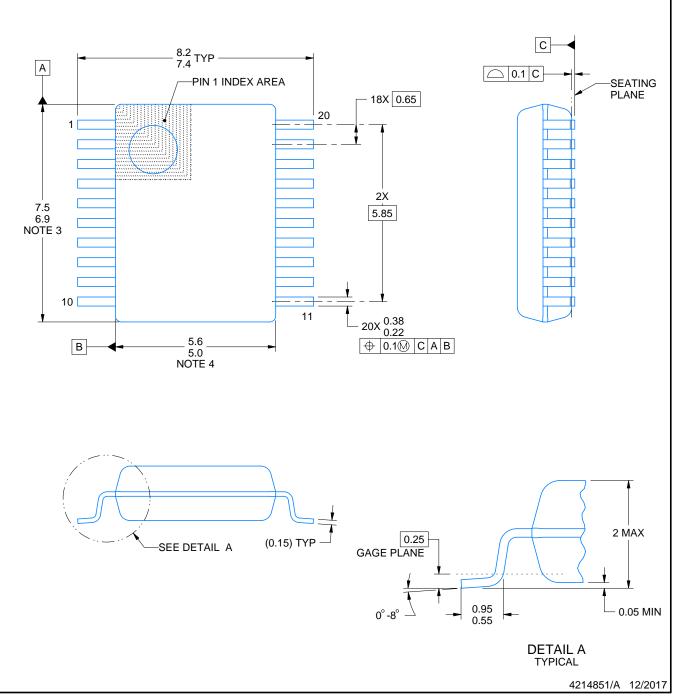
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


DB0020A

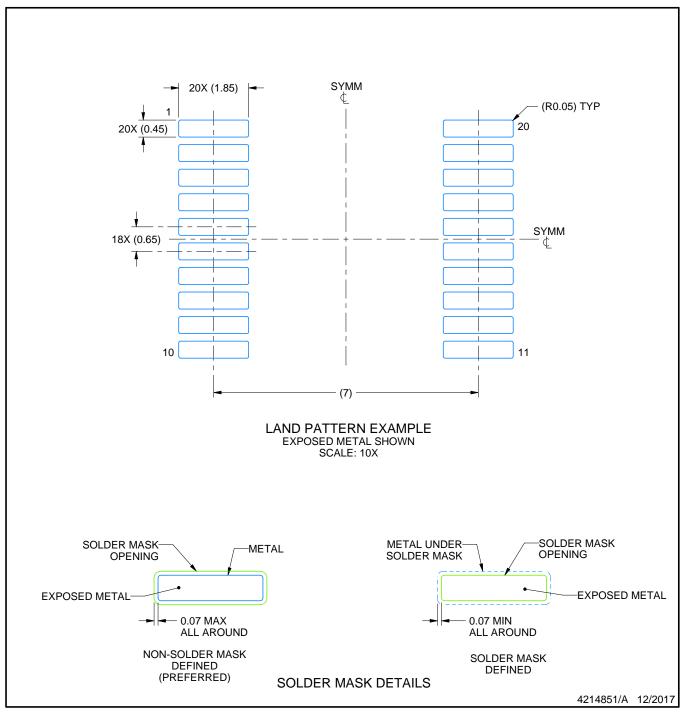
PACKAGE OUTLINE

TSSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0020A

EXAMPLE BOARD LAYOUT

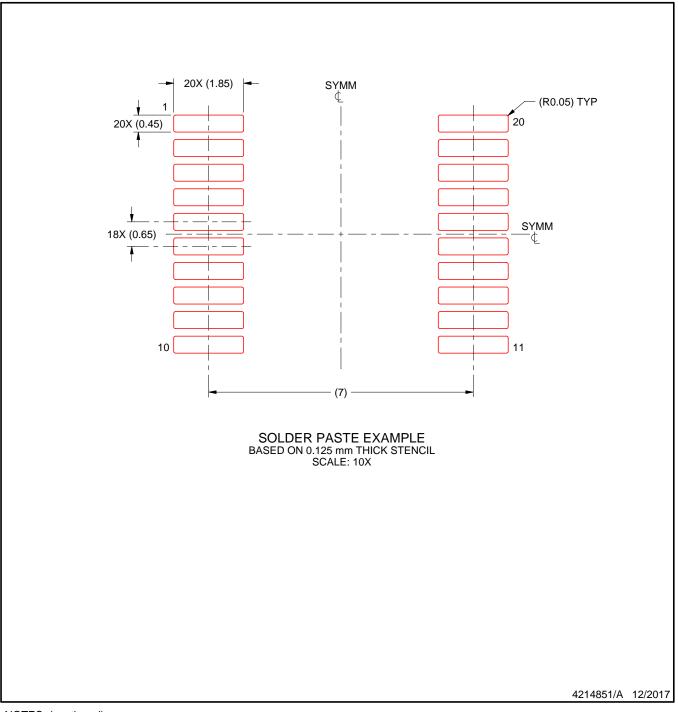
TSSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0020A

EXAMPLE STENCIL DESIGN

TSSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

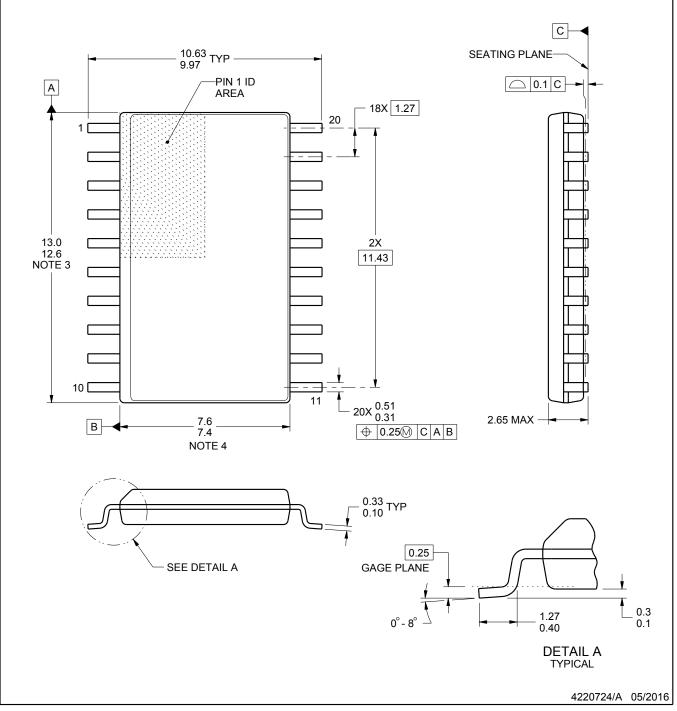
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


DW0020A

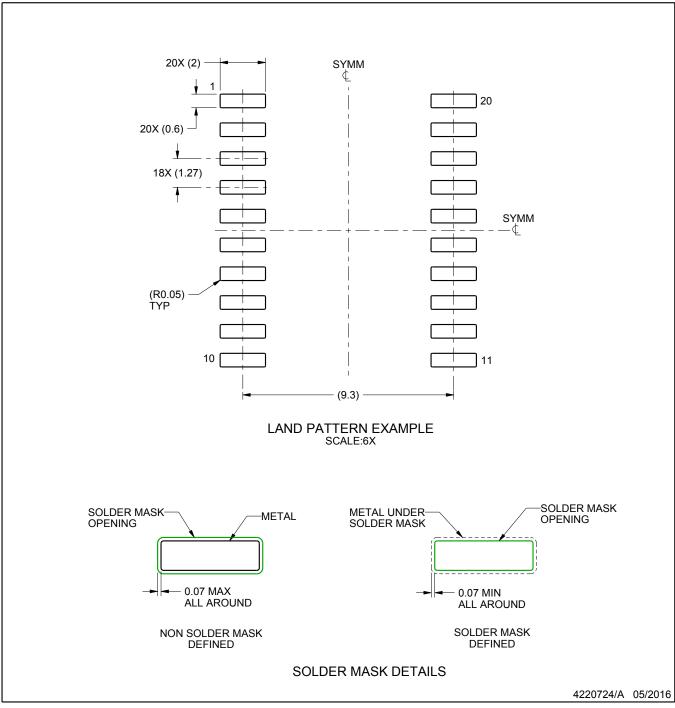
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



DW0020A

EXAMPLE BOARD LAYOUT

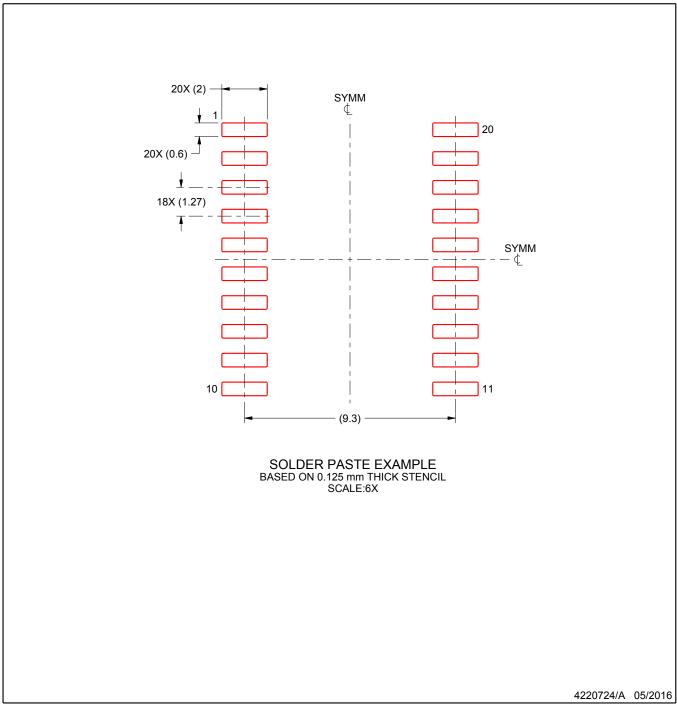
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated