

The FFLI series is specifically designed for DC filtering applications such as DC link. This range offers solutions for voltage from 800V up to 1400V.

The Controlled Self Healing Technology, essential to ensure a safe and reliable behaviour, is achieved using a fully dry solution with polypropylene metallized and segmented film. Standard designs proposed in this catalogue are covering a wide range of voltage and capacitance values.

In case of specific requirements about shape and performances, please feel free to contact your local AVX representative.

PACKAGING MATERIAL

Aluminium cylindrical case filled polyurethane resin.

Self extinguishing polyurethane resin (V0 : in accordance with UL94)

Self extinguishing plastic cover (V0 : in accordance with UL94) RoHS components

M6/10 Female connections or M8/20 Male connections

STANDARDS

- IEC 61071: Power electronic capacitors
- IEC 61881: Railway applications, rolling stock equipment, capacitors for power electronics
- IEC 60068-2: Environmental testing
- IEC 61373: Shock and vibrations
 - UL 94: Fire requirements

HOW TO ORDER

i**c Vo** lene **C** B =

Q = 1400V

Capacitance EIA Code

0337

Capacitance Tolerances -K = ±10% J

Κ

Terminal Code – – = Male Threaded JE = Female Threaded

DEFINITIONS

C _n (μF)	capacitance	nominal value of the capacitance measured at θ_{amb} = 25 ± 10°C
U _n (V)	rated DC voltage	maximum operating peak voltage of either polarity (non-reversing type waveform), for which the capacitor has been designed for continuous operation
U _w (V)	working voltage	value of the maximum operating recurrent voltage for a given hot spot temperature and an expected lifetime
$U_{r}(V)$	ripple voltage	peak-to-peak alternating component of the unidirectional voltage
L _s (nH)	parasitic inductance	capacitor series self-inductance
$\mathbf{R}_{s}(m\Omega)$	series resistance	capacitor series resistance due to galvanic circuit
I _{rms} (A)	RMS current	RMS current value for continuous operation under natural convection generating 40°C overheating
θ _{amb} (°C)	cooling air temperature	temperature of the cooling air measured at the hottest position of the capacitor, under steady-state conditions, midway between two units NOTE If only one unit is involved, it is the temperature measured at a point approximately 0.1 m away from the capacitor container and at two- thirds of the height from its base
θ_{HS} (°C)	hot spot temperature	highest temperature obtained inside the case of the capacitor in thermal equilibrium
I²t (A²s)	integral of action	maximum repetitive integral of action that galvanic circuit is able to withstand

CHARACTERISTICS

Capacitance range C _n	105µF to 3000µF
Tolerance on C _n	±10%
Rated DC voltage Un	800 to 1400V
Lifetime at U_n and 65°C hot-spot temperature and $\Delta C / C < 2\%$	100,000h
Parasitic inductance L_s	35 to 60nH
Maximum rms current I _{rms}	up to 112A _{rms}
Test voltage between terminals @ 25°C	1.5 x Un for 10s
Test voltage between terminals and Case @ 25°C	4kVrms @ 50Hz for 10s
Dielectric	polypropylene
Climatic Category	40 / 95 / 56 (IEC 60068)
Working temperature	-40°C / +95°C (according to the power dissipated)
Storage temperature	-40°C / +85°C
Calorific value	40 MJ/kg

LIFETIME EXPECTANCY VS HOT SPOT TEMPERATURE AND VOLTAGE

HOW TO CHOSE THE RIGHT CAPACITOR

The capacitor lifetime depends on the working voltage and the hot spot temperature.

Our caps are designed to meet 100000 hours lifetime at rated voltage and 65°C hot spot temperature. In accordance with operating conditions, please calculate the hot spot temperature and deduce from this calculation if the obtained lifetime can suit the application.

1. From the tables, select a capacitor with required capacitance

C_n and voltage U_n .

Calculate the maximum ripple voltage allowed for the selected cap: $U_{\rm rmax}$ = $0.2 U_{\rm n}$

If $U_r > U_{rmax}$, select a capacitor with higher rated voltage

Make sure I_{rms} application < I_{rms} table

Copy out:

- · serial resistance (Rs): see table of values
- thermal resistances Rth

2. Hot spot temperature calculation

Total losses are calculated as follow: Pt=Pj+Pd

Joule losses: $P_j = R_s \times I_{rms^2}$

Dielectric losses: $P_d = Q x tg \delta_0$ with

- Q(reactive power) = $\frac{I_{mms}^2}{C\omega}$ for a sinusoidal waveform
- $tg\delta_0 = 2 \times 10^{-4}$ (dielectric losses of polypropylene)

Hot spot temperature will be:

 $\theta_{HS} = \theta_{amb} + (P_j + P_d) \times R_{th}$

$\boldsymbol{\theta}_{\text{HS}}$ absolute maximum is 95°C

If temperature is higher than $95^\circ\mathrm{C},$ come back to #1 and start again with another selection.

R_{th}: thermal resistance between case and ambient air

The Important Information/Disclaimer is incorporated in these specifications by reference and should be reviewed in full before placing any order.

3. Refer to the curve and deduce the lifetime vs U_w/U_n ratio

eg: rated voltage 1000V working voltage 1050V $\rho = 1.05 \Rightarrow$ lifetime 50,000 hours @ 65°C hot spot temperature

Please, find a calculation form at the end of the catalog

MTBF CALCULATION

Based on Return Of Experience from the field of more than 30 years, we have established the following relation. The failure rate λ_B depends on hot spot temperature θ_{HS} and charge ratio ρ .

$$\rho = U_w/U_n$$

$$\lambda_{_{B}} = 3 \times 10^{2,75(\rho-1)} \times e^{\left(3,2\left(\frac{\theta_{_{HS}}+273}{358}\right)^{30}\right)} \times 10^{-9}$$
 in failures/hour

GENERAL FAILURE RATE

 $\lambda = \lambda_B x \pi_Q x \pi_B x \pi_E$ failures/hour $\cdot \pi_Q, \pi_B$ and π_E see following tables

Qualification	Qualification factor πQ
Product qualified on IEC61071 and internal qualification	1
Product qualified on IEC61071	2
Product answering on another norm	5
Product without qualification	15

Environment	Environment factor πE
On ground (good conditions)	1
On ground (fixed materials)	2
On ground (on board)	4
On ship	9
On plane	15

Environment	Environment factor πB
Favorable	1
Unfavourable	5

MEAN TIME BETWEEN FAILURE (MTBF)

MTBF = $1/\lambda$ hours

SURVIVAL FUNCTION

 $N = N_0 x \exp(-\lambda t)$

N is the number of pieces still working after t hours.

 N_0 is the number of pieces at the origin (t = 0)

FAILURE MODE

Main failure mode due to AVX's **Controlled Self-Healing Technology** is only losses of capacitance. Thanks to **Controlled Self-Healing solution** to interrupt self-healing process in order to prevent avalanche effect due to polypropylene molecular cracking producing gas and potential explosion in confined box for none **Controlled Self-Healing capacitors**.

DIMENSIONS

D (mm)	75	85	100	116
A (mm)	32	32	50	50
Dt (mm)	12	12	15	15
Hc (mm)	30	30	40	40

	Max Torque (Nm)			
M6	4.5			
M8	8.5			
M12	15			

	Distance termi	nal to terminal	Distance terminal to case		
	(m	m)	(m	m)	
D (mm)	creepage clearance		creepage	clearance	
75	40	19	47	45	
85	40	19	52	50	
100	55	34	59	57	
116	55	34	67	65	

MECHANICAL MOUNTING

Capacitors enclosure presents a M12 x 16 bolt in order to fix the capacitor. Over height (H) more than 1.5 x D (diameter of tube), we recommend to clamp (constraint < 35daN), just below the plastic cover, the capacitor in order to limit oscillations in case of potential Shock& Vibration stress.

RATINGS AND PART NUMBER REFERENCE

Part Number		D	н	ا _{rms}	² t (A ² c)	Typical L _s	Typical R _s	R _{th}	Typical Weight (g)
	(µ)					(111)	(1132)		Weight (g)
EEL 1680207K**	200	75	105	54	12	25	21	4.5	600
	290	7.5	105	54	24	25	3.1	4.5	700
	500	75	105	40	12	50	2.3	4.0	950
	500	7.5	155	49 50	13	50	4.1	4.0	1100
	080	85	100	59	24	50	3.1	3./	1200
	1000	80	160	38	<u> </u>	60 E0	3.5	3.4	1300
	1000	100	100	73	52	50	2.2	3.4	1900
FFLIOBIZU/K	1200	100	180	70	52	60	2.5	3.3	1800
FFLI6B135/K	1350	116	155	86	95	50	1./	3.2	2000
FFLI6B1607K	1600	116	180	80	95	60	2.0	3.1	2400
FFLI6B1907K	1900	116	240	112	320	40	1.1	2.9	3200
FFLI6B2407K	2400	116	290	111	320	50	1.2	2.7	3900
FFLI6B3007K	3000	116	340	109	320	60	1.4	2.4	4500
**	1 1			U _n dc 1000	JV				1 100
FFLI6L0197K	190	/5	105	49	8	35	3.7	4.5	600
FFLI6L026/K**	260	85	105	60	16	35	2.8	4.0	/00
FFLI6L0337K	330	/5	155	45	8	50	4.9	4.0	850
FFLI6L045/K	450	85	155	54	16	50	3.7	3.7	1100
FFLI6L0547K ^{**}	540	85	180	53	16	60	4.2	3.4	1300
FFLI6L0657K ^{**}	650	100	155	66	33	50	2.7	3.4	1500
FFLI6L0787K ^{^^}	780	100	180	64	33	60	3.0	3.3	1800
FFLI6L0907K**	900	116	155	79	66	50	2.0	3.2	2000
FFLI6L1107K**	1100	116	180	75	66	60	2.3	3.1	2400
FFLI6L1307K**	1300	116	240	107	210	40	1.2	2.9	3200
FFLI6L1607K**	1600	116	290	103	210	50	1.4	2.7	3900
FFLI6L2007K**	2000	116	340	102	210	60	1.6	2.4	4500
				U_dc 115	v				
FFLI6U0157K**	150	75	105	46	7	35	4.2	4.5	600
FFLI6U0207K**	200	85	105	56	12	35	3.2	4.0	700
FFLI6U0267K**	260	75	155	42	7	50	5.6	4.0	850
FFLI6U0357K**	350	85	155	51	12	50	4.2	3.7	1100
FFLI6U0437K**	430	85	180	50	12	60	4.7	3.4	1300
FFLI6U0537K**	530	100	155	64	27	50	2.9	3.4	1500
FFLI6U0637K**	630	100	180	61	27	60	3.3	3.3	1800
FFLI6U0727K**	720	116	155	75	51	50	2.2	3.2	2000
FFLI6U0867K**	860	116	180	72	51	60	2.5	3.1	2400
FFLI6U1007K**	1000	116	240	99	160	40	1.4	2.9	3200
FFLI6U1307K**	1300	116	290	99	160	50	1.5	2.7	3900
FFLI6U1607K**	1600	116	340	99	160	60	1.7	2.4	4500
				U _n dc 140	OV				
FFLI6Q1056K**	105	75	105	43	5	35	4.9	4.5	600
FFLI6Q0147K**	140	85	105	51	9	35	3.8	4.0	700
FFLI6Q1856K**	185	75	155	40	5	50	6.4	4.0	850
FFLI6Q0257K**	250	85	155	47	9	50	4.8	3.7	1100
FFLI6Q0307K**	300	85	180	46	9	60	5.5	3.4	1300
FFLI6Q0367K**	360	100	155	58	19	50	3.5	3.4	1500
FFLI6Q0447K**	440	100	180	56	19	60	3.9	3.3	1800
FFLI6Q0507K**	500	116	155	69	36	50	2.6	3.2	2000
FFLI6Q0607K**	600	116	180	66	36	60	3.0	3.1	2400
FFLI6Q0707K**	700	116	240	96	120	40	1.5	2.9	3200
FFLI6Q0907K**	900	116	290	93	120	50	1.7	2.7	3900
FFLI6Q1107K**	1100	116	340	91	120	60	2.0	2.4	4500

**Insert - - for male terminals or JE for female terminals

CALCULATION FORM SPECIFICATION

Your	choice
------	--------

Capacitance	С (µF)
Working voltage	U _w (V)
Rms current	I _{rms} (A _{rms})
Frequency	f (Hz)
Ripple voltage	U _r (V)
Ambient temperature	θ _{amb} (°C)
Lifetime @ U_w , I_{rms} and θ_{amb}	hours
Parasitic inductance	L (nH)
Cooling conditions	

PN		
Capacitance	C (µF)	
Rated voltage	U _n (V)	
Serial resistance	R _s (mΩ)	
between hot spot and case	R _{th} (°C/W)	

CALCULATIONS

Maximum ripple voltage	$U_{\rm rmax} = 0.2 U_{\rm n}$	U _{rmax} =	V
The maximum ripple voltage of the selected capacitor must be in any case higher than the ripple voltage of your application			
Ratio U _w /U _n	$\rho = U_w/U_n$	ρ =	
Joule losses	$P_j = R_s x I_{rms2}$	P _j =	W
Dielectric losses	$P_d = Qxtg\delta0=Qx 2.10^{-4}$	P _d =	W
Hot spot temperature	$\theta_{HS} = \theta_{amb} + (P_j + P_d) x R_{th}$	θ _{HS} =	°C
The hot spot temperature must be in any case lower than 95°C			

LIFETIME EXPECTANCY VS HOT SPOT TEMPERATURE AND VOLTAGE

Expected lifetime at hot spot calculated and U = U_w

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

