PCF8545

Universal LCD driver for multiplex rates up to 1:8 Rev. 1 — 13 November 2013 Prod

Product data sheet

General description 1.

The PCF8545 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD)¹ with low multiplex rates. It generates the drive signals for any multiplexed LCD containing up to eight backplanes, and up to 320 elements. The PCF8545 is compatible with most microcontrollers and communicates via the two-line bidirectional I2C-bus (PCF8545A) or a three line unidirectional SPI-bus (PCF8545B). Communication overheads are minimized using a display RAM with auto-incremented addressing.

For a selection of NXP LCD segment drivers, see Table 40 on page 61.

Features and benefits 2.

- Single-chip 320 elements LCD controller and driver
- Wide range for digital power supply: from 1.8 V to 5.5 V
- LCD supply range from 2.5 V up to 5.5 V
- LCD and logic supplies may be separated
- Low power consumption
- Selectable backplane drive configuration: 4, 6, or 8 backplane multiplexing
- Selectable display bias configuration
- 320-bit RAM for display data storage
- 400 kHz I²C-bus interface (PCF8545A)
- 5 MHz SPI-bus interface (PCF8545B)
- Programmable frame frequency in the range of 60 Hz to 300 Hz in steps of 10 Hz; factory calibrated
- 320 segments driven allowing:
 - up to 40 7-segment alphanumeric characters
 - up to 20 14-segment alphanumeric characters
 - any graphics of up to 320 elements
- Manufactured in silicon gate CMOS process

Applications

Industrial and consumer products

The definition of the abbreviations and acronyms used in this data sheet can be found in Section 21.

Universal LCD driver for multiplex rates up to 1:8

4. Ordering information

Table 1. Ordering information

Type number Interface type	Package				
	Name	Description	Version		
PCF8545ATT	I ² C-bus	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1	
PCF8545BTT	SPI-bus	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1	

4.1 Ordering options

Table 2. Ordering options

Product type number	Sales item (12NC)		IC revision	Delivery form
PCF8545ATT/A	935302987118	PCF8545ATT/AJ	1	tape and reel, 13 inch
PCF8545BTT/A	935302988118	PCF8545BTT/AJ	1	tape and reel, 13 inch

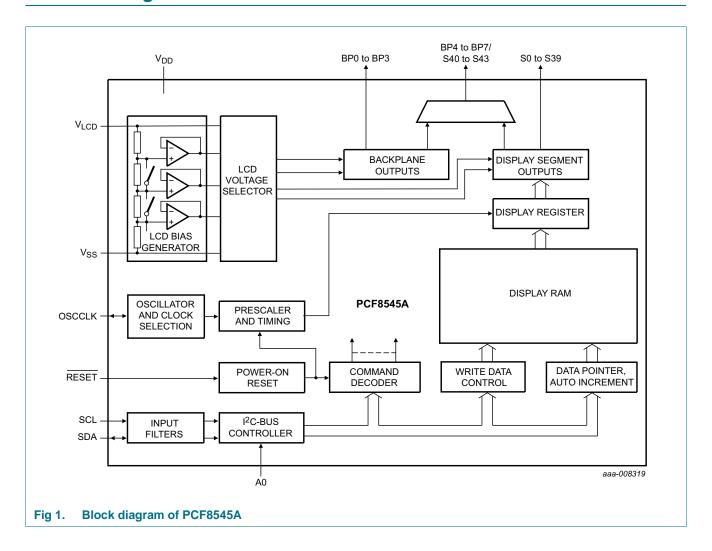
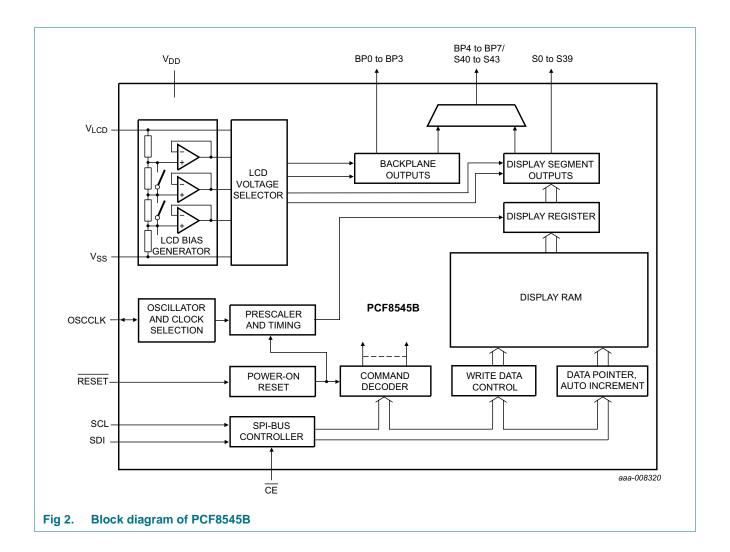

5. Marking

Table 3. Marking codes


Type number	Marking code
PCF8545ATT/A	PCF8545ATT
PCF8545BTT/A	PCF8545BTT

Universal LCD driver for multiplex rates up to 1:8

6. Block diagram

Universal LCD driver for multiplex rates up to 1:8

Product data sheet

Universal

LCD driver for multiplex rates up to 1:8

Pinning information

7.1 Pinning

Universal LCD driver for multiplex rates up to 1:8

7.2 Pin description

Table 4. Pin description of PCF8545ATT and PCF8545BTT

Input or input/output pins must always be at a defined level (V_{SS} or V_{DD}) unless otherwise specified.

Pin	Symbol	Туре	Description
1 to 11	S9 to S19	output	LCD segment
20 to 31	S20 to S31	output	LCD segment
43	RESET	input	active LOW reset input
44	V _{SS}	supply	ground supply voltage
45	V_{DD}	supply	supply voltage
46	OSCCLK	input/output	external clock input/internal oscillator output
47	V _{LCD} [1]	supply	LCD supply voltage
48 to 56	S0 to S8	output	LCD segment

Pin layout depending on backplane swap configuration[2]

	BPS = 0[3]	BPS = 1		
12	BP0	S32	output	LCD backplane/LCD segment
13	BP1	S33		
14	BP2	S34		
15	BP3	S35		
16	BP4/S43	S36		
17	BP5/S42	S37		
18	BP6/S41	S38		
19	BP7/S40	S39		
32	S32	BP7/S40		
33	S33	BP6/S41		
34	S34	BP5/S42		
35	S35	BP4/S43		
36	S36	BP3		
37	S37	BP2		
38	S38	BP1		
39	S39	BP0		

Pin layout depending on product and bus type

	PCF8545ATT	PCF8545BTT		
40	A0		input	I ² C-bus slave address selection
		CE	input	SPI-bus chip enable - active LOW
41	SCL		input	I ² C-bus serial clock
		SCL	input	SPI-bus serial clock
42	SDA		input/output	I ² C-bus serial data
		SDI	input	SPI-bus data input

^[1] V_{LCD} must be equal to or greater than V_{DD} .

^[2] Effect of backplane swapping is illustrated in Figure 5 on page 9.

^[3] Bit BPS is explained in <u>Section 8.1.3 on page 8</u>.

Universal LCD driver for multiplex rates up to 1:8

8. Functional description

The PCF8545 is a versatile peripheral device designed to interface any microcontroller to a wide variety of LCDs. It can directly drive any multiplexed LCD containing up to eight backplanes and up to 44 segments.

8.1 Commands of PCF8545

The PCF8545 is controlled by 9 commands, which are defined in <u>Table 5</u>. Any other combinations of operation code bits that are not mentioned in this document may lead to undesired operation modes of PCF8545.

Table 5. Commands of PCF8545

Command name	ne Register Bits								Reference		
		selection RS[1:0] ^[1]		6	5	4	3	2	1	0	
initialize	0	0	0	0	0	1	0	1	1	0	<u>Section 8.1.1</u>
OTP-refresh	0	0	1	1	1	1	0	0	0	0	Section 8.1.2
mode-settings	0	0	0	1	0	1	BPS	INV	PD	Е	Section 8.1.3
oscillator-control	0	0	0	0	0	1	1	EFR	COE	OSC	Section 8.1.4
set-MUX-mode	0	0	0	0	0	0	0	0	M[1:0]		Section 8.1.5
set-bias-mode	0	0	0	0	0	0	0	1	B[1:0]		Section 8.1.6
frame-frequency	0	0	0	0	1	FD[4	i:0]				Section 8.1.7
load-data-pointer	0	0	1	0	0 DP[5:0] <u>Section 8</u>			Section 8.1.8			
write-RAM-data	0	1	D[7:	0]							Section 8.1.9

^[1] Information about control byte and register selection see <u>Section 9.1 on page 36</u>.

8.1.1 Command: initialize

This command generates a chip-wide reset. It has the same function as the $\overline{\text{RESET}}$ pin. Reset takes 1 ms to complete.

Table 6. Initialize - initialize command bit description

Bit	Symbol	Value	Description
7 to 0	-	00010110	fixed value

8.1.2 Command: OTP-refresh

During production of the device, each IC is calibrated to achieve the specified accuracy of the frame frequency. This calibration is performed on EPROM cells called One Time Programmable (OTP) cells. The device reads these cells every time the OTP-refresh command is sent. The OTP-refresh command has to be sent after a reset has been made and before the display is enabled.

This command will be completed after a maximum of 30 ms and requires either the internal or external clock to run. If the internal oscillator is not used, then a clock must be supplied to the OSCCLK pin. If the OTP-refresh instruction is sent and no clock is present, then the request is stored until a clock is available.

Remark: It is recommended not to enter power-down mode during the OTP refresh cycle.

PCF8545

Universal LCD driver for multiplex rates up to 1:8

Table 7. OTP-refresh - OTP-refresh command bit description

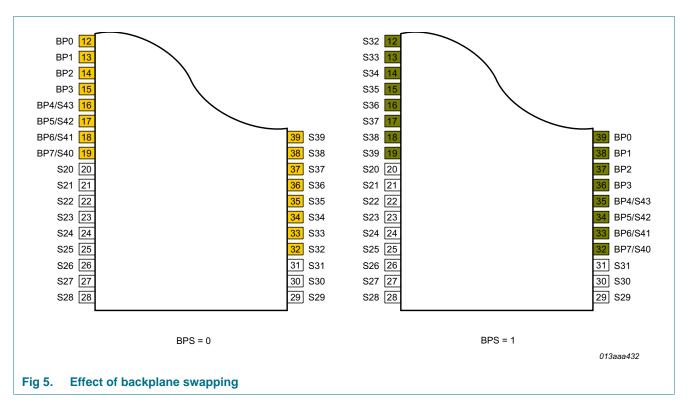
Bit	Symbol	Value	Description
7 to 0	-	11110000	fixed value

8.1.3 Command: mode-settings

Table 8. Mode-settings - mode settings command bit description

	mode countings in	mode cominge command by docomplian.				
Bit	Symbol	Value	Description			
7 to 4	-	0101	fixed value			
3	BPS		backplane swapping			
		O[1]	backplane configuration 0			
		1	backplane configuration 1			
2 INV			set inversion mode			
	0[1][2]	Driving scheme A: LCD line inversion mode				
		1	Driving scheme B: LCD frame inversion mode			
1	PD		set power mode			
		1	power-down mode; backplane and segment outputs are connected to $V_{\mbox{\footnotesize{SS}}}$ and the internal oscillator is switched off			
		0[1]	power-up mode			
0	Е		display switch			
		0[1]	display disabled; backplane and segment outputs are connected to V_{SS}			
		1	display enabled			

^[1] Default value.


8.1.3.1 Backplane swapping

Backplane swapping can be configured with the BPS bit (see <u>Table 8</u>). It moves the location of the backplane and the associated segment outputs from one side of the PCF8545 to the other. Backplane swapping is sometimes desirable to aid with the routing of PCBs that do not use multiple layers.

The BPS bit has to be set to the required value before enabling the display. Failure to do so does not damage the PCF8545 or the display, however unexpected display content may appear.

^[2] See <u>Section 8.1.3.2</u>.

Universal LCD driver for multiplex rates up to 1:8

8.1.3.2 Line inversion (driving scheme A) and frame inversion (driving scheme B)

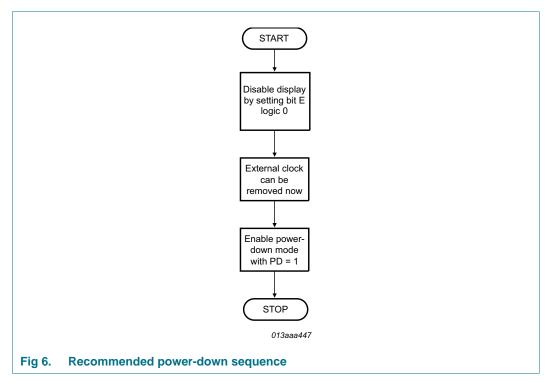
The DC offset of the voltage across the LCD is compensated over a certain period: line-wise in line inversion mode (driving scheme A) or frame-wise in frame inversion mode (driving scheme B). With the INV bit (see <u>Table 8</u>), the compensation mode can be switched.

In frame inversion mode, the DC value is compensated across two frames and not within one frame. Changing the inversion mode to frame inversion reduces the power consumption; therefore it is useful when power consumption is a key point in the application.

Frame inversion may not be suitable for all applications. The RMS voltage across a segment is better defined; however, since the switching frequency is reduced, there is possibility for flicker to occur.

The waveforms of <u>Figure 14 on page 24</u> to <u>Figure 17 on page 27</u> are showing line inversion mode. <u>Figure 18 on page 28</u> shows an example of frame inversion.

8.1.3.3 Power-down mode


The power-down bit (PD) allows the PCF8545 to be put in a minimum power configuration. To avoid display artifacts, enter power-down only after the display has been switched off by setting bit E to logic 0. During power-down, the internal oscillator is switched off.

Universal LCD driver for multiplex rates up to 1:8

Table 9. Effect of the power-down bit (PD)

Effect on function	Mode settings	Effect of setting PD		
		0	1	
backplane output	E = 1	normal function	V _{SS}	
segment output	E = 1	normal function	V_{SS}	
internal oscillator	OSC = 0, $COE = 1$	on	off	
OSCCLK pin	OSC = 0, COE = 1	output of internal oscillator frequency	V_{DD}	
OSCCLK pin	OSC = 1	input clock	clock input, can be logic 0, logic 1, or left floating	

With the following sequence, the PCF8545 can be set to a state of minimum power consumption, called power-down mode.

Remarks:

- It is necessary to run the power-down sequence before removing the supplies.
 Depending on the application, care must be taken that no other signals are present at the chip input or output pins when removing the supplies (see Section 10). Otherwise it may cause unwanted display artifacts. If an uncontrolled removal of the supply happens, the PCF8545 does not get damaged.
- Static voltages across the liquid crystal display can build up when the external LCD supply voltage (V_{LCD}) is on while the IC supply voltage is off, or the other way around. This may cause unwanted display artifacts. To avoid such artifacts, V_{LCD} and V_{DD} must be applied or removed together.

Universal LCD driver for multiplex rates up to 1:8

A clock signal must always be supplied to the device when the display is active.
 Removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid crystal. First disable the display and afterwards remove the clock signal.

8.1.3.4 Display enable

The display enable bit (E) is used to enable and disable the display. When the display is disabled, all LCD outputs go to V_{SS} . This function is implemented to ensure that no voltage can be induced on the LCD outputs as it may lead to unwanted displays of segments.

Recommended start-up sequences are found in Section 8.2.3

Remark: Display enable is not synchronized to an LCD frame boundary. Therefore using this function to flash a display for prolonged periods is not recommended due to the possible build-up of DC voltages on the display.

8.1.4 Command: oscillator-control

The oscillator-control command switches between internal and external oscillator and enables or disables the pin OSCCLK. It is also defines the external frequency.

Table 10. Oscillator-control - oscillator control command bit description

Bit	Symbol	Value	Description
7 to 3	-	00011	fixed value
2	EFR		external clock frequency applied on pin OSCCLK
		0[1]	9.6 kHz
		1	230 kHz
1	COE		clock output enable for pin OSCCLK
		0[1]	clock signal not available on pin OSCCLK; pin OSCCLK is in 3-state
		1	clock signal available on pin OSCCLK
0	OSC		oscillator source
		0[1]	internal oscillator running
		1	external oscillator used; pin OSCCLK becomes an input; used in combination with EFR to determine input frequency

^[1] Default value.

The bits OSC, COE, and EFR control the source and frequency of the clock used to generate the LCD signals (see <u>Figure 7</u>). Valid combinations are shown in <u>Table 11</u>.

Universal LCD driver for multiplex rates up to 1:8

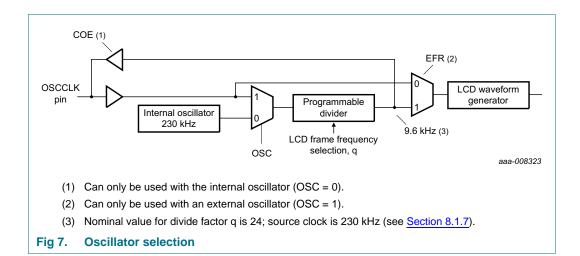


Table 11. Valid combinations of bits OSC, EFR, and COE

osc	COE	EFR	OSCCLK pin	Clock source
0	0	not used	inactive; may be left floating	internal oscillator used
0	1	not used	output of internal oscillator frequency (prescaler)	internal oscillator used
1	not used	0	9.6 kHz input	OSCCLK pin
1	not used	1	230 kHz input	OSCCLK pin

Table 12. Typical use of bits OSC, EFR, and COE

Usage	OSC	COE	EFR
LCD with internal oscillator	0	0	not used
LCD with external oscillator (230 kHz)	1	not used	1
LCD with external oscillator (9.6 kHz)	1	not used	0

8.1.4.1 Oscillator

The system is designed to operate from a 9.6 kHz or a 230 kHz clock. This clock can be sourced internally or externally. The internal logic and LCD drive signals of the PCF8545 are timed either by the internal oscillator or from the clock externally supplied.

Internal clock: When the internal oscillator is used, all LCD signals are generated from it. The oscillator runs at nominal 230 kHz. The relationship between this frequency and the LCD frame frequency is detailed in Section 8.1.7. Control over the internal oscillator is made with the OSC bit (see Section 8.1.4).

It is possible to make the internal oscillator signal available on pin OSCCLK by using the oscillator-control command (see <u>Table 10</u>) and configuring the clock output enable (COE) bit. If not required, the pin OSCCLK should be left open or connected to V_{SS} . At power-on the signal at pin OSCCLK is disabled and pin OSCCLK is in 3-state.

Clock output is only valid when using the internal oscillator. The signal appears on the OSCCLK pin.

An intermediate clock frequency is available at the OSCCLK pin. The duty cycle of this clock varies with the chosen divide ratio.

PCF8545

NXP Semiconductors

Universal LCD driver for multiplex rates up to 1:8

Table 13. OSC	CLK pin state depen	lable 13. OSCCLK pin state depending on configuration						
PD	osc	COE	EFR	OSCCLK pin[1]				
power-down	n.a.	off	n.a.	3-state ^[2]				
power-down	n.a.	on	n.a.	V_{DD}				
power-up	internal oscillator	off	n.a.	3-state				
		on	n.a.	9.6 kHz output[3]				
	external oscillator	n.a.	9.6 kHz	9.6 kHz input				
			230 kHz	230 kHz input				

OSCOL V nin state depending an configuration

External clock: In applications where an external clock must be applied to the PCF8545, bit OSC (see Table 10) has to be set logic 1. In this case pin OSCCLK becomes an input.

The OSCCLK signal must switch between the V_{SS} and the V_{DD} voltage supplied to the chip.

The EFR bit determines the external clock frequency (230 kHz or 9.6 kHz). The clock frequency $(f_{clk(ext)})$ in turn determines the LCD frame frequency, see Table 14.

Remark: If an external clock is used, then this clock signal must always be supplied to the device when the display is on. Removing the clock may freeze the LCD in a DC state which damages the LCD material.

8.1.4.2 Timing and frame frequency

The timing of the PCF8545 organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. The timing also generates the LCD frame frequency which it derives as an integer division of the clock frequency (see Table 14). The frame frequency is a fixed division of the internal clock or of the frequency applied to pin OSCCLK when an external clock is used.

Table 14. LCD frame frequencies

Frame frequency	Typical external frequency (Hz)	Nominal frame frequency (Hz)	EFR bit	Value of q[1]
$f_{fr(LCD)} = \frac{f_{clk(ext)}}{48}$	9600	200	0	-
$f_{fr(LCD)} = \frac{f_{clk(ext)}}{48 \cdot q}$	230000	200	1	24

^[1] Other values of the frame frequency prescaler see Table 18.

When the internal clock is used, or an external clock with EFR = 1, the LCD frame frequency can be programmed by software in steps of approximately 10 Hz in the range of 60 Hz to 300 Hz (see Table 18). Furthermore the internal oscillator is factory calibrated, see Table 34 on page 50.

^[1] When RESET is active, the pin OSCCLK is in 3-state.

^[2] In this state, an external clock may be applied, but it is not a requirement.

^{[3] 9.6} kHz is the nominal frequency with q = 24, see Table 14.

Universal LCD driver for multiplex rates up to 1:8

8.1.5 Command: set-MUX-mode

The multiplex drive mode is configured with the bits described in Table 15.

Table 15. Set-MUX-mode - set multiplex drive mode command bit description

Bit	Symbol	Value	Description
7 to 2	-	000000	fixed value
1 to 0	M[1:0]	00[1], 01	1:8 multiplex drive mode; eight backplanes
		10	1:6 multiplex drive mode; 6 backplanes
		11	1:4 multiplex drive mode; 4 backplanes

^[1] Default value.

8.1.6 Command: set-bias-mode

The set-bias-mode command allows setting the bias level.

Table 16. Set-bias-mode - set bias mode command bit description

Bit	Symbol	Value	Description
7 to 2	-	000001	fixed value
1 to 0	B[1:0]	00[1]. 01	1/ ₄ bias
		11	1/3 bias
		10	½ bias

^[1] Default value.

8.1.7 Command: frame-frequency

With the frame-frequency command, the frame frequency for the display can be configured. The clock frequency determines the frame frequency.

Table 17. Frame-frequency - frame frequency and output clock frequency command bit description

Bit	Symbol	Value	Description
7 to 5	-	001	fixed value
4 to 0	FD[4:0]	see Table 18	frequency prescaler

When using an **external clock** it can be either a 230 kHz or a 9.6 kHz clock signal. The EFR bit (see <u>Table 10</u>) has to be set according to the external clock frequency.

When EFR is set to 9.6 kHz, then the LCD frame frequency is calculated with Equation 1:

$$f_{fr(LCD)} = \frac{f_{clk(ext)}}{48} \tag{1}$$

When EFR is set to 230 kHz, then the LCD frame frequency is calculated with Equation 2:

$$f_{fr(LCD)} = \frac{f_{clk(ext)}}{48 \cdot q} \tag{2}$$

where q is the frequency divide factor (see Table 18).

Remark: f_{clk(ext)} is the external input clock frequency to pin OSCCLK.

PCF8545

Universal LCD driver for multiplex rates up to 1:8

When the **internal oscillator** is used, the intermediate frequency may be output on the OSCCLK pin. Its frequency is given in <u>Table 18</u>.

Table 18. Frame frequency prescaler values for 230 kHz clock operation

FD[4:0]	Nominal LCD frame frequency (Hz)[1]	Divide factor, q	Intermediate clock frequency (Hz)
00000	59.9	80	2875
00001	70.5	68	3382
00010	79.9	60	3833
00011	90.4	53	4340
00100	99.8	48	4792
00101	108.9	44	5227
00110	119.8	40	5750
00111	129.5	37	6216
01000	140.9	34	6765
01001	149.7	32	7188
01010	159.7	30	7667
01011	171.1	28	8214
01100	177.5	27	8519
01101	191.7	25	9200
01110[2]	199.7	24	9583
01111	208.3	23	10000
10000	217.8	22	10455
10001	228.3	21	10952
10010	239.6	20	11 500
10011	252.2	19	12105
10100	266.2	18	12778
10101	281.9	17	13529
10110	299.5	16	14375
10111 to 11111	not used		

^[1] Nominal frame frequency calculated for the default clock frequency of 230 kHz.

8.1.8 Command: load-data-pointer

The load-data-pointer command defines the start address of the display RAM. The data pointer is auto incremented after each RAM write. The size of the display RAM is dependent on the current multiplex drive mode setting, see Table 19.

^[2] Default value.

Universal LCD driver for multiplex rates up to 1:8

Table 19. Load-data-pointer - load data pointer command bit description

	•		-
Bit	Symbol	Value	Description
7 to 6	-	10	fixed value
Multiple	ex drive mode 1:8		
5 to 0	DP[5:0]	00 00000[1] to 10 0111	6-bit binary value of 0 to 39
Multiple	ex drive mode 1:6		
5 to 0	DP[5:0]	000000 <u>[1]</u> to 101001	6-bit binary value of 0 to 41
Multiple	ex drive mode 1:4		
5 to 0	DP[5:0]	000000[1] to 101011	6-bit binary value of 0 to 43

^[1] Default value.

Remark: Data pointer values outside of the valid range are ignored and no RAM content is transferred until a valid data pointer value is set.

Filling of the display RAM is described in Section 8.9.

8.1.9 Command: write-RAM-data

This command initiates the transfer of data to the display RAM. Data is written into the address defined by the load-data-pointer command. RAM filling is described in Section 8.9.

Table 20. Write-RAM-data - write RAM data command bit description[1]

Bit	Symbol	Value	Description
7 to 0	D[7:0]	00000000 to 11111111	writing data byte-wise to RAM

^[1] For this command to be effective bit RS[1:0] of the control byte has to be set logic 01, see <u>Table 25 on page 36</u>.

8.2 Start-up and shut-down

8.2.1 Reset and Power-On Reset (POR)

After a reset and at power-on the PCF8545 resets to starting conditions as follows:

- 1. The display is disabled.
- 2. All backplane outputs are set to V_{SS}.
- 3. All segment outputs are set to V_{SS}.
- 4. Selected drive mode is: 1:8 with $\frac{1}{4}$ bias.
- 5. The data pointers are cleared (set logic 0).
- 6. RAM data is not initialized. Its content can be considered to be random.
- 7. The internal oscillator is running; no clock signal is available on pin OSCCLK; pin OSCCLK is in 3-state.

The reset state is as shown in Table 21.

Universal LCD driver for multiplex rates up to 1:8

Table 21. Reset state

Reset state of configurable bits shown in the command table format for clarity.

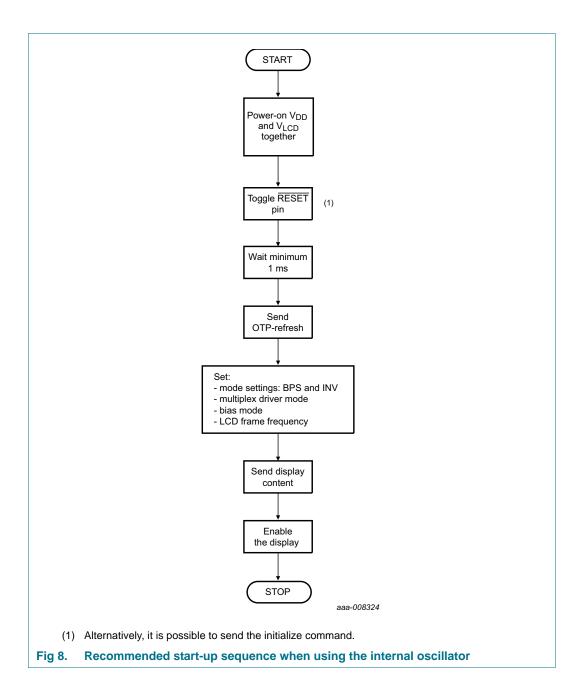
Associated command	Bits								
	7	6	5	4	3	2	1	0	
mode-settings	-	-	-	-	BPS = 0	INV = 0	PD = 0	E = 0	
oscillator-control	-	-	-	-	-	EFR = 0	COE = 0	OSC = 0	
set-MUX-mode	-	-	-	-	-	-	M[1:0] = 00		
set-bias-mode	-	-	-	-	-	-	B[1:0] = 00		
frame-frequency	-	-	-	FD[4:0] = 01110					
load-data-pointer	-	-	DP[5:0] = 0	00000					

The first command sent to the device after the power-on event must be the initialize command (see Section 8.1.1).

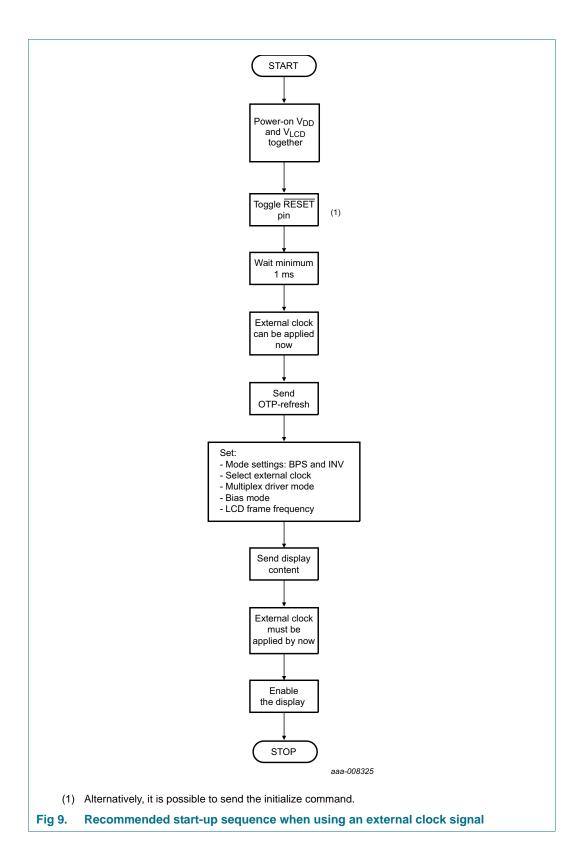
After Power-On Reset (POR) and before enabling the display, the RAM content should be brought to a defined state by writing meaningful content (for example, a graphic) otherwise unwanted display artifacts may appear on the display.

8.2.2 RESET pin function

The RESET pin of the PCF8545 sets all the registers to their default state. The reset state is given in Table 21. The RAM contents remains unchanged. After the reset signal is removed, the PCF8545 will behave in the same manner as after Power-On Reset (POR). See Section 8.2.1 for details.


8.2.3 Recommended start-up sequences

This chapter describes how to proceed with the initialization of the chip in different application modes.


In general, the sequence should always be:

- 1. Power-on the device,
- 2. set the display and functional modes,
- 3. fill the display memory and then
- 4. turn on the display.

Universal LCD driver for multiplex rates up to 1:8

Universal LCD driver for multiplex rates up to 1:8

Universal LCD driver for multiplex rates up to 1:8

8.3 Possible display configurations

The PCF8545 is a versatile peripheral device designed to interface between any microcontroller to a wide variety of LCD segment or dot matrix displays (see <u>Figure 10</u>). It can drive multiplexed LCD with 4, 6, or 8 backplanes and up to 44 segments.

The display configurations possible with the PCF8545 depend on the required number of active backplane outputs. A selection of possible display configurations is given in Table 22.

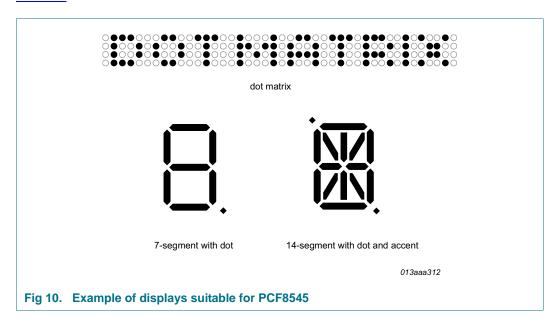
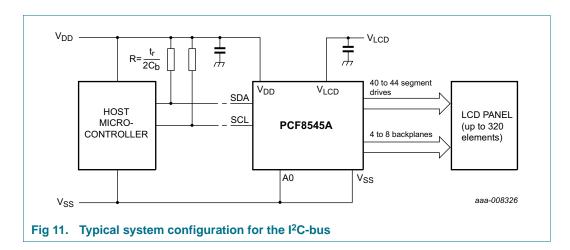
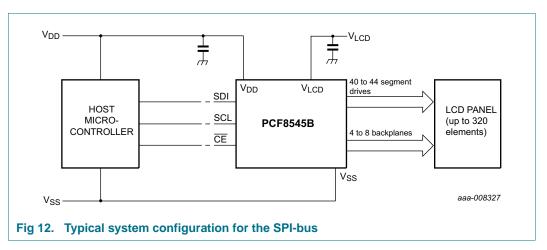


Table 22. Selection of display configurations


Number of	9			Dot matrix/		
Backplanes	Segments	Icons	7 segment[1] 14 segment[2]		Elements	
8	40	320	40	20	320	
6	42	252	31	15	252	
4	44	176	22	11	176	


^{[1] 7} segment display has 8 elements including the decimal point.

All of the display configurations in $\underline{\text{Table 22}}$ can be implemented in the typical systems shown in $\underline{\text{Figure 11}}$ and $\underline{\text{Figure 12}}$.

^{[2] 14} segment display has 16 elements including decimal point and accent dot.

Universal LCD driver for multiplex rates up to 1:8

The host microcontroller maintains the two line I^2C -bus or a three line SPI-bus communication channel with the PCF8545. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are the power supplies (V_{DD} , V_{SS} , V_{LCD}) and the LCD panel selected for the application.

The minimum recommended values for external capacitors on V_{DD} and V_{LCD} are 100 nF respectively. Decoupling of V_{LCD} helps to reduce display artifacts. The decoupling capacitors should be placed close to the IC with short connections to the respective supply pin and V_{SS} .

8.4 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by the set-bias-mode command (see <u>Table 16</u>) and the set-MUX-mode command (see <u>Table 15</u>).

Fractional LCD biasing voltages are obtained from an internal voltage divider. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of V_{LCD} and the resulting discrimination ratios (D), are given in Table 23.

Universal LCD driver for multiplex rates up to 1:8

Discrimination is a term which is defined as the ratio of the on and off RMS voltage across a segment. It can be thought of as a measurement of contrast.

Table 23.	Preferred LCI	drive modes:	summary	of	characteristics
I UDIC EU.	I I CICII CU LOI	onive incues.	Julilliai y	\sim	on an actor is the

LCD multiplex drive mode	Number of:		LCD bias	$V_{off(RMS)}$	$V_{on(RMS)}$	$D = \frac{V_{on(RMS)}}{V}$ [1]	V _{LCD} [2]
	Backplanes	Levels	configuration	$\frac{S_{IJ}(KMS)}{V_{LCD}}$	V_{LCD}	$D = \frac{on(RMS)}{V_{off(RMS)}} $ [1]	
1:4 [3]	4	3	1/2	0.433	0.661	1.527	$2.309 V_{off(RMS)}$
1:4	4	4	1/3	0.333	0.577	1.732	3.0V _{off(RMS)}
1:4 [3]	4	5	1/4	0.331	0.545	1.646	$3.024V_{off(RMS)}$
1:6 [3]	6	3	1/2	0.456	0.612	1.341	2.191V _{off(RMS)}
1:6	6	4	1/3	0.333	0.509	1.527	3.0V _{off(RMS)}
1:6	6	5	1/4	0.306	0.467	1.527	3.266V _{off(RMS)}
1:8 [3]	8	3	1/2	0.467	0.586	1.254	2.138V _{off(RMS)}
1:8 [3]	8	4	1/3	0.333	0.471	1.414	3.0V _{off(RMS)}
1:8	8	5	1/4	0.293	0.424	1.447	3.411V _{off(RMS)}

- [1] Determined from Equation 5.
- [2] Determined from Equation 4.
- [3] In these examples, the discrimination factor and hence the contrast ratios are smaller. The advantage of these LCD drive modes is a reduction of the LCD voltage V_{LCD}.

A practical value for V_{LCD} is determined by equating $V_{off(RMS)}$ with a defined LCD threshold voltage ($V_{th(off)}$), typically when the LCD exhibits approximately 10 % contrast.

Bias is calculated by $\frac{1}{1+a}$, where the values for a are

a = 1 for $\frac{1}{2}$ bias

a = 2 for $\frac{1}{3}$ bias

a = 3 for $\frac{1}{4}$ bias

The RMS on-state voltage (V_{on(RMS)}) for the LCD is calculated with Equation 3

$$V_{on(RMS)} = V_{LCD} \sqrt{\frac{a^2 + 2a + n}{n \times (1 + a)^2}}$$
 (3)

where V_{LCD} is the resultant voltage at the LCD segment and where the values for n are

n = 4 for 1:4 multiplex drive

n = 6 for 1:6 multiplex drive

n = 8 for 1:8 multiplex drive

The RMS off-state voltage (V_{off(RMS)}) for the LCD is calculated with Equation 4:

$$V_{off(RMS)} = V_{LCD} \sqrt{\frac{a^2 - 2a + n}{n \times (1 + a)^2}}$$

$$(4)$$

Discrimination is the ratio of $V_{on(RMS)}$ to $V_{off(RMS)}$ and is determined from Equation 5:

Universal LCD driver for multiplex rates up to 1:8

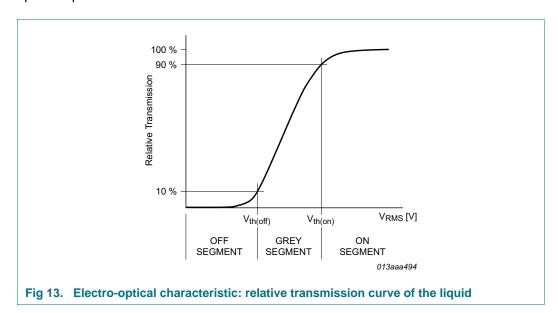
$$D = \frac{V_{on(RMS)}}{V_{off(RMS)}} = \sqrt{\frac{a^2 + 2a + n}{a^2 - 2a + n}}$$
 (5)

V_{LCD} is sometimes referred to as the LCD operating voltage.

8.4.1 Electro-optical performance

Suitable values for $V_{on(RMS)}$ and $V_{off(RMS)}$ are dependent on the LCD liquid used. The RMS voltage, at which a pixel gets switched on or off, determine the transmissibility of the pixel.

For any given liquid, there are two threshold values defined. One point is at 10 % relative transmission (at $V_{th(off)}$) and the other at 90 % relative transmission (at $V_{th(on)}$), see Figure 13. For a good contrast performance, the following rules should be followed:

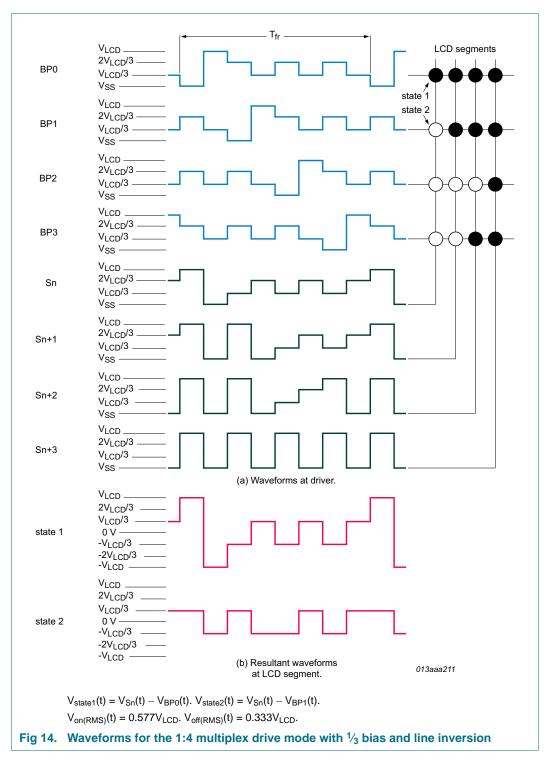

$$V_{on(RMS)} \ge V_{th(on)} \tag{6}$$

$$V_{off(RMS)} \le V_{th(off)} \tag{7}$$

 $V_{on(RMS)}$ and $V_{off(RMS)}$ are properties of the display driver and are affected by the selection of a, n (see Equation 3 to Equation 5) and the V_{LCD} voltage.

 $V_{th(off)}$ and $V_{th(on)}$ are properties of the LCD liquid and can be provided by the module manufacturer. $V_{th(off)}$ is sometimes named V_{th} . $V_{th(on)}$ is sometimes named saturation voltage V_{sat} .

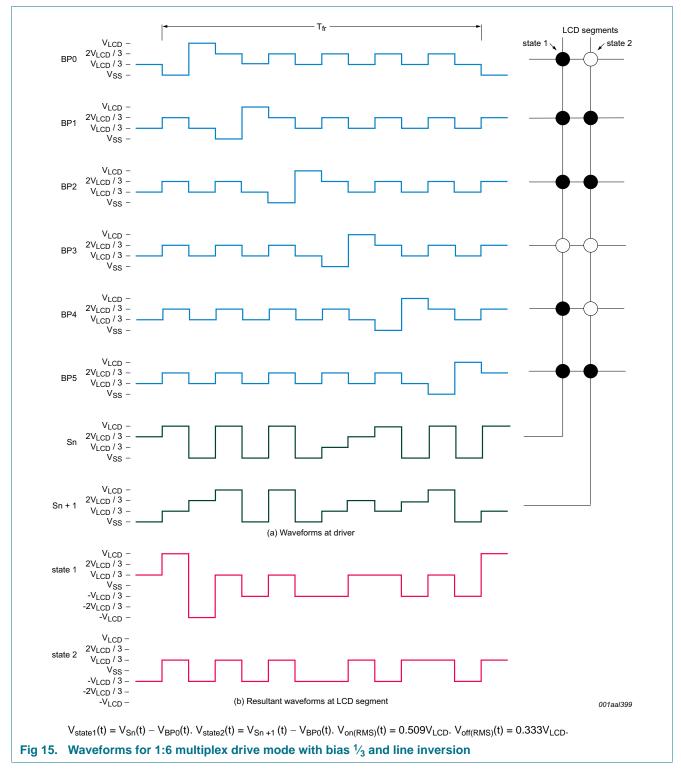
It is important to match the module properties to those of the driver in order to achieve optimum performance.



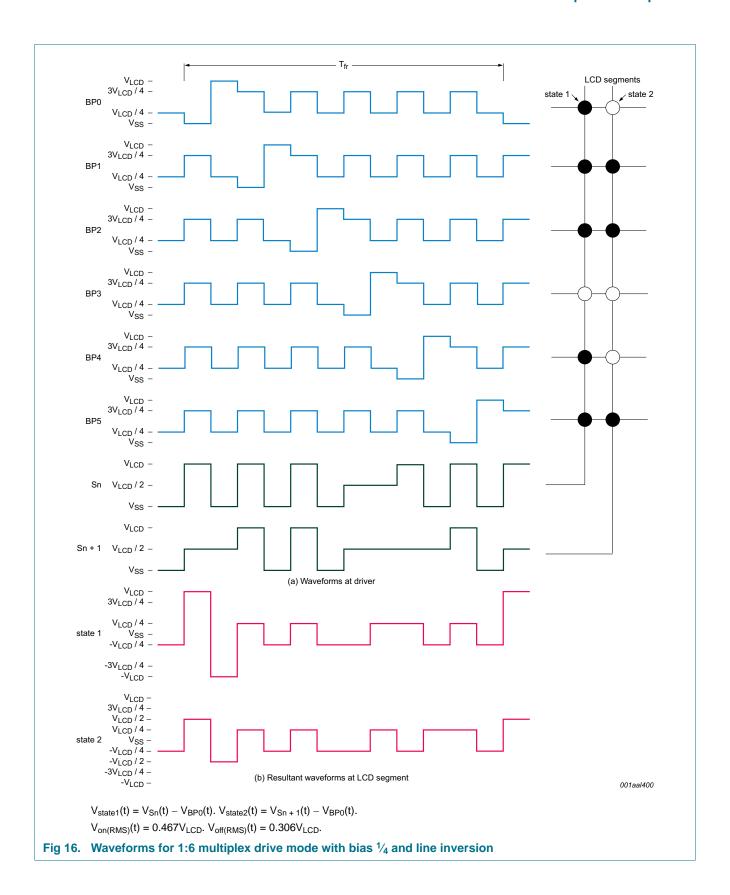
Universal LCD driver for multiplex rates up to 1:8

8.5 LCD drive mode waveforms

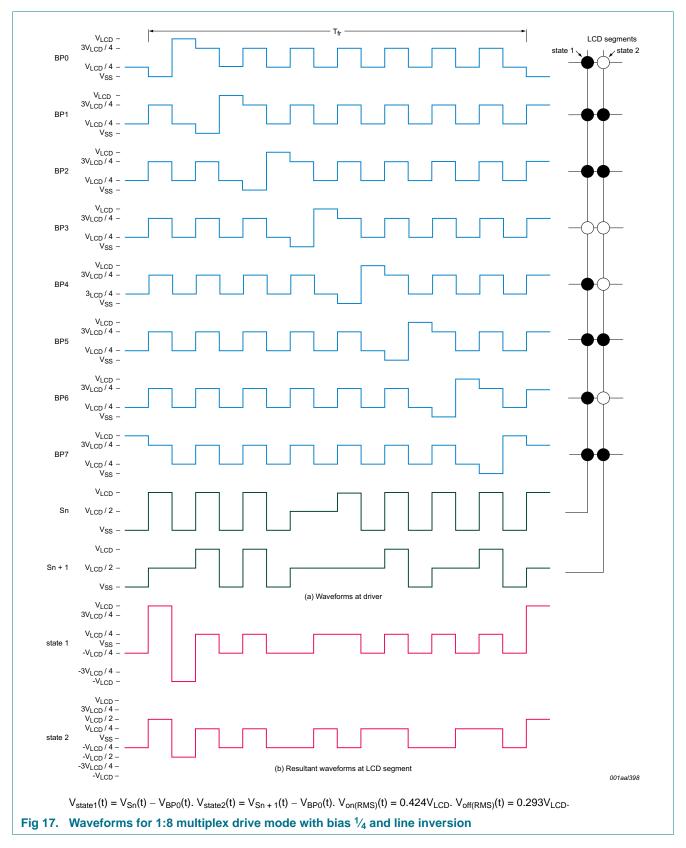
8.5.1 1:4 Multiplex drive mode


When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as shown in <u>Figure 14</u>. This drawing is also showing the case of line inversion (see Section 8.1.3.2).

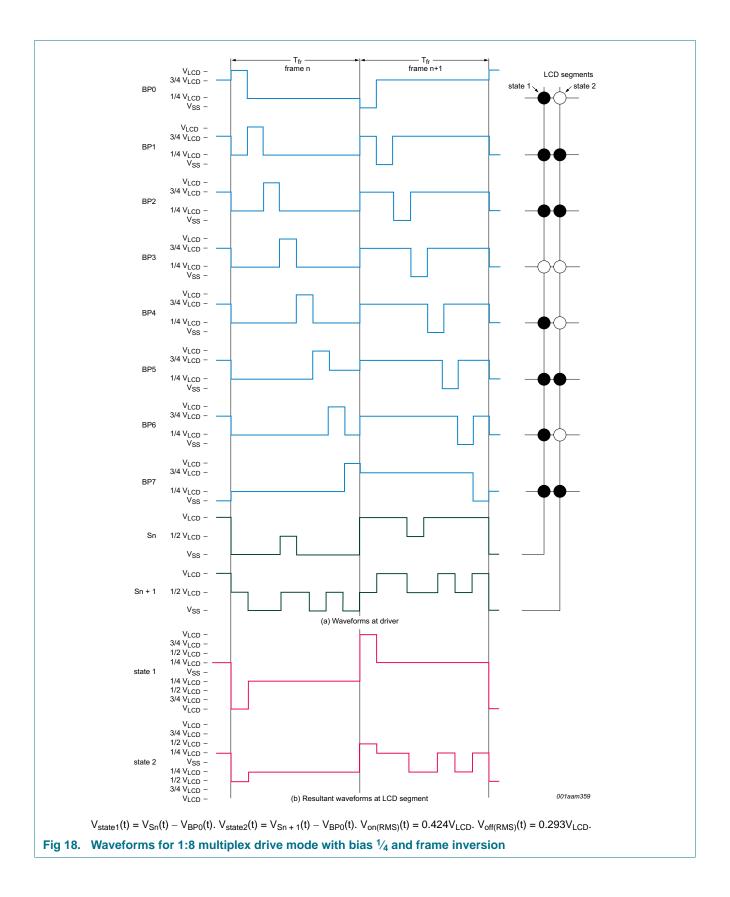
Universal LCD driver for multiplex rates up to 1:8


8.5.2 1:6 Multiplex drive mode

When six backplanes are provided in the LCD, the 1:6 multiplex drive mode applies. The PCF8545 allows use of $\frac{1}{3}$ bias or $\frac{1}{4}$ bias in this mode as shown in Figure 15 and Figure 16. These waveforms are drawn for the case of line inversion (see Section 8.1.3.2).


PCF8545

Universal LCD driver for multiplex rates up to 1:8



Universal LCD driver for multiplex rates up to 1:8

8.5.3 1:8 Multiplex drive mode

Universal LCD driver for multiplex rates up to 1:8

Universal LCD driver for multiplex rates up to 1:8

8.6 Display register

The display register holds the display data while the corresponding multiplex signals are generated.

8.7 Backplane outputs

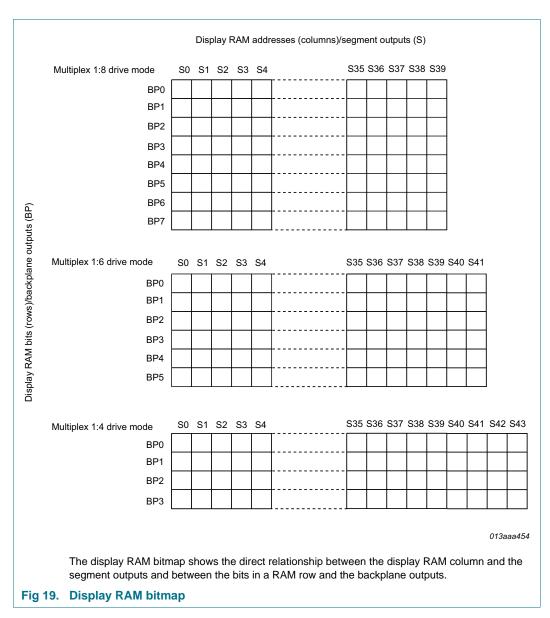
The LCD drive section includes eight backplane outputs: BP0 to BP7. The backplane output signals are generated based on the selected LCD multiplex drive mode.

- In 1:8 multiplex drive mode: BP0 to BP7 must be connected directly to the LCD.
- In 1:6 multiplex drive mode: BP0 to BP5 must be connected directly to the LCD.
- In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.

8.8 Segment outputs

The LCD drive section includes up to 44 segment outputs (S0 to S43) which must be connected directly to the LCD. The segment output signals are generated based on the multiplexed backplane signals and with data resident in the display register. When less segment outputs are required, the unused segment outputs must be left open-circuit. The number of available segments depends on the multiplex drive mode selected.

Table 24. Backplane and active segment combinations


Multiplex drive mode	Active BPs	Active segments
1:8	BP0 to BP7	S0 to S39
1:6	BP0 to BP5	S0 to S41
1:4	BP0 to BP3	S0 to S43

8.9 Display RAM

The display RAM stores the LCD data. Depending on the multiplex drive mode, the arrangement of the RAM is changed.

- multiplex drive 1:8: RAM is 40 × 8 bit
- multiplex drive 1:6: RAM is 42 × 6 bit
- multiplex drive 1:4: RAM is 44 × 4 bit

Universal LCD driver for multiplex rates up to 1:8

Logic 1 in the RAM bit map indicates the on-state $(V_{on(RMS)})$ of the corresponding LCD element; similarly, logic 0 indicates the off-state $(V_{off(RMS)})$. For more information on $V_{on(RMS)}$ and $V_{off(RMS)}$, see Section 8.4.

There is a one-to-one correspondence between

- the bits in the RAM bitmap and the LCD elements,
- the RAM columns and the segment outputs,
- the RAM rows and the backplane outputs.

The display RAM bit map, <u>Figure 19</u>, shows row 0 to row 7 and column 0 to column 43. Row 0 to row 7 correspond with the backplane outputs BP0 to BP7. Column 0 to column 43 correspond with the segment outputs S0 to S43. In multiplexed LCD applications, the data of each row of the display RAM is time-multiplexed with the corresponding backplane (row 0 with BP0, row 1 with BP1, and so on).

Universal LCD driver for multiplex rates up to 1:8

When display data is transmitted to the PCF8545, the display bytes received are stored in the display RAM in accordance with the selected LCD multiplex drive mode. The data is stored as it arrives and depending on the current multiplex drive mode, data is stored in quadruples, sextuples or bytes.

8.9.1 Data pointer

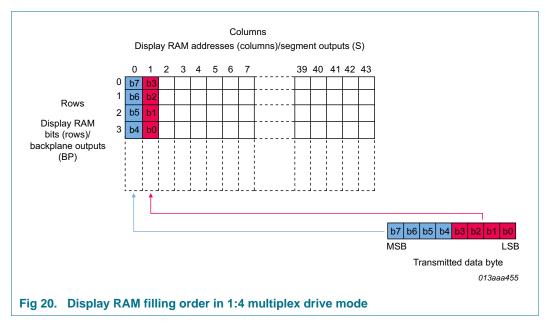
The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the load-data-pointer command (see Table 19).

Following this command, an arriving data byte is stored starting at the display RAM address indicated by the data pointer.

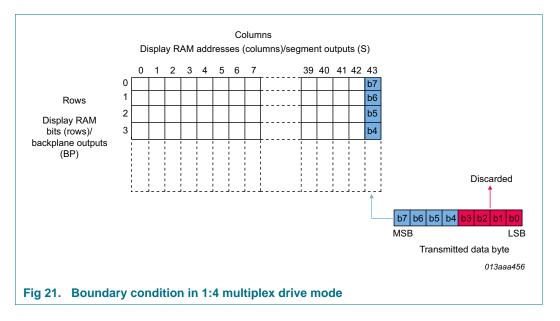
The data pointer is automatically incremented in accordance with the chosen LCD multiplex drive mode configuration. That is, after each byte is stored, the contents of the data pointer are incremented

- by two (1:4 multiplex drive mode),
- by one or two (1:6 multiplex drive mode),
- by one (1:8 multiplex drive mode).

Multiplex drive 1:6 is a special case and is described later on.

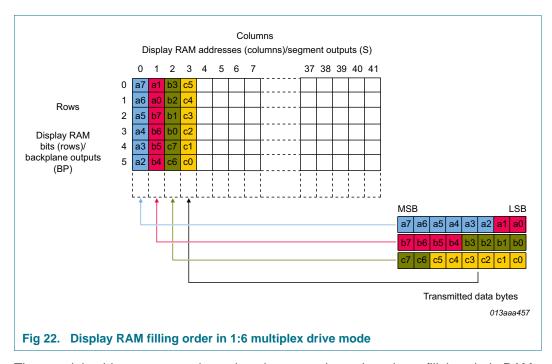

When the address counter reaches the end of the RAM, it stops incrementing after the last byte is transmitted. Redundant bits of the last byte and subsequent bytes transmitted are discarded until the pointer is reset. To send new RAM data, the data pointer must be reset.

If an I²C-bus or SPI-bus data access is terminated early, then the state of the data pointer is unknown. The data pointer must then be rewritten before further RAM accesses.

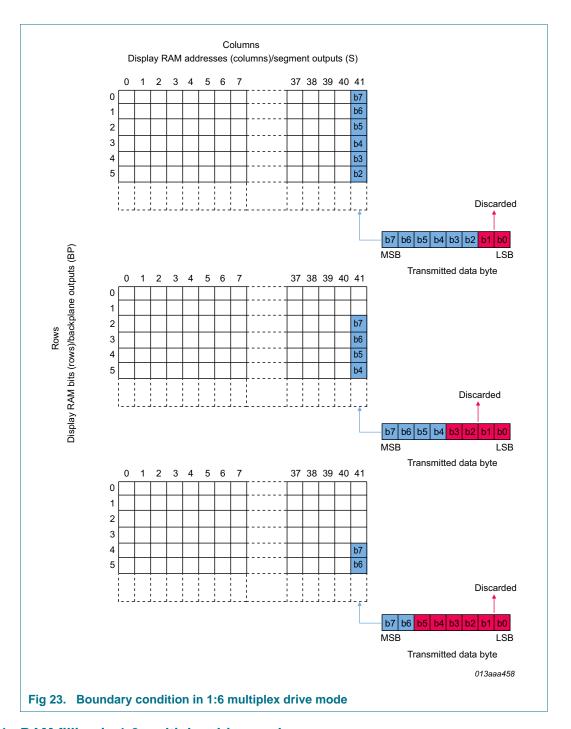

8.9.2 RAM filling in 1:4 multiplex drive mode

In the 1:4 multiplex drive mode the RAM is organized in four rows and 44 columns. The eight transmitted data bits are placed in two successive display RAM columns of four rows (see <u>Figure 20</u>). In order to fill the whole four RAM rows, 22 bytes need to be sent to the PCF8545. After the last byte sent, the data pointer must be reset before the next RAM content update. Additional data bytes sent and any data bits that spill over the RAM are discarded.

Universal LCD driver for multiplex rates up to 1:8

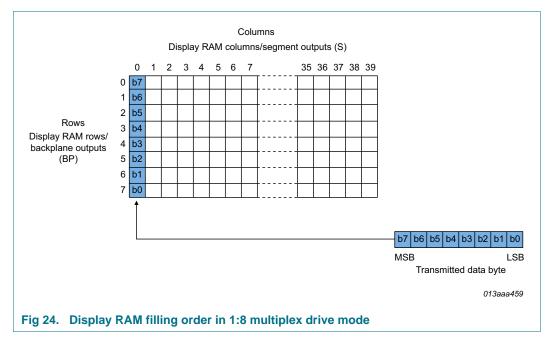

Depending on the start address of the data pointer, there is the possibility for a boundary condition. This occurs when more data bits are sent than fit into the remaining RAM. The additional data bits are discarded. See Figure 21.

8.9.3 RAM filling in 1:6 multiplex drive mode


In the 1:6 multiplex drive mode the RAM is organized in six rows and 42 columns. The eight transmitted data bits are placed in such a way, that a column is filled up (see Figure 22).

Universal LCD driver for multiplex rates up to 1:8

The remaining bits are wrapped over into the next column. In order to fill the whole RAM, 31 and a half bytes need to be sent to the PCF8545. After the last byte sent, the data pointer must be reset before the next RAM content update. Additional data bytes sent and any data bits that spill over the RAM are discarded. Depending on the start address of the data pointer, there are three possible boundary conditions. See <u>Figure 23</u>.


Universal LCD driver for multiplex rates up to 1:8

8.9.4 RAM filling in 1:8 multiplex drive mode

In the 1:8 multiplex drive mode the RAM is organized in eight rows and 40 columns. The eight transmitted data bits are placed into eight rows of one display RAM column (see <u>Figure 24</u>). In order to fill the whole RAM, 40 bytes need to be sent to the PCF8545. After the last byte sent, the data pointer must be reset before the next RAM content update. Additional data bytes sent are discarded.

Universal LCD driver for multiplex rates up to 1:8

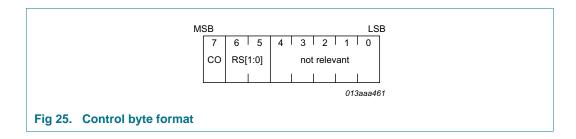
There are no boundary conditions in 1:8 multiplex drive mode.

Universal LCD driver for multiplex rates up to 1:8

9. Bus interfaces

9.1 Control byte and register selection

After initiating the communication over the bus and sending the slave address (I²C-bus, see <u>Section 9.2</u>) or subaddress (SPI-bus, see <u>Section 9.3</u>), a control byte follows. The purpose of this byte is to indicate both, the content for the following data bytes (RAM, or command) and to indicate that more control bytes will follow.

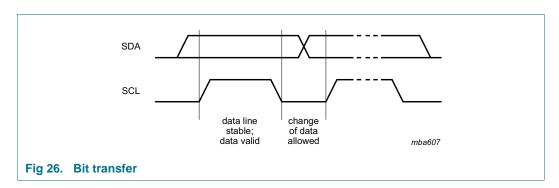

Typical sequences could be:

- Slave address/subaddress control byte command byte command byte command byte end
- Slave address/subaddress control byte RAM byte RAM byte RAM byte end
- Slave address/subaddress control byte command byte control byte RAM byte end

In this way, it is possible to send a mixture of RAM and command data in one access or alternatively, to send just one type of data in one access.

Table 25. Control byte description

Bit	Symbol	Value	Description
7	CO		continue bit
		0	last control byte
		1	control bytes continue
6 to 5	RS[1:0]		register selection
		00	command register
		01	RAM data
		10, 11	unused
4 to 0	-	-	unused

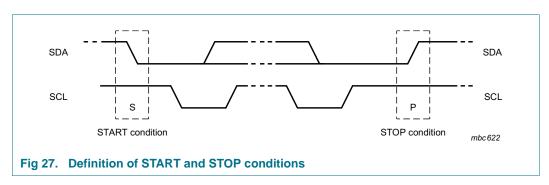

Universal LCD driver for multiplex rates up to 1:8

9.2 I²C-bus interface

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

9.2.1 Bit transfer

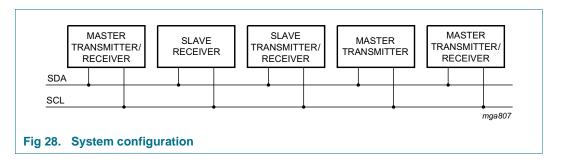
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time is interpreted as a control signal (see <u>Figure 26</u>).


9.2.2 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy.

A HIGH-to-LOW change of the data line, while the clock is HIGH, is defined as the START condition (S).

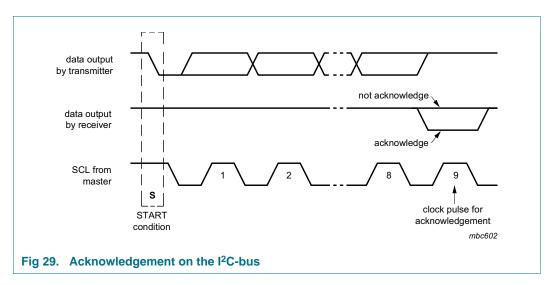
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP condition (P).


The START and STOP conditions are shown in Figure 27.

9.2.3 System configuration

A device generating a message is a transmitter, a device receiving a message is the receiver. The device that controls the message is the master and the devices which are controlled by the master are the slaves. The system configuration is shown in Figure 28.

Universal LCD driver for multiplex rates up to 1:8



9.2.4 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge cycle.

- A slave receiver which is addressed must generate an acknowledge after the reception of each byte.
- Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be considered).
- A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Acknowledgement on the I²C-bus is shown in Figure 29.

9.2.5 I²C-bus controller

The PCF8545 acts as an I²C-bus slave receiver. It does not initiate I²C-bus transfers or transmit data to an I²C-bus master receiver. Device selection depends on the I²C-bus slave address.

PCF8545

Universal LCD driver for multiplex rates up to 1:8

9.2.6 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

9.2.7 I²C-bus slave address

Device selection depends on the I²C-bus slave address. Two different I²C-bus slave addresses can be used to address the PCF8545 (see Table 26).

Table 26. I²C slave address byte

	Slave address							
Bit	7	6	5	4	3	2	1	0
	MSB							LSB
	0	1	1	1	0	0	A0	R/\overline{W}

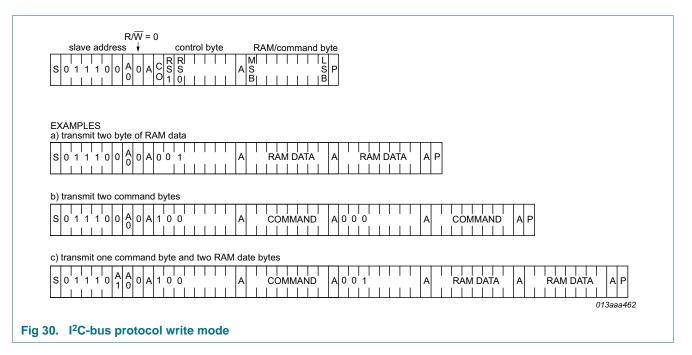
The least significant bit of the slave address byte is bit R/\overline{W} (see Table 27).

Table 27. R/W-bit description

R/W	Description
0	write data
1	read data

Bit 1 of the slave address is defined by connecting the input A0 to either V_{SS} (logic 0) or V_{DD} (logic 1). Therefore, two instances of PCF8545 can be distinguished on the same I^2C -bus.

9.2.8 I²C-bus protocol

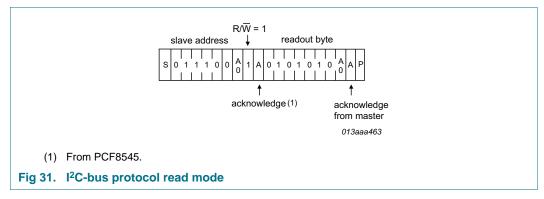

The I²C-bus protocol is shown in <u>Figure 30</u>. The sequence is initiated with a START condition (S) from the I²C-bus master which is followed by one of the two PCF8545 slave addresses available. All PCF8545 with the corresponding A0 level acknowledge in parallel to the slave address. But any PCF8545 with the alternative A0 level ignore the whole I²C-bus transfer.

After acknowledgement, a control byte follows (see Section 9.1 on page 36).

The display bytes are stored in the display RAM at the address specified by the RAM data pointer.

The acknowledgement after each byte is made only by the addressed PCF8545. After the last data byte, the I²C-bus master issues a STOP condition (P). Alternatively a START may be issued to RESTART an I²C-bus access.

Universal LCD driver for multiplex rates up to 1:8


9.2.8.1 Status read out

Status read out for I²C-bus operation only. This command initiates the read-out of a fixed value plus the slave address bit A0 from the PCF8545. The read-out function allows the I²C master to confirm the existence of the device on the I²C-bus.

Table 28. Status read out value

Bit	Symbol	Value	Description
7 to 1	-	0101010	fixed value
0	A0	0	read back value is 01010100
		1	read back value is 01010101

If a readout is made, the R/\overline{W} bit must be logic 1 and then the next data byte following is provided by the PCF8545 as shown in Figure 31.

In the unlikely case that the chip has entered the internal test mode, detection of this state is possible by using the modified status read-out detailed in <u>Table 29</u>. The read out value is modified to indicate that the chip has entered an internal test mode.

Universal LCD driver for multiplex rates up to 1:8

Table 29. Modified status read out value

Bit	Symbol	Value	Description
7 to 1	-	1111000	fixed value
0	A0	0	read back value is 1111 0000
		1	read back value is 1111 0001

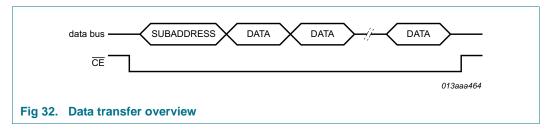
EMC detection: The PCF8545 is ruggedized against EMC susceptibility; however it is not possible to cover all cases. To detect if a severe EMC event has occurred, it is possible to check the responsiveness of the device by reading its register.

Universal LCD driver for multiplex rates up to 1:8

9.3 SPI-bus interface

Data transfer to the device is made via a 3 line SPI-bus (see <u>Table 30</u>). There is no output data line. The SPI-bus is initialized whenever the chip enable line pin CE is inactive.

Table 30. Serial interface

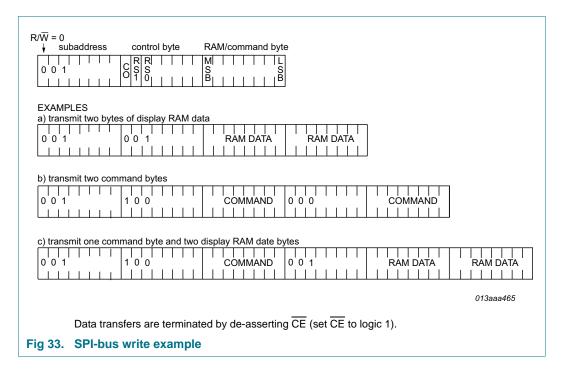

Symbol	Function	Description
CE	chip enable input[1]; active LOW	when HIGH, the interface is reset
SCL	serial clock input	input may be higher than V _{DD}
SDI	serial data input	input may be higher than V_{DD} ; input data is sampled on the rising edge of SCL

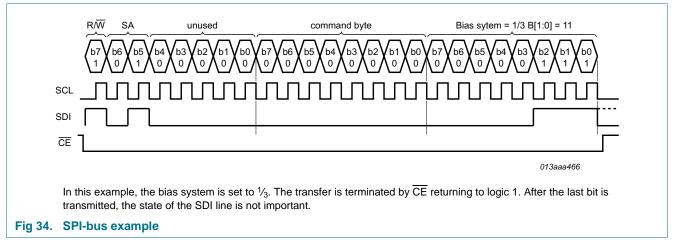
^[1] The chip enable must not be wired permanently LOW.

9.3.1 Data transmission

The chip enable signal is used to identify the transmitted data. Each data transfer is a byte with the Most Significant Bit (MSB) sent first.

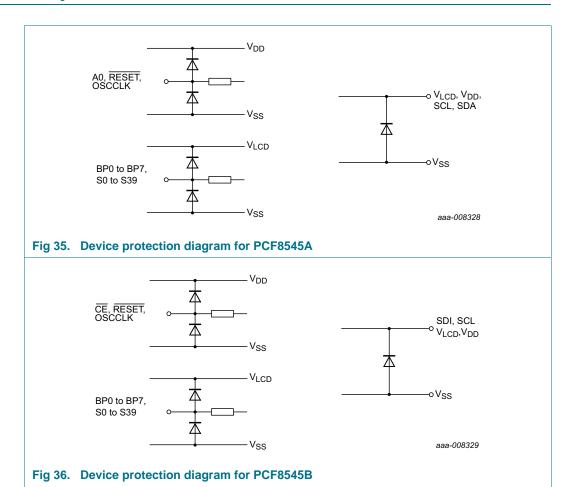
The transmission is controlled by the active LOW chip enable signal $\overline{\text{CE}}$. The first byte transmitted is the subaddress byte.


The subaddress byte opens the communication with a read/write bit and a subaddress. The subaddress is used to identify multiple devices on one SPI-bus.


Table 31. Subaddress byte definition

Bit	Symbol	Value	Description
7	7 R/ \overline{W}		data read or write selection
		0	write data
		1	read data
6 to 5	SA[1:0]	01	subaddress ; other codes cause the device to ignore data transfer
4 to 0	-		unused

After the subaddress byte, a control byte follows (see Section 9.1 on page 36).


Universal LCD driver for multiplex rates up to 1:8

Universal LCD driver for multiplex rates up to 1:8

10. Internal circuitry

11. Safety notes

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

CAUTION

Static voltages across the liquid crystal display can build up when the LCD supply voltage (V_{LCD}) is on while the IC supply voltage (V_{DD}) is off, or vice versa. This may cause unwanted display artifacts. To avoid such artifacts, V_{LCD} and V_{DD} must be applied or removed together.

Universal LCD driver for multiplex rates up to 1:8

12. Limiting values

Table 32. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+6.5	V
I _{DD}	supply current		-50	+50	mA
V_{LCD}	LCD supply voltage		-0.5	+6.5	V
I _{DD(LCD)}	LCD supply current		-50	+50	mA
VI	input voltage	PCF8545ATT			
		on pins SDA, OSCCLK, SCL, A0, RESET	-0.5	+6.5	V
		PCF8545BTT			
		on pins CE, OSCCLK, SCL, SDI, RESET	-0.5	+6.5	V
II	input current		-10	+10	mA
V _O	output voltage	on pins S0 to S39, BP0 to BP7	-0.5	+6.5	V
		on pin SDA	-0.5	+6.5	V
Io	output current		-10	+10	mA
I _{SS}	ground supply current		-50	+50	mA
P _{tot}	total power dissipation		-	400	mW
P/out	power dissipation per output		-	100	mW
V _{ESD}	electrostatic discharge voltage	HBM	<u>[1]</u> _	±3500	V
		CDM	[2] _	±1250	V
I _{lu}	latch-up current		[3] _	200	mA
T _{stg}	storage temperature		<u>[4]</u> –65	+150	°C
T _{amb}	ambient temperature	operating device	-40	+85	°C

^[1] Pass level; Human Body Model (HBM), according to Ref. 6 "JESD22-A114".

^[2] Pass level; Charge Device Model (CDM), according to Ref. 7 "JESD22-C101".

^[3] Pass level; latch-up testing according to Ref. 8 "JESD78" at maximum ambient temperature (T_{amb(max)}).

^[4] According to the store and transport requirements (see Ref. 12 "UM10569") the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %.

Universal LCD driver for multiplex rates up to 1:8

13. Static characteristics

Table 33. Static characteristics

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 2.5 V to 5.5 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supplies							
V_{DD}	supply voltage			1.8	-	5.5	V
V_{LCD}	LCD supply voltage	$V_{LCD} \geq V_{DD}$		2.5	-	5.5	V
$I_{DD(pd)}$	power-down mode supply current		<u>[1]</u>	-	0.5	2	μΑ
I_{DD}	supply current	see Figure 37					
		external 9.6 kHz clock	[2]	-	10	25	μΑ
		internal oscillator	[2]	-	30	60	μΑ
I _{DD(LCD)}	LCD supply current						
<i>DD</i> (20 <i>D</i>)		power-down, see Figure 38	[1][3]	-	7	15	μΑ
		display active, see Figure 39	[4]	-	55	140	μА
Logic							
VI	input voltage			$V_{SS}-0.5$	-	$V_{DD} + 0.5$	V
V _{IL}	LOW-level input voltage	on pins <u>OSCCL</u> K, A0 and RESET		-	-	0.3V _{DD}	V
V_{IH}	HIGH-level input voltage	on pins <u>OSCCL</u> K, A0 and <u>RESET</u>		$0.7V_{DD}$	-	-	V
Vo	output voltage			-0.5	-	$V_{DD} + 0.5$	V
V _{OH}	HIGH-level output voltage	driving load of 50 μA on pins OSCCLK		0.8V _{DD}	-	-	V
V_{OL}	LOW-level output voltage	driving load of 50 μA on pins OSCCLK		-	-	0.2V _{DD}	V
I _{OH}	HIGH-level output current	output source current; $V_{OH} = V_{DD} - 0.4 \text{ V}$					
		on pin OSCCLK					
		$V_{DD} = 1.8 \text{ V}$		0.7	1.6	-	mA
		$V_{DD} \geq 3.3 \; V$		1.5	4.0	-	mA
I _{OL}	LOW-level output current	output sink current; V _{OL} = 0.4 V					
		on pin OSCCLK					
		$V_{DD} = 1.8 \text{ V}$		3	4	-	mA
		$V_{DD} \geq 3.3 \; V$		5	10	-	mA
IL	leakage current	$V_i = V_{DD}$ or V_{SS} ; on pin OSCCLK		-1	-	+1	μΑ

Universal LCD driver for multiplex rates up to 1:8

Table 33. Static characteristics ... continued

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 2.5 V to 5.5 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

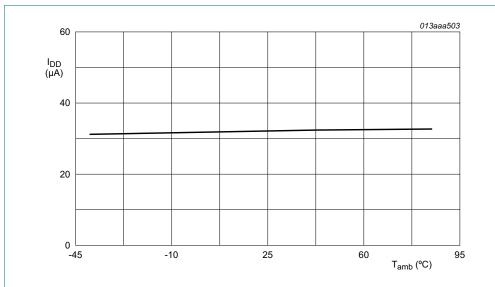
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I ² C-bus ^[5]						
On pins S0	CL and SDA					
VI	input voltage		$V_{SS}-0.5$	-	5.5	V
V_{IL}	LOW-level input voltage		-	-	$0.3V_{DD}$	V
V_{IH}	HIGH-level input voltage		$0.7V_{DD}$	-	-	V
Vo	output voltage		-0.5	-	+5.5	V
IL	leakage current	$V_I = V_{DD}$ or V_{SS}	-1	-	+1	μΑ
On pin SD	A					
I _{OL}	LOW-level output current	output sink current				
		V _{DD} = 1.8 V	3	5.5	-	mΑ
		V _{DD} = 3.3 V	5	9	-	mΑ
SPI-bus						
V _I	input voltage					
		on pin SCL	$V_{SS}-0.5$	-	5.5	V
		on pins CE and SDI	$V_{SS}-0.5$	-	$V_{DD} + 0.5$	V
On pins S0	CL, CE and SDI					
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DD}$	V
V _{IH}	HIGH-level input voltage		$0.7V_{DD}$	-	-	V
IL	leakage current	$V_I = V_{DD}$ or V_{SS}	-1	-	+1	μΑ
LCD outp	uts					
ΔV _O	output voltage variation					
		on pins BP0 to BP7	<u>[6]</u> _	2.5	+10	mV
		on pins S0 to S43	[7] -	2.5	+10	mV
Ro	output resistance					
		$V_{LCD} = 5.5 \text{ V};$ on pins BP0 to BP7	<u>[8]</u> _	0.9	5.0	kΩ
		$V_{LCD} = 5.5 \text{ V};$ on pins S0 to S43	[8] _	1.5	6.0	kΩ

^[1] Power-down mode is enabled; I²C-bus or SPI-bus inactive.

^{[2] 1:8} multiplex drive mode; ¼ bias; display enabled; LCD outputs are open circuit; RAM is all written with logic 1; inputs at V_{SS} or V_{DD}; default display prescale factor; I²C-bus or SPI-bus inactive.

^[3] Strongly linked to V_{LCD} voltage. See Figure 38.

^{[4] 1:8} multiplex drive mode; ½ bias; display enabled; LCD outputs are open circuit; RAM is all written with logic 1; default display prescale factor.


^[5] The I²C-bus interface of PCF8545 is 5 V tolerant.

^[6] Variation between any two backplanes on a given voltage level; static measured.

^[7] Variation between any two segments on a given voltage level; static measured.

^[8] Outputs measured one at a time.

Universal LCD driver for multiplex rates up to 1:8

1:8 multiplex drive mode; 1/4 bias; internal oscillator; display enabled; LCD outputs are open circuit; RAM is all written with logic 1; inputs at V_{SS} or V_{DD} ; default display prescale factor; I^2C -bus or SPI-bus inactive. Typical is defined at $V_{DD}=3.3$ V, 25 °C.

Fig 37. Typical I_{DD} with respect to temperature

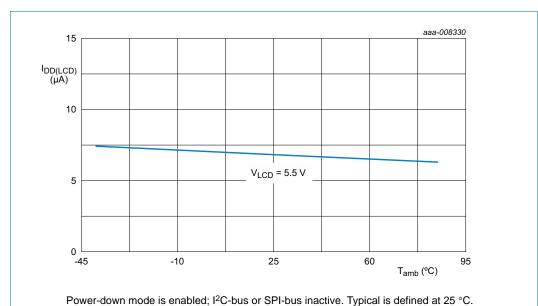


Fig 38. Typical $I_{DD(LCD)}$ in power-down mode with respect to temperature

PCF8545 NXP Semiconductors

Universal LCD driver for multiplex rates up to 1:8

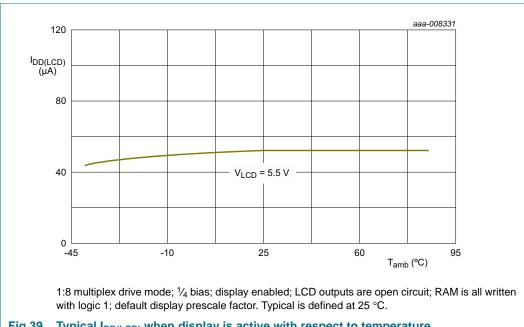
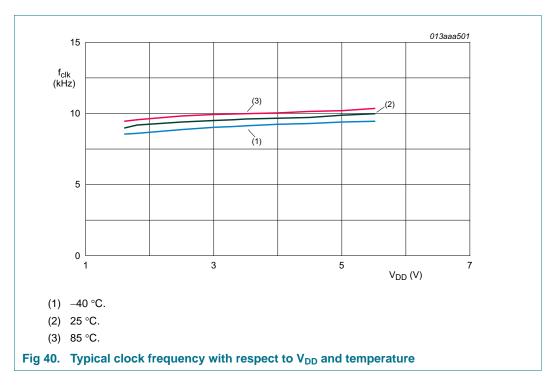
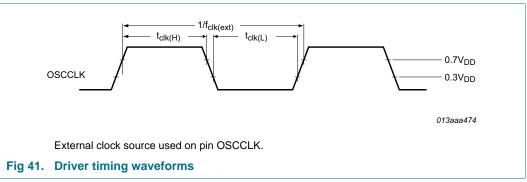


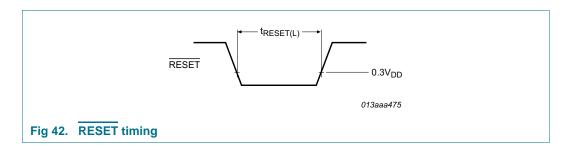
Fig 39. Typical $I_{DD(LCD)}$ when display is active with respect to temperature

Universal LCD driver for multiplex rates up to 1:8


14. Dynamic characteristics


Table 34. Dynamic characteristics

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 2.5 V to 5.5 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clk}	clock frequency	output on pin $OSCCLK; V_{DD} = 3.3 V$	[1] 7800	9600	11 040	Hz
f _{clk(ext)}	external clock frequency	EFR = 0	-	-	250000	Hz
t _(RESET_N)	RESET_N pulse width	LOW time	400	-	-	ns
External c	lock source used on pin OSCC	LK				
t _{clk(H)}	clock HIGH time		33	-	-	μS
t _{clk(L)}	clock LOW time		33	-	-	μS

[1] Frequency present on OSCCLK with default display frequency division factor.

Universal LCD driver for multiplex rates up to 1:8

Table 35. Timing characteristics: I²C-bus

 $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V}; V_{SS} = 0 \text{ V}; T_{amb} = -40 \text{ °C to } +85 \text{ °C}; unless otherwise specified. All timing values are valid within the operating supply voltage and temperature range and referenced to <math>V_{IL}$ and V_{IH} with an input voltage swing of V_{SS} to V_{DD} . Timing waveforms see Figure 43.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pin SCL						
f _{SCL}	SCL clock frequency		[1] _	-	400	kHz
t_{LOW}	LOW period of the SCL clock		1.3	-	-	μS
t _{HIGH}	HIGH period of the SCL clock		0.6	-	-	μS
Pin SDA						
t _{SU;DAT}	data set-up time		100	-	-	ns
$t_{\text{HD};\text{DAT}}$	data hold time		0	-	-	ns
Pins SCL	and SDA					
t _{BUF}	bus free time between a STOP and START condition		1.3	-	-	μS
t _{SU;STO}	set-up time for STOP condition		0.6	-	-	μS
$t_{\text{HD;STA}}$	hold time (repeated) START condition		0.6	-	-	μS
t _{SU;STA}	set-up time for a repeated START condition		0.6	-	-	μS
t _r	rise time of both SDA and SCL	f _{SCL} = 400 kHz	-	-	0.3	μS
	signals	f _{SCL} = 100 kHz	-	-	1.0	μS
t _f	fall time of both SDA and SCL signals		-	-	0.3	μS
t _{VD;ACK}	data valid acknowledge time		[2] 0.6	-	-	μS
t _{VD;DAT}	data valid time		3 0.6	-	-	μS
C _b	capacitive load for each bus line		-	-	400	pF
t _{SP}	pulse width of spikes that must be suppressed by the input filter		<u>[4]</u> -	-	50	ns

^[1] The minimum SCL clock frequency is limited by the bus time-out feature, which resets the serial bus interface if either the SDA or SCL is held LOW for a minimum of 25 ms. The bus time-out feature must be disabled for DC operation.

^[2] $t_{VD;ACK}$ = time for acknowledgement signal from SCL LOW to SDA output LOW.

^[3] $t_{VD;DAT}$ = minimum time for valid SDA output following SCL LOW.

^[4] Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.

Universal LCD driver for multiplex rates up to 1:8

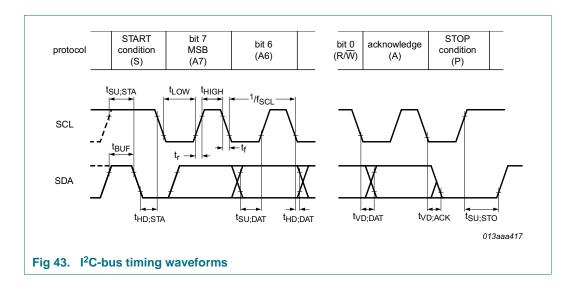
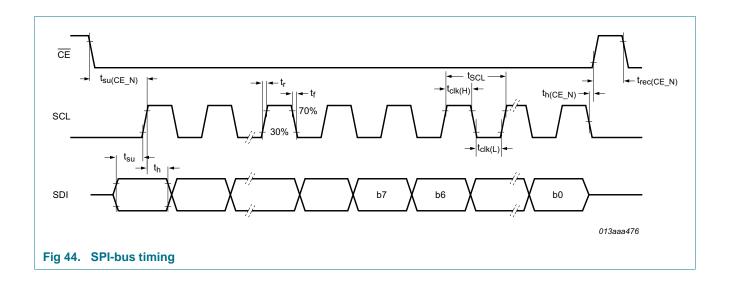
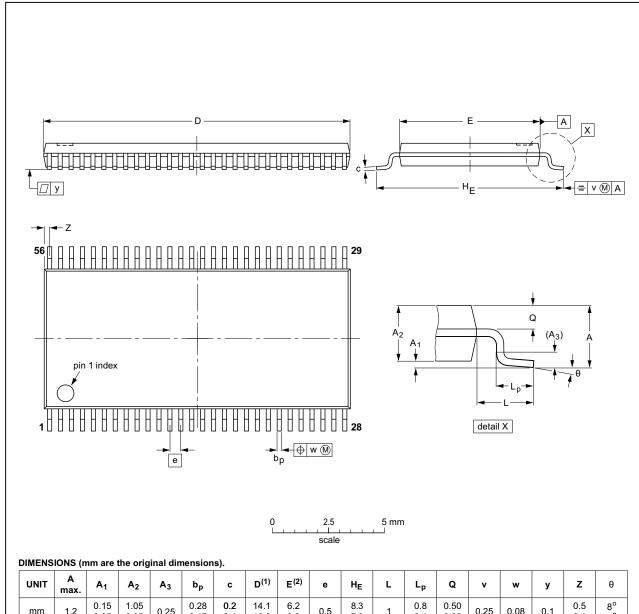



Table 36. Timing characteristics: SPI-bus

 $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V}; V_{SS} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$. All timing values are valid within the operating supply voltage and temperature range and referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} . Timing waveforms see <u>Figure 44</u>.

Symbol	Parameter	Conditions	V _{DD} < 2	V_{DD} < 2.7 V		$V_{DD} \ge 2.7 \text{ V}$	
			Min	Max	Min	Max	
$f_{clk(SCL)}$	SCL clock frequency		-	2	-	5	MHz
t _{SCL}	SCL time		500	-	200	-	ns
t _{clk(H)}	clock HIGH time		200	-	80	-	ns
$t_{clk(L)}$	clock LOW time		200	-	80	-	ns
t _r	rise time	for SCL signal	-	100	-	100	ns
t _f	fall time	for SCL signal	-	100	-	100	ns
t _{su(CE_N)}	CE_N set-up time		150	-	80	-	ns
t _{h(CE_N)}	CE_N hold time		0	-	0	-	ns
t _{rec(CE_N)}	CE_N recovery time		100	-	100	-	ns
t _{su}	set-up time	set-up time for SDI data	10	-	5	-	ns
t _h	hold time	hold time for SDI data	25	-	10	-	ns

Universal LCD driver for multiplex rates up to 1:8


PCF8545 NXP Semiconductors

Universal LCD driver for multiplex rates up to 1:8

15. Package outline

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm

SOT364-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

		EUROPEAN	ISSUE DATE			
IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
	MO-153				-99-12-27 03-02-19	
	IEC				IEC JEDEC JEHA	

Fig 45. Package outline SOT364-1 (TSSOP56)

Universal LCD driver for multiplex rates up to 1:8

16. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that all normal precautions are taken as described in *JESD625-A*, *IEC 61340-5* or equivalent standards.

Universal LCD driver for multiplex rates up to 1:8

17. Packing information

17.1 Tape and reel information

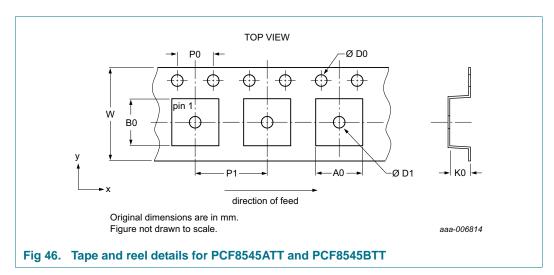


Table 37. Carrier tape dimensions of PCF8545ATT and PCF8545BTT

Symbol	Description	Value	Unit
Compartments			
A0	pocket width in x direction	8.65 to 8.9	mm
В0	pocket width in y direction	14.4 to 15.8	mm
K0	pocket depth	1.5 to 1.8	mm
P1	pocket hole pitch	12	mm
D1	pocket hole diameter	1.5 to 2.05	mm
Overall dimens	sions		
W	tape width	24	mm
D0	sprocket hole diameter	1.5 to 1.55	mm
P0	sprocket hole pitch	4	mm

Universal LCD driver for multiplex rates up to 1:8

18. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

18.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

18.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

18.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

PCF8545

Universal LCD driver for multiplex rates up to 1:8

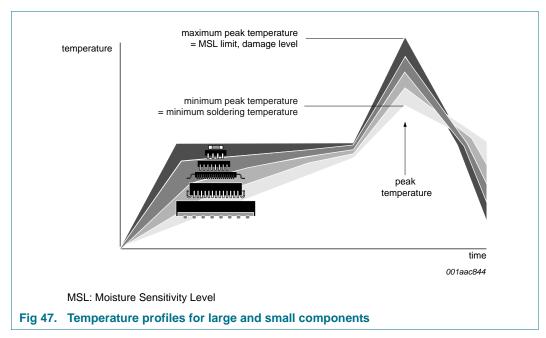
18.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 47</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 38 and 39

Table 38. SnPb eutectic process (from J-STD-020D)

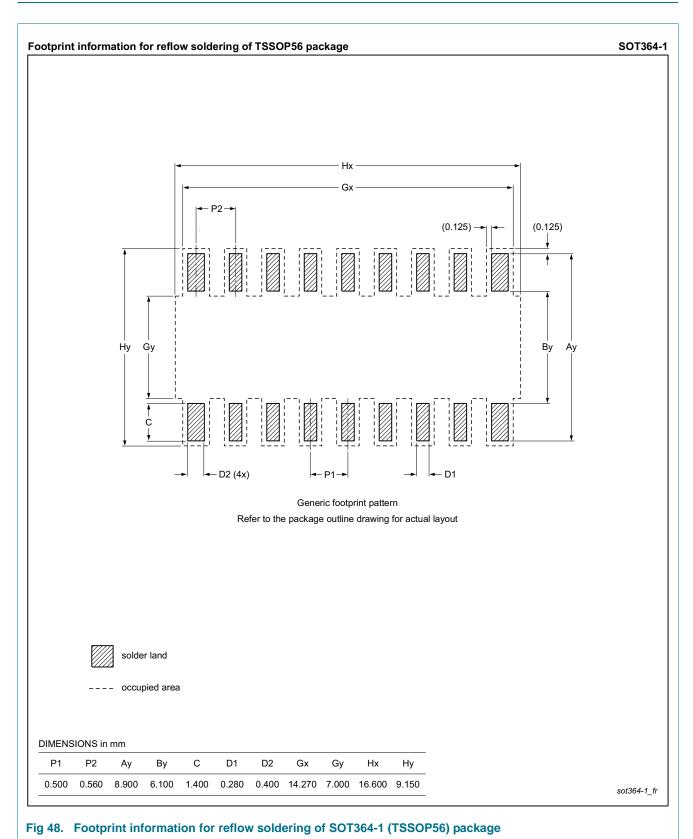
Package thickness (mm)	Package reflow temperature (°C)					
	Volume (mm³)					
	< 350	≥ 350				
< 2.5	235	220				
≥ 2.5	220	220				


Table 39. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm³)						
	< 350	350 to 2000	> 2000				
< 1.6	260	260	260				
1.6 to 2.5	260	250	245				
> 2.5	250	245	245				

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 47.


Universal LCD driver for multiplex rates up to 1:8

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

Universal LCD driver for multiplex rates up to 1:8

19. Footprint information for reflow soldering

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

NXP Semiconductors

20.1 LCD segment driver selection

Table 40. Selection of LCD segment drivers

Type name	Nun	nber	of ele	ment	s at I	MUX		V _{DD} (V)	V _{LCD} (V)	f _{fr} (Hz)	V _{LCD} (V)	V _{LCD} (V)	T _{amb} (°C)	Interface	Package	AEC-
	1:1	1:2	1:3	1:4	1:6	1:8	1:9				charge pump	temperature compensat.				Q100
PCA8561AHN[5]	18	36	54	72	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	I ² C	HVQFN32	Υ
PCA8561BHN[5]	18	36	54	72	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	SPI	HVQFN32	Υ
PCF8566TS	24	48	72	96	-	-	-	2.5 to 6	2.5 to 6	69	N	N	-40 to 85	I ² C	VSO40	N
PCF85162T	32	64	96	128	-	-	-	1.8 to 5.5	2.5 to 6.5	82	N	N	-40 to 85	I ² C	TSSOP48	N
PCA85162T	32	64	96	128	-	-	-	1.8 to 5.5	2.5 to 8	110	N	N	-40 to 95	I ² C	TSSOP48	Υ
PCA85262ATT	32	64	96	128	-	-	-	1.8 to 5.5	2.5 to 8	200	N	N	-40 to 105	I ² C	TSSOP48	Υ
PCF8551ATT[5]	36	72	108	144	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 128[1]	N	N	-40 to 85	I ² C	TSSOP48	N
PCF8551BTT[5]	36	72	108	144	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 128[1]	N	N	-40 to 85	SPI	TSSOP48	N
PCA8551ATT[5]	36	72	108	144	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	I ² C	TSSOP48	Υ
PCA8551BTT[5]	36	72	108	144	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	SPI	TSSOP48	Υ
PCF85176T	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 6.5	82	N	N	-40 to 85	I ² C	TSSOP56	N
PCA85176T	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 8	110	N	N	-40 to 95	I ² C	TSSOP56	Υ
PCA85276ATT	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 8	200	N	N	-40 to 105	I ² C	TSSOP56	Υ
PCF85176H	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 6.5	82	N	N	-40 to 85	I ² C	TQFP64	N
PCA85176H	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 8	82	N	N	-40 to 95	I ² C	TQFP64	Υ
PCF8553ATT[5]	40	80	120	160	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 128[1]	N	N	-40 to 85	I ² C	TSSOP56	N
PCF8553BTT[5]	40	80	120	160	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 128[1]	N	N	-40 to 85	SPI	TSSOP56	N
PCA8553ATT[5]	40	80	120	160	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	I ² C	TSSOP56	Υ
PCA8553BTT[5]	40	80	120	160	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	SPI	TSSOP56	Υ
PCA8546ATT[5]	-	-	-	176	-	-	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	N	N	-40 to 95	I ² C	TSSOP56	Υ
PCA8546BTT[5]	-	-	-	176	-	-	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	N	N	-40 to 95	SPI	TSSOP56	Υ
PCA8547AHT[5]	44	88	-	176	-	-	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 95	I ² C	TQFP64	Υ
PCA8547BHT[5]	44	88	-	176	-	-	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 95	SPI	TQFP64	Υ
PCF85134HL	60	120	180	240	-	-	-	1.8 to 5.5	2.5 to 6.5	82	N	N	-40 to 85	I ² C	LQFP80	N
PCA85134H	60	120	180	240	-	-	-	1.8 to 5.5	2.5 to 8	82	N	N	-40 to 95	I ² C	LQFP80	Υ

Product data sheet

Table 40. Selection of	f LCD	segment	drivers	continued
------------------------	-------	---------	---------	-----------

8545	Type name	Num	nber (of ele	ment	s at N	ИUX		V _{DD} (V)	V _{LCD} (V)	f _{fr} (Hz)	V _{LCD} (V)	V _{LCD} (V)	T _{amb} (°C)	Interface	Package	AEC-
		1:1	1:2	1:3	1:4	1:6	1:8	1:9				charge pump	temperature compensat.				Q100
	PCA8543AHL	60	120	-	240	-	-	-	2.5 to 5.5	2.5 to 9	60 to 300[1]	Υ	Υ	-40 to 105	I ² C	LQFP80	Υ
	PCF8545ATT[5]	-	-	-	176	252	320	-	1.8 to 5.5	2.5 to 5.5	60 to 300[1]	N	N	-40 to 85	I ² C	TSSOP56	N
	PCF8545BTT[5]	-	-	-	176	252	320	-	1.8 to 5.5	2.5 to 5.5	60 to 300[1]	N	N	-40 to 85	SPI	TSSOP56	N
	PCF8536AT[4]	-	-	-	176	252	320	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	N	N	-40 to 85	I ² C	TSSOP56	N
	PCF8536BT[4]	-	-	-	176	252	320	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	N	N	-40 to 85	SPI	TSSOP56	N
	PCA8536AT[4]	-	-	-	176	252	320	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	N	N	-40 to 95	I ² C	TSSOP56	Υ
	PCA8536BT[4]	-	-	-	176	252	320	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	N	N	-40 to 95	SPI	TSSOP56	Υ
	PCF8537AH	44	88	-	176	276	352	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y[3]	-40 to 85	I ² C	TQFP64	N
All info	PCF8537BH	44	88	-	176	276	352	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 85	SPI	TQFP64	N
ormatic	PCA8537AH	44	88	-	176	276	352	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 95	I ² C	TQFP64	Υ
n prov	PCA8537BH	44	88	-	176	276	352	-	1.8 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 95	SPI	TQFP64	Υ
ided in	PCA9620H	60	120	-	240	320	480	-	2.5 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 105	I ² C	LQFP80	Υ
this do	PCA9620U	60	120	-	240	320	480	-	2.5 to 5.5	2.5 to 9	60 to 300[1]	Υ	Y <u>[3]</u>	-40 to 105	I ² C	bare die	Υ
cumen	PCF8552DUG[5]	36	72	108	144	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 128[1]	N	N	-40 to 85	I ² C, SPI	bare die	N
t is sub	PCA8552DUG[5]	36	72	108	144	-	-	-	1.8 to 5.5	1.8 to 5.5	32 to 256[1]	N	N	-40 to 105	I ² C, SPI	bare die	Υ
ect to	PCF8576DU	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 6.5	77	N	N	-40 to 85	I ² C	bare die	N
legal d	PCF8576EUG	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 6.5	77	N	N	-40 to 85	I ² C	bare die	N
lisclaim	PCA8576FUG[5]	40	80	120	160	-	-	-	1.8 to 5.5	2.5 to 8	200	N	N	-40 to 105	I ² C	bare die	Υ
ers.	PCF85133U	80	160	240	320	-	-	-	1.8 to 5.5	2.5 to 6.5	82, 110[2]	N	N	-40 to 85	I ² C	bare die	N
	PCA85133U	80	160	240	320	-	-	-	1.8 to 5.5	2.5 to 8	82, 110[2]	N	N	-40 to 95	I ² C	bare die	Υ
	PCA85233U	80	160	240	320	-	-	-	1.8 to 5.5	2.5 to 8	150, 220 ^[2]	N	N	-40 to 105	I ² C	bare die	Υ
	PCA8530DUG[5]	102	204	-	408	-	-	-	2.5 to 5.5	4 to 12	45 to 300[1]	Υ	Υ[3]	-40 to 105	I ² C, SPI	bare die	Υ
	PCF85132U	160	320	480	640	-	-	-	1.8 to 5.5	1.8 to 8	60 to 90[1]	N	N	-40 to 85	I ² C	bare die	N
	PCA85132U	160	320	480	640	-	-	-	1.8 to 5.5	1.8 to 8	60 to 90[1]	N	N	-40 to 95	I ² C	bare die	Υ
© Z	PCA85232U	160	320	480	640	-	-	-	1.8 to 5.5	1.8 to 8	117 to 176[1]	N	N	-40 to 95	I ² C	bare die	Υ
XP B.V	PCF8538UG[5]	102	204	-	408	612	816	918	2.5 to 5.5	4 to 12	45 to 300[1]	Υ	Υ[3]	-40 to 85	I ² C, SPI ²	bare die	N
. 2013.	PCA8538UG	102	204	-	408	612	816	918	2.5 to 5.5	4 to 12	45 to 300[1]	Υ	Y[3]	-40 to 105	I ² C, SPI[2]	bare die	Υ
D																	

^[1] Can be selected by command.

^[2] Can be selected by pin configuration.

Universal LCD driver for multiplex rates up to 1:8

[3] Extra feature: Temperature sensor.

Product data sheet

Universal LCD driver for multiplex rates up to 1:8

21. Abbreviations

Table 41. Abbreviations

Acronym	Description
CDM	Charged-Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DC	Direct Current
EMC	ElectroMagnetic Compatibility
EPROM	Erasable Programmable Read-Only Memory
ESD	ElectroStatic Discharge
НВМ	Human Body Model
I ² C	Inter-Integrated Circuit bus
IC	Integrated Circuit
LCD	Liquid Crystal Display
LSB	Least Significant Bit
MSB	Most Significant Bit
MSL	Moisture Sensitivity Level
MUX	Multiplexer
OTP	One Time Programmable
PCB	Printed-Circuit Board
POR	Power-On Reset
RC	Resistance-Capacitance
RAM	Random Access Memory
RGB	Red Green Blue
RMS	Root Mean Square
SCL	Serial CLock line
SDA	Serial DAta line
SPI	Serial Peripheral Interface

Universal LCD driver for multiplex rates up to 1:8

22. References

- [1] AN10365 Surface mount reflow soldering description
- [2] AN11267 EMC and system level ESD design guidelines for LCD drivers
- [3] IEC 60134 Rating systems for electronic tubes and valves and analogous semiconductor devices
- [4] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [5] IPC/JEDEC J-STD-020D Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface-Mount Devices
- [6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
- [7] JESD22-C101 Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components
- [8] JESD78 IC Latch-Up Test
- [9] **JESD625-A** Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [10] SNV-FA-01-02 Marking Formats Integrated Circuits
- [11] UM10204 I²C-bus specification and user manual
- [12] UM10569 Store and transport requirements

Universal LCD driver for multiplex rates up to 1:8

23. Revision history

Table 42. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCF8545 v.1	20131113	Product data sheet	-	-

Universal LCD driver for multiplex rates up to 1:8

24. Legal information

24.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

24.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

24.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PCF8545

Universal LCD driver for multiplex rates up to 1:8

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's

own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

24.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

25. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Universal LCD driver for multiplex rates up to 1:8

26. Tables

Table 1.	Ordering information2
Table 2.	Ordering options2
Table 3.	Marking codes
Table 4.	Pin description of PCF8545ATT and
	PCF8545BTT
Table 5.	Commands of PCF8545
Table 6.	Initialize - initialize command bit description 7
Table 7.	OTP-refresh - OTP-refresh command bit
10010 11	description8
Table 8.	Mode-settings - mode settings command
	bit description8
Table 9.	Effect of the power-down bit (PD)10
Table 10	. , ,
10010 10	command bit description11
Table 11	
Table 11	and COE12
Table 12	
Table 13	
Table 13	
Table 15	
Table 15	command bit description14
Table 16	•
Table 10	bit description14
Table 17	
Table 17	clock frequency command bit description14
Table 18	· · · · · · · · · · · · · · · · · · ·
Table To	clock operation15
Table 10	
Table 19	
Table 00	command bit description
Table 20	. Write-RAM-data - write RAM data command bit description 1
Table 04	
Table 21	
Table 22	3
Table 23	
T 0.4	characteristics
Table 24	
Table 25	
Table 26	<u></u>
Table 27	
Table 28	
Table 29	
Table 30	
Table 31	•
Table 32	•
Table 33	
Table 34	
Table 35	
Table 36	3
Table 37	
	and PCF8545BTT56
Table 38	,
Table 39	, , , , , , , , , , , , , , , , , , , ,
Table 40	. Selection of LCD segment drivers 61
Table 41	. Abbreviations
Table 42	. Revision history66

Universal LCD driver for multiplex rates up to 1:8

27. Figures

Fig 1.	Block diagram of PCF8545A
Fig 2.	Block diagram of PCF8545B
Fig 3.	Pin configuration for TSSOP56 (PCF8545ATT)5
Fig 4.	Pin configuration for TSSOP56 (PCF8545BTT)5
Fig 5.	Effect of backplane swapping
Fig 6.	Recommended power-down sequence 10
Fig 7.	Oscillator selection12
Fig 8.	Recommended start-up sequence when
	using the internal oscillator18
Fig 9.	Recommended start-up sequence when
	using an external clock signal
Fig 10.	Example of displays suitable for PCF8545 20
Fig 11.	Typical system configuration for the I ² C-bus 21
Fig 12.	Typical system configuration for the SPI-bus 21
Fig 13.	Electro-optical characteristic: relative
	transmission curve of the liquid
Fig 14.	Waveforms for the 1:4 multiplex drive mode
	with $\frac{1}{3}$ bias and line inversion
Fig 15.	Waveforms for 1:6 multiplex drive mode with
	bias $\frac{1}{3}$ and line inversion
Fig 16.	Waveforms for 1:6 multiplex drive mode with
	bias $\frac{1}{4}$ and line inversion
Fig 17.	Waveforms for 1:8 multiplex drive mode with
	bias $\frac{1}{4}$ and line inversion
Fig 18.	Waveforms for 1:8 multiplex drive mode with
	bias $\frac{1}{4}$ and frame inversion
Fig 19.	Display RAM bitmap30
Fig 20.	Display RAM filling order in 1:4 multiplex
	drive mode32
Fig 21.	Boundary condition in 1:4 multiplex drive mode .32
Fig 22.	Display RAM filling order in 1:6 multiplex
	drive mode33
Fig 23.	Boundary condition in 1:6 multiplex drive mode .34
Fig 24.	Display RAM filling order in 1:8 multiplex
	drive mode
Fig 25.	Control byte format
Fig 26.	Bit transfer
Fig 27.	Definition of START and STOP conditions 37
Fig 28.	System configuration
Fig 29.	Acknowledgement on the I ² C-bus
Fig 30.	I ² C-bus protocol write mode
Fig 31.	I ² C-bus protocol read mode40
Fig 32.	Data transfer overview
Fig 33.	SPI-bus write example43
Fig 34.	SPI-bus example
Fig 35.	Device protection diagram for PCF8545A 44
Fig 36.	Device protection diagram for PCF8545B 44
Fig 37.	Typical I _{DD} with respect to temperature 48
Fig 38.	Typical I _{DD(LCD)} in power-down mode with
	respect to temperature48
Fig 39.	Typical I _{DD(LCD)} when display is active with
	respect to temperature49
Fig 40.	Typical clock frequency with respect to V _{DD}
	and temperature50
Fig 41.	<u>Driver timing waveforms</u>
Fig 42	RESET timing 51

Fig 43.	I ² C-bus timing waveforms	52
Fig 44.	SPI-bus timing	53
Fig 45.	Package outline SOT364-1 (TSSOP56)	54
Fig 46.	Tape and reel details for PCF8545ATT and	
	PCF8545BTT	56
Fig 47.	Temperature profiles for large and small	
	components	59
Fig 48.	Footprint information for reflow soldering of	
	SOT364-1 (TSSOP56) package	60

Universal LCD driver for multiplex rates up to 1:8

28. Contents

1	General description	1 8.9.1	Data pointer	31
2	Features and benefits	1 8.9.2	RAM filling in 1:4 multiplex	
3	Applications	1	drive mode	31
4	Ordering information	243	RAM filling in 1:6 multiplex	
4 .1	Ordering options	2	drive mode	32
	5 .	0.9.4	RAM filling in 1:8 multiplex	
5	Marking	_	drive mode	
6	Block diagram	•	Bus interfaces	
7	Pinning information		Control byte and register selection	
7.1	Pinning		I ² C-bus interface	
7.2	Pin description		Bit transfer	
8	Functional description	7 9.2.2	START and STOP conditions	
8.1	Commands of PCF8545	7 9.2.3	System configuration	
8.1.1	Command: initialize	7 9.2.4	Acknowledge	
8.1.2	Command: OTP-refresh	7 9.2.5	I ² C-bus controller	
8.1.3	Command: mode-settings	9.2.6	Input filters	
8.1.3.1	Backplane swapping	8 9.2.7		
8.1.3.2	Line inversion	9.2.8	l ² C-bus protocol	
	(driving scheme A)	9.2.8.		
	and frame inversion	9.3	SPI-bus interface	
	(driving scheme B)		Data transmission	
8.1.3.3	Power-down mode	9 10	Internal circuitry	44
8.1.3.4	Display enable 1		Safety notes	44
8.1.4	Command: oscillator-control 1		Limiting values	45
8.1.4.1	Oscillator1		Static characteristics	
8.1.4.2	Timing and frame frequency 1	3	Dynamic characteristics	
8.1.5	Command: set-MUX-mode	4		
8.1.6	Command: set-bias-mode		Package outline	
8.1.7	Command: frame-frequency	_	Handling information	
8.1.8	Command: load-data-pointer		Packing information	
8.1.9	Command: write-RAM-data		Tape and reel information	56
8.2	Start-up and shut-down	⁶ 18	Soldering of SMD packages	57
8.2.1	Reset and Power-On Reset	. 18.1	Introduction to soldering	57
0.00	(POR)		Wave and reflow soldering	
8.2.2	RESET pin function		Wave soldering	
8.2.3 8.3	Recommended start-up sequences		Reflow soldering	58
8.4	LCD voltage selector		Footprint information	
8.4.1	Electro-optical performance	1	for reflow soldering	60
8.5	LCD drive mode waveforms		Appendix	
8.5.1	1:4 Multiplex drive mode	=	LCD segment driver selection	
8.5.2	1:6 Multiplex drive mode	_		
8.5.3	1:8 Multiplex drive mode	·	Abbreviations	
8.6	Display register	9	References	
8.7	Backplane outputs		Revision history	66
8.8	Segment outputs		Legal information	67
8.9	Display RAM		Data sheet status	67
-	1 2	2/2	Definitions	67

continued >>

PCF8545 NXP Semiconductors

Universal LCD driver for multiplex rates up to 1:8

24.3	Disclaimers67	7
24.4	Trademarks68	3
25	Contact information 68	3
26	Tables)
27	Figures)
28	Contents	1

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 November 2013 Document identifier: PCF8545

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

PCF8545BTT/AJ PCF8545ATT/AJ