ANALOG DEVICES

Low Capacitance, Low Charge Injection, ±15 V/+12 V iCMOS® Dual SPST Switches

Data Sheet

ADG1221/ADG1222/ADG1223

FEATURES

<0.5 pC charge injection over full signal range Off capacitance: 2 pF Off leakage: 2 pA Supply range: 33 V On resistance: 120 Ω Fully specified at ±15 V, +12 V No V_L supply required **3 V logic-compatible inputs Rail-to-rail operation** 10-lead MSOP package

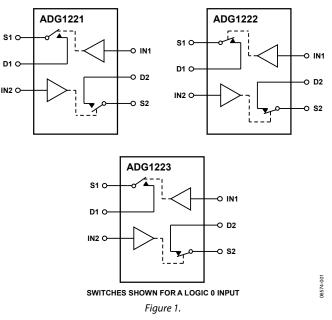
APPLICATIONS

Automatic test equipment Data acquisition systems **Battery-powered systems** Sample-and-hold systems **Audio signal routing** Video signal routing **Communication systems**

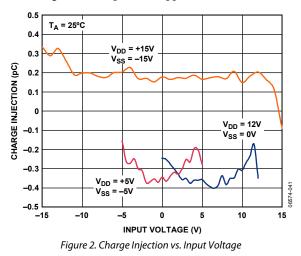
GENERAL DESCRIPTION

The ADG1221/ADG1222/ADG1223 are monolithic, complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an *i*CMOS (industrial CMOS) process. iCMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs, capable of 33 V operation, in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and exceptionally low charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Figure 2 shows that there is minimum charge injection over the full signal range of the device.


The ADG1221/ADG1222/ADG1223 contain two independent single-pole/single-throw (SPST) switches. The ADG1221 and ADG1222 differ only in that the digital control logic is inverted. The ADG1221 switches are turned on with Logic 1 on the appropriate control input, and Logic 0 is required for the

Rev. B


Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

ADG1222. The ADG1223 has one switch with digital control logic similar to that of the ADG1221; the logic is inverted on the other switch. The ADG1223 exhibits break-before-make switching action for use in multiplexer applications. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2007–2017 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

TABLE OF CONTENTS

Features 1	
Applications1	
Functional Block Diagram1	
General Description 1	
Revision History 2	
Specifications	
Dual Supply	
Single Supply 4	
Absolute Maximum Ratings6	

REVISION HISTORY

9/2017—Rev. A to Rev. B
Change to Features Section

3/2009—Rev. 0 to Rev. A

Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 1
Changes to ton Parameter and Power Requirements, IDD, Digital
Inputs = 5 V Parameter, Table 2

2/2007—Rev. 0: Initial Version

Thermal Resistance	6
ESD Caution	6
Pin Configuration and Function Descriptions	7
Terminology	8
Typical Performance Characteristics	9
Test Circuits	3
Outline Dimensions 15	5
Ordering Guide1	5

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

	Temperature					
Parameter	25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			V _{DD} to V _{SS}	V		
On Resistance, R _{ON}					$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V},$	
					$V_s = \pm 10 V$, $I_s = -1 mA$ (see Figure 23)	
	120			Ωtyp		
	200	240	270	Ωmax		
On Resistance Match			_/ 0		$V_{s} = \pm 10 V$, $I_{s} = -1 mA$	
Between Channels, ΔR_{ON}					V3 - ±10 V, 15 - 1111/	
,	2.5			Ωtyp		
	6	10	12	Ωmax		
On Resistance Flatness, R _{FLAT(ON)}	0	10	12	3211187	$V_s = -5 V/0 V/+5 V; I_s = -1 mA$	
Of Resistance Flatness, R _{FLAT(ON)}					$v_{s} = -3 v/0 v/+3 v; i_{s} = -1 mA$	
	20			Ωtyp		
	64	76	83	Ωmax		
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
Source Off Leakage, I _s (Off)					$V_s = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ (see Figure 24)	
	±0.002			nA typ		
	±0.1	±0.6	±1	nA max		
Drain Off Leakage, I _D (Off)					$V_{s} = \pm 10 V, V_{D} = \pm 10 V$ (see Figure 24)	
	±0.002			nA typ		
	±0.1	±0.6	±1	nA max		
Channel On Leakage, I _D , I _S (On)	±0.1	10.0	±1	пл пал	$V_s = V_D = \pm 10 V$ (see Figure 25)	
Channel On Leakage, ID, IS (OII)	1			• •	$v_{\rm S} = v_{\rm D} = \pm 10$ v (see Figure 23)	
	±0.01			nA typ		
	±0.2	±0.6	±1	nA max		
DIGITAL INPUTS						
Input High Voltage, V _{INH}			2.0	V min		
Input Low Voltage, VINL			0.8	V max		
Input Current, I _{INL} or I _{INH}					$V_{IN} = V_{INL} \text{ or } V_{INH}$	
	0.005			μA typ		
			±0.1	µA max		
Digital Input Capacitance, C _{IN}	2.5			pF typ		
DYNAMIC CHARACTERISTICS ¹				P. 0P		
					P = 200 O C = 25 pc V = 10 V	
t _{on}					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$ (see Figure 26)	
	120			nc tun	(see righte 20)	
	130	210	240	ns typ		
	170	210	240	ns max		
toff					$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_S = 10 \text{ V}$	
					(see Figure 26)	
	85			ns typ		
	105	130	140	ns max		
Break-Before-Make Time Delay (ADG1223 Only), t _{BBM}					$\label{eq:RL} \begin{split} R_L &= 300 \; \Omega, C_L = 35 \; pF, V_{S1} = V_{S2} = 10 \; V \\ (see \; Figure \; 27) \end{split}$	
	40			ns typ		
			10	ns min		
Charge Injection, Q _{INJ}	0.1			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$ (see Figure 28	
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$	
	,,,			abtyp	(see Figure 29)	

		Temperatu	ıre		
Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$ (see Figure 30)
Total Harmonic Distortion + Noise, THD + N	0.15			% typ	R_L = 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz
–3 dB Bandwidth	960			MHz typ	$R_L = 50 \Omega$, $C_L = 1 pF$ (see Figure 31)
Cs (Off)					$V_{s} = 0 V, f = 1 MHz$
	1.7			pF typ	
	2.2			pF max	
C _D (Off)					$V_{s} = 0 V, f = 1 MHz$
	1.7			pF typ	
	2.2			pF max	
C _D , C _S (On)					$V_{s} = 0 V, f = 1 MHz$
	3			pF typ	
	4			pF max	
POWER REQUIREMENTS					$V_{DD} = +16.5 V, V_{SS} = -16.5 V$
lod					
	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	Digital inputs = $0 V \text{ or } V_{DD}$
	140			μA typ	Digital inputs = 5 V
			190	μA max	Digital inputs = 5 V
Iss					Digital inputs = $0 V$, $5 V$, or V_{DD}
	0.001			μA typ	
			1.0	µA max	
V _{DD} /V _{SS}			±5/±16.5	V min/max	GND = 0 V

¹ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. Table 2.

		Temperature			
Parameter 25°C -40°C to +85°C -40°C to +125°C		Unit	Test Conditions/Comments		
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}					$V_{DD} = 10.8 V$, $V_{SS} = 0 V$, $V_{S} = 0 V$ to 10 V, $I_{S} = -1 mA$ (see Figure 23)
	300			Ωtyp	
	475	567	625	Ωmax	
On Resistance Match Between Channels, ΔR _{ON}					$V_{s} = 0 V to 10 V, I_{s} = -1 mA$
	4.5			Ωtyp	
	16	26	27	Ωmax	
On Resistance Flatness, R _{FLAT(ON)}	60			Ωtyp	$V_s = 3 V/6 V/9 V$, $I_s = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)					$V_{S} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}$
					(see Figure 24)
	±0.002			nA typ	
	±0.1	±0.6	±1	nA max	

Data Sheet

ADG1221/ADG1222/ADG1223

		Temperati	ıre		
Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Drain Off Leakage, I _D (Off)					$V_{\rm S} = 1 V/10 V, V_{\rm D} = 10 V/1 V$
	10.000				(see Figure 24)
	±0.002 ±0.1	±0.6	±1	nA typ nA max	
Channel On Leakage, I _D , I _S (On)	±0.1	±0.0	ΞI	na max	$V_s = V_D = 1 V \text{ or } 10 V \text{ (see Figure 25)}$
Channel On Leakage, 10, 15 (Oh)	±0.01			nA typ	vs = vb = 1 v or 10 v (see rigure 23)
	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, IINL or IINH					$V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$
	0.001			μA typ	
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{on}					$R_L = 300 \Omega, C_L = 35 pF, V_S = 8 V$ (see Figure 26)
	190			ns typ	(see Figure 20)
	250	300	345	ns max	
t _{OFF}					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$
					(see Figure 26)
	120			ns typ	
	150	190	225	ns max	
Break-Before-Make Time Delay					$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_{S1} = V_{S2} = 8 \text{ V}$
(ADG1223 Only), t _{BBM}	70			ns typ	(see Figure 27)
	70		10	ns min	
Charge Injection, Q _{INJ}	0.2		10	pC typ	$V_{s} = 6 V, R_{s} = 0 \Omega, C_{L} = 1 nF$
	0.2			PC 0 P	(see Figure 28)
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$
					(see Figure 29)
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$ (see Figure 30)
–3 dB Bandwidth	550			MHz typ	$R_L = 50 \Omega$, $C_L = 1 pF$ (see Figure 31)
C _s (Off)					$V_s = 6 V, f = 1 MHz$
	2.1			pF typ	
	2.6			pF max	
C _D (Off)					$V_{s} = 6 V, f = 1 MHz$
	2.1			pF typ	
	2.6			pF max	
C _D , C _s (On)					$V_{s} = 6 V, f = 1 MHz$
	3.8			pF typ	
	4.6			pF max	
POWER REQUIREMENTS					$V_{DD} = 13.2 V$
lod	0.001		1.0	μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
	140		1.0	μA max	Digital inputs = $0 \text{ V} \text{ or } V_{DD}$
	140		190	μA typ μA max	Digital inputs = 5 V Digital inputs = 5 V
V _{DD}			5/16.5	V min/max	$V_{ss} = 0 V, GND = 0 V$

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
V _{ss} to GND	+0.3 V to -25 V
Analog Inputs ¹	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current per Channel, S or D	30 mA
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature, Pb free	260°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θ」Α	οιθ	Unit
10-Lead MSOP (4-Layer Board)	206	44	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

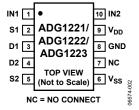


Figure 3. 10-Lead MSOP Pin Configuration

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	S1	Source Terminal. Can be an input or output.
3	D1	Drain Terminal. Can be an input or output.
4	D2	Drain Terminal. Can be an input or output.
5	S2	Source Terminal. Can be an input or output.
6	Vss	Most Negative Power Supply Potential.
7	NC	No Connect.
8	GND	Ground (0 V) Reference.
9	V _{DD}	Most Positive Power Supply Potential.
10	IN2	Logic Control Input.

Table 5. Pin Function Descriptions

Table 6. ADG1221/ADG1222 Truth Table

ADG1221 INx	ADG1222 INx	Switch Condition
1	0	On
0	1	Off

Table 7. ADG1223 Truth Table

ADG1223 INx	Switch 1 Condition Switch 2 Condition	
0	Off	On
1	On	Off

TERMINOLOGY

Idd

The positive supply current.

Iss The negative supply current.

 $V_{\rm D}\left(V_{s}\right)$ The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 $I_{\rm D} \mbox{ (Off)}$ The drain leakage current with the switch off.

 $\mathbf{I}_{D}\text{, }\mathbf{I}_{S}\left(On\right)$ The channel leakage current with the switch on.

V_{INL} The maximum input voltage for Logic 0.

V_{INH} The minimum input voltage for Logic 1.

$$\begin{split} I_{\text{INL}}\left(I_{\text{INH}}\right) \\ \text{The input current of the digital input.} \end{split}$$

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

C_D , C_S (On)

The on switch capacitance, measured with reference to ground.

CIN

The digital input capacitance.

ton

The delay between applying the digital control input and the output switching on (see Figure 26).

toff

The delay between applying the digital control input and the output switching off (see Figure 26).

t_{BBM}

Off time or on time measured between the 90% points of both switches, when switching from one address state to another (ADG1223 only).

Q_{INJ} (Charge Injection)

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

–3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N (Total Harmonic Noise Plus Distortion)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TYPICAL PERFORMANCE CHARACTERISTICS

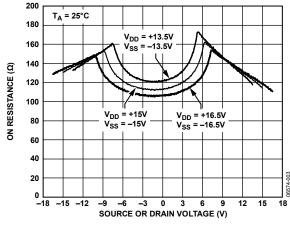


Figure 4. On Resistance as a Function of V_S (V_D), Dual Supply

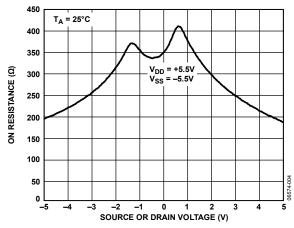


Figure 5. On Resistance as a Function of $V_S(V_D)$, Dual Supply

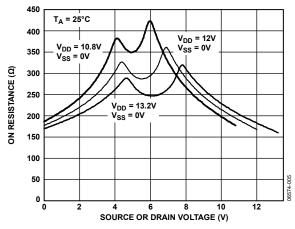


Figure 6. On Resistance as a Function of V_s (V_D), Single Supply

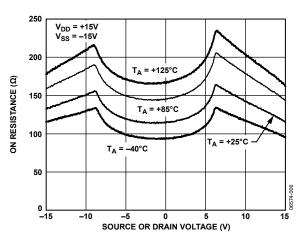


Figure 7. On Resistance as a Function of $V_{S}(V_{D})$ for Different Temperatures, Dual Supply

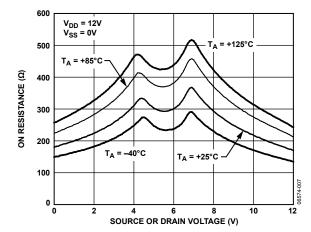


Figure 8. On Resistance as a Function of V_S (V_D) for Different Temperatures, Single Supply

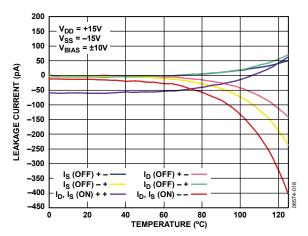


Figure 9. Leakage Current as a Function of Temperature, Dual Supply

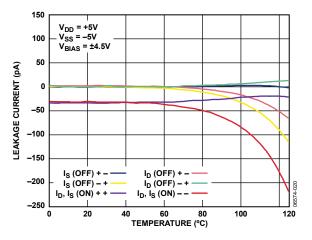


Figure 10. Leakage Current as a Function of Temperature, Dual Supply

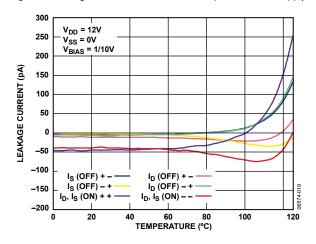


Figure 11. Leakage Current as a Function of Temperature, Single Supply

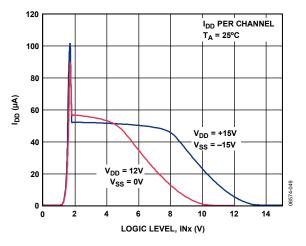
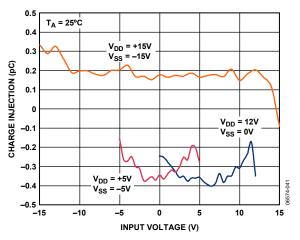
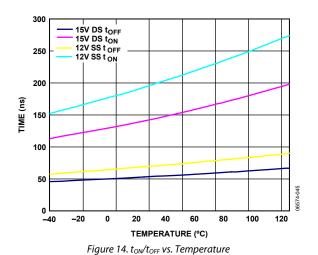




Figure 12. IDD vs. Logic Level

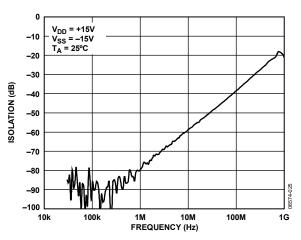


Figure 15. Off Isolation vs. Frequency

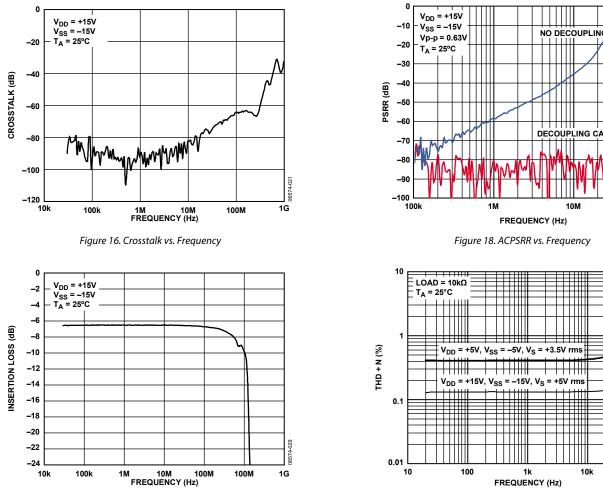
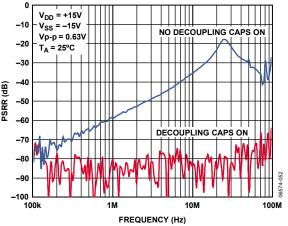



Figure 17. Insertion Loss vs. Frequency

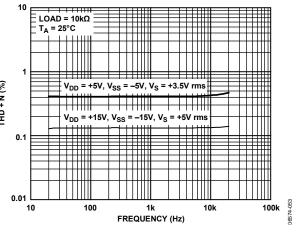
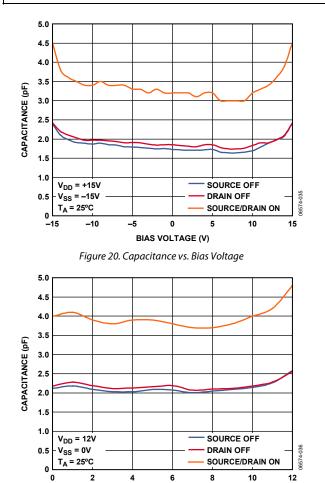
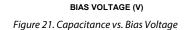
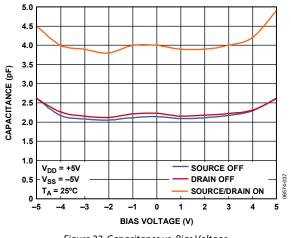
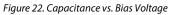
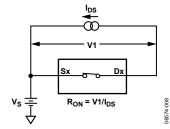
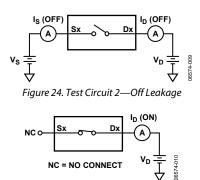






Figure 19. THD + N vs. Frequency





TEST CIRCUITS

Figure 23. Test Circuit 1—On Resistance

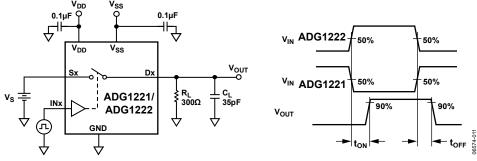


Figure 26. Test Circuit 4—Switching Times

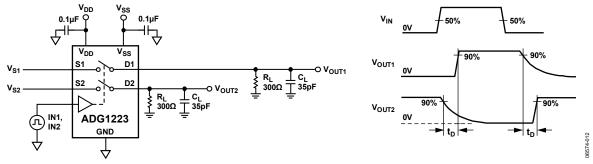
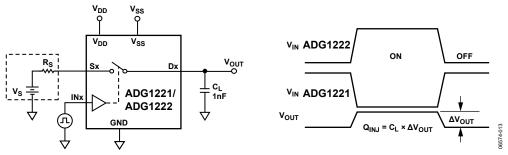
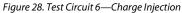




Figure 27. Test Circuit 5—Break-Before-Make Time Delay

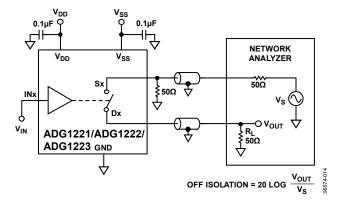
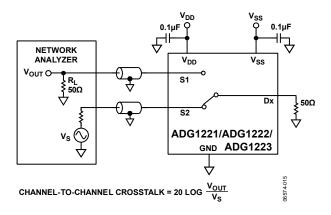
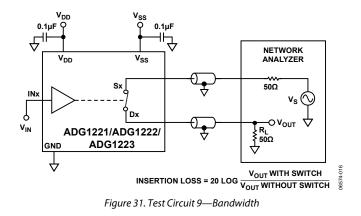
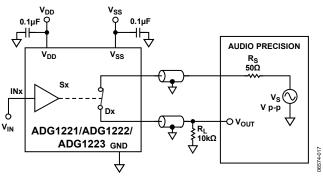


Figure 29. Test Circuit 7—Off Isolation

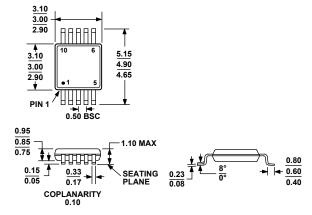

Figure 30. Test Circuit 8—Channel-to-Channel Crosstalk

Figure 32. Test Circuit 10—Total Harmonic Distortion + Noise

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 33. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG1221BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S27
ADG1221BRMZ-REEL7	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S27
ADG1222BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S28
ADG1222BRMZ-REEL7	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S28
ADG1223BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S2J
ADG1223BRMZ-REEL7	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S2J

 1 Z = Pb-free part.

NOTES

ANALOG DEVICES

www.analog.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG1221BRMZ ADG1223BRMZ ADG1223BRMZ-REEL7 ADG1222BRMZ ADG1222BRMZ-REEL7 ADG1221BRMZ-REEL7