

Product Specification PE4237

SPDT UltraCMOS[™] RF Switch

Single 3.0-volt power supply

Low insertion loss 0.35 dB at

1000 MHz, 0,45 dB at 2000 MHz

High isolation of 43 dB at 1000 MHz,

Single-pin CMOS or TTL logic control

ress

on point of

ckage

DC - 4000 MHz

35 dB at 2000

cal 1 dB comp

Available in a 6-lead D

ackage Ty

Features

Tvp

aure 2

2 d.

Product Description

The PE4237 RF Switch is designed to cover a broad range of applications from near DC to 4000 MHz. This reflective switch integrates on-board CMOS control logic driven by a single-pin, low voltage CMOS or TTL control input. Using a nominal +3volt power supply, a 1 dB compression point of +32 dBm can be achieved. The PE4237 also exhibits outstanding isolation of better than 43 dB at 1000 MHz and is offered in a small 3x3 mm DFN package.

The PE4237 is manufactured on Peregrine's UltraCMOS[™] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

RF1

Table 1. Electrical Specifications @ +25 °C, V_{DD} = 3 V(ZS = ZL =

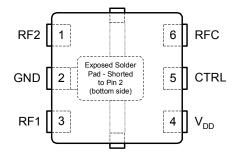
2000 MHz, 17 dBm

Table 1. Electrical Spe	$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
Parameter	Conditions	Minimum	Typical	Maximum	Units
Operation Frequency ¹		DC		4000	MHz
Insertion Loss	1000 MHz 2000 MHz		0.35 0.45	0.50 0.60	dB dB
Isolation – RFC to RF1/RF2	1000 MHz 2000 MHz	41 33	43 35		dB dB
Isolation – RF1 to RF2	1000 MHz 2000 MHz	33.5 26.5	35 28		dB dB
Return Loss	1000 MHz 2000 WHz	19 10.5	24 14		dB dB
'ON' Switching Time	50% CTRL to 0.1 dB final value, 2 GHz		200		ns
'OFF' Switching Time	50% CTRL to 25 dB isolation, 2 GHz		90		ns
Video Feedthrough ²			15		mV _{pp}
Input 1 dB Compression	2000 MHz	30	32		dBm

50

Notes: 1. Device linearity will begin to degrade below 10 MHz.

DC transient at the output of any port of the switch when the control voltage is switched from Low to


or High-to Low in a 50 Ω test set-up, measured with 1ns risetime pulses and 500 MHz bandwidth.

Input IP3

dBm

Figure 3. Pin Configuration

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	RF2	RF2 port. ¹
2	GND	Ground Connection. Traces should be physically short and connected to the ground plane. This pin is connected to the exposed solder pad that also must be soldered to the ground plane for best performance.
3	RF1	RF1 port. ¹
4	V _{DD}	Nominal 3 V supply connection.
5	CTRL	CMOS or TTL logic level: High = RFC to RF1 signal path Low = RFC to RF2 sign al path
6	RFC	Common RF port for switch.1

Notes: 1. All RF pins must be DC blocked with an external series capacitor or held at 0 V_{DC} .

Table 3. Operating Range

· •				
Parameter	Mìn	Тур	Max	Units
V _{DD} Power Supply Voltage	2.7	3.0	3.3	V
I_{DD} Power Supply Current ($V_{DD} = 3V$, $V_{CNTL} = 3V$)		29	35	μA
T _{OP} Operating temperature range	-40		85	°C
Control Voltage High	$0.7 \mathrm{xV}_{\mathrm{DD}}$	V		V
Control Voltage Low			$0.3 \mathrm{xV}_{\mathrm{DD}}$	V

Moisture Sensitivity Level

The Moisture sensitivity Level rating for the PE4237 in the Gread 3x3 DFN package is MSL1.

 Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V _{DD}	Power supply voltage	-0.3	4.0	V
VI	Voltage on any input except for the CTRL input	-0.3	V _{DD} + 0.3	V
V _{CTRL}	Voltage on CTRL input		5.0	V
T _{ST}	Storage temperature range	-65	150	°C
P _™	Input power (50 Ω)		35	dBm
V _{ESD}	ESD voltage (Human Body Model)		250	V

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Control Logic Input

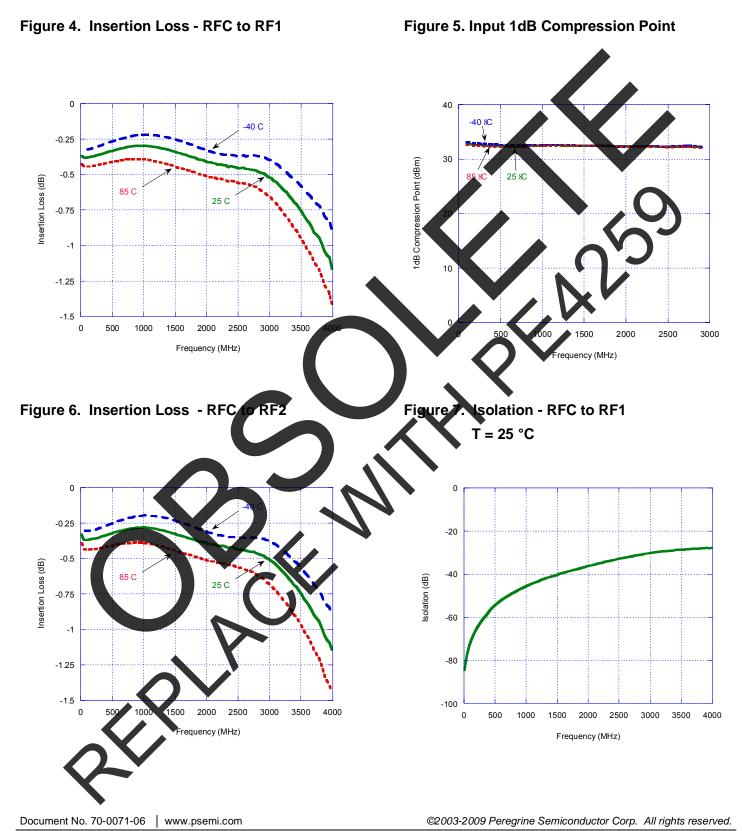
The control logic input plat (CTRL) is typically driven by a 3-volt CMOS logic level signal. For flexibility to support systems that have 5-volt control logic drivers, the control logic input has been designed to handle a standard 5-volt TTL control signal. This TTL control signal input must not exceed 5-volts or damage to the switch could result.

Table 5. Control Logic Truth Table

Control Voltage	Signal Path			
CTRL = CMOS or TTL High	RFC to RF1			
CTRL = CMOS or TTL Low	RFC to RF2			

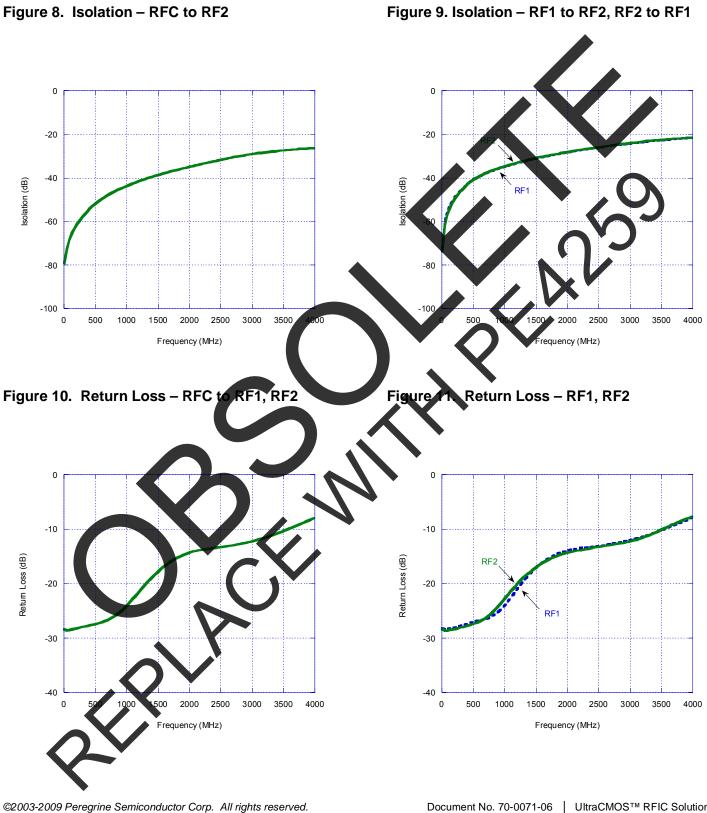
Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[™] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 4.


Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[™] devices are immune to latch-up.

©2003-2009 Peregrine Semiconductor Corp. All rights reserved.


Typical Performance Data @ -40 °C to 85 °C (Unless Otherwise Noted)

Page 3 of 8

Typical Performance Data @ 25 °C

Evaluation Kit

The SPDT Switch Evaluation Kit board was designed to ease customer evaluation of the PE4237 SPDT switch. The RF common port is connected through a 50 Ω transmission line to the top left SMA connector, J1. Port 1 and Port 2 are connected through 50 Ω transmission lines to the top two SMA connectors on the right side of the board, J2 and J3. A through transmission line connects SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

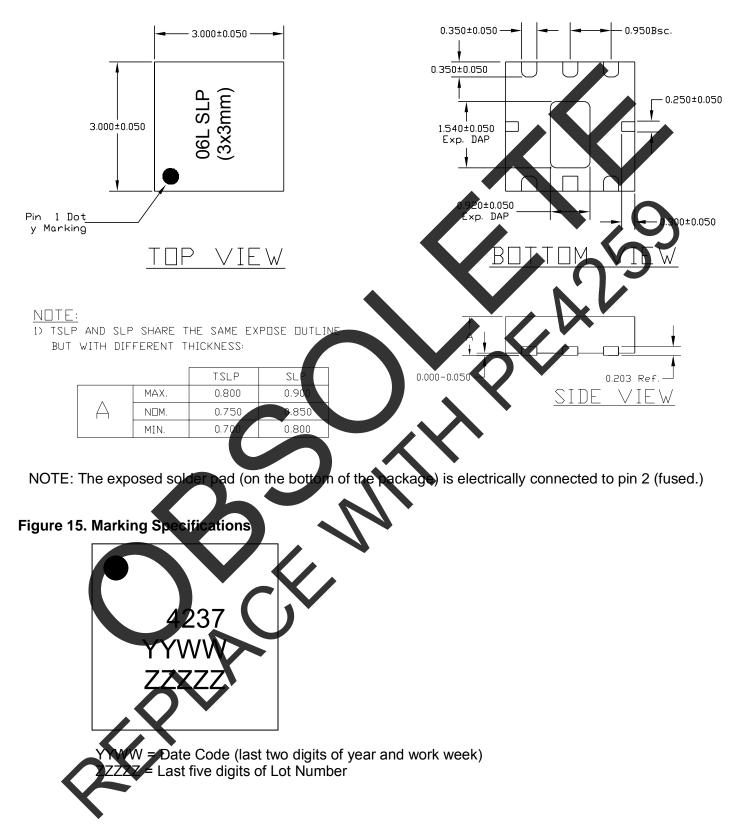
The board is constructed of a two metal layer FR4 material with a total thickness of 0.031". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 0.0476", trace gaps of 0.030", dielectric thickness of 0.028", metal thickness of 0.0021" and ε_r of 4.4.

J6 provides a means for controlling DC and digital inputs to the device. Starting from the lower left pin, the second pin to the right (J6-3) is connected to the device CNTL input. The fourth pin to the right (J6-7) is connected to the device V_{DD} input. A decoupling capacitor (100 pF) is provided on both CTRL and V_{DD} traces. It is the responsibility of the customer to determine proper supply decoupling for their design application. Removing these components from the evaluation board has not been shown to degrade RF performance.

Figure 12. Evaluation Board Layouts

Peregrine Specification 101/0085

Figure 13. Evaluation Board Schematic


cregrine Specification 102/0110

Document No. 70-0071-06 | www.psemi.com

Figure 14. Package Drawing

6-lead DFN

©2003-2009 Peregrine Semiconductor Corp. All rights reserved.

Figure 16. Tape and Reel Specifications

6-lead DFN

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
4237-51	4237	PE4237G-06DFN 3x3mm-12800F	Green 6-lead 3x3 mm DFN	Tape or loose
4237-52	4237	PE4237G-06DFN 3x3mm-3000C	Green 6-lead 3x3 mm DFN	3000 units / T&R
4237-00	PE4237-EK	PE4237-06DFN 3x3mm-EK	Evaluation Kit	1 / Box

Document No. 70-0071-06 | www.psemi.com

©2003-2009 Peregrine Semiconductor Corp. All rights reserved.

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax : +33-1-4741-9173

High-Reliability and Defense Products

Americas San Diego, CA, USA Phone: 858-731-9475 Fax: 848-731-9499 Peregrine Semiconductor, Asia Pacific (APAC) Shanghai, 200040, P.R. China

Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

Peregrine Semiconductor, Kore

#B-2607, Kolon Tripolis, 210 Geumgok-dong, Bundang gu, Seongnam-si Gyeonggi-do, 463-943 South Korea Tel: +82-31-728-3939 Fax: +82-31-728-3940

Peregrine Semiconductor K.K., Japan

Teikoku Hotel Tower 10B-6 1-1-1 Uchisaiwai-cho, Chiyoda-ku Tokyo 100-0011 Japan Tel: +81-3-3502-5211 Fax: +81-3-3502-5213

Europe/Asia-Pacific Aix-En-Provence Cedex 3, France Phone: +33-4-4239-3361 Fax: +33-4-4239-7227

For a list of representatives in your area, please refer to our Web site at: www.psemi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a DCN (Document Change Notice).

©2003-2009 Peregrine Semiconductor Corp. All rights reserved.

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0071-06 | UltraCMOS™ RFIC Solutions