

2.1 Ω On Resistance, ±15 V/+12 V/±5 V, *i*CMOS SPDT Switch

Data Sheet

FEATURES

2.1 Ω on resistance

0.5 Ω maximum on-resistance flatness at 25°C Up to 390 mA continuous current Fully specified at +12 V, ±15 V, ±5 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 8-lead MSOP and 8-lead, 3 mm × 2 mm LFCSP

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Relay replacements Sample-and-hold systems Audio signal routing Video signal routing Communication systems

GENERAL DESCRIPTION

The ADG1419 is a monolithic *i*CMOS[®] device containing a single-pole/double-throw (SPDT) switch. An EN input on the LFCSP is used to enable or disable the device. When disabled, all channels are switched off.

The industrial CMOS (*i*CMOS) modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has achieved. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. The *i*CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

ADG1419

ADG1419 LFCSP SAC -O D SB O DECODER о IN EN SWITCHES SHOWN FOR A LOGIC 0 INPUT. Figure 1. 8-Lead LFCSP (CP-8-4) ADG1419 MSOP SA οD SB C IN C SWITCHES SHOWN FOR A LOGIC 0 INPUT. Figure 2. 8-Lead MSOP (RM-8)

FUNCTIONAL BLOCK DIAGRAMS

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. The ADG1419 exhibits break-before-make switching action for use in multiplexer applications.

PRODUCT HIGHLIGHTS

- 1. 2.4 Ω maximum on resistance at 25°C.
- 2. Minimum distortion.
- 3. 3 V logic-compatible digital inputs: $V_{INH} = 2.0$ V, $V_{INL} = 0.8$ V.
- 4. No V_L logic power supply required.
- 5. 8-lead MSOP and 8-lead, $3 \text{ mm} \times 2 \text{ mm}$ LFCSP.

Rev. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagrams1
General Description
Product Highlights 1
Revision History
Specifications
±15 V Dual Supply
+12 V Single Supply
±5 V Dual Supply5
Continuous Current Per Channel, S or D

Absolute Maximum Ratings	7
Thermal Resistance	7
ESD Caution	7
Pin Configurations and Function Descriptions	8
Typical Performance Characteristics	9
Test Circuits	. 12
Terminology	. 14
Outline Dimensions	. 15
Ordering Guide	. 15

REVISION HISTORY

6/2016—Rev. 0 to Rev. A	
Changes to Table 7	8
Deleted Table 9; Renumbered Sequentially	8
Change to Figure 6	9

10/2009—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1. Parameter 25°C -40°C to +85°C **Test Conditions/Comments** -40°C to +125°C Unit ANALOG SWITCH V_{DD} to V_{SS} **Analog Signal Range** V On Resistance, RON 2.1 Ωtyp $V_s = \pm 10 V$, $I_s = -10 mA$; see Figure 22 2.4 2.8 3.2 Ωmax $V_{DD} = +13.5 V$, $V_{SS} = -13.5 V$ **On-Resistance Match Between** 0.05 Ωtyp $V_s = \pm 10 V$, $I_s = -10 mA$ Channels, ARon 0.2 0.25 0.3 Ωmax On-Resistance Flatness, R_{FLAT (ON)} 0.4 $V_s = \pm 10 V$, $I_s = -10 mA$ Ωtyp 0.5 0.6 0.65 Ωmax LEAKAGE CURRENTS $V_{DD} = +16.5 V, V_{SS} = -16.5 V$ Source Off Leakage, Is (Off) ±0.1 nA typ $V_s = \pm 10 V$, $V_s = \pm 10 V$; see Figure 23 ±0.5 ±2 ±75 nA max Drain Off Leakage, I_D (Off) ±0.2 $V_s = \pm 10 V$, $V_s = \pm 10 V$; see Figure 23 nA typ ±0.6 ±3 ±100 nA max Channel On Leakage, I_D, I_S (On) ±0.2 nA typ $V_s = V_D = \pm 10 V$; see Figure 24 ±3 ±100 ±1 nA max DIGITAL INPUTS 2.0 Input High Voltage, VINH V min 0.8 Input Low Voltage, VINL V max Input Current, IINL or IINH 0.005 µA typ $V_{IN} = V_{GND} \text{ or } V_{DD}$ ±0.1 µA max Digital Input Capacitance, CIN 4 pF typ DYNAMIC CHARACTERISTICS¹ Transition Time, transition 130 $R_L = 300 \Omega$, $C_L = 35 pF$ ns typ 155 190 220 $V_s = +10 V$; see Figure 25 ns max 85 ton (EN) $R_L = 300 \Omega$, $C_L = 35 pF$ ns typ 110 125 140 ns max $V_s = 10 V$; see Figure 27 toff (EN) 115 ns typ $R_L = 300 \Omega, C_L = 35 pF$ 140 160 180 $V_s = 10 V$; see Figure 27 ns max Break-Before-Make Time Delay, t_D 15 $R_L = 300 \Omega$, $C_L = 35 pF$ ns typ 8 ns min $V_{S1} = V_{S2} = 10 V$; see Figure 26 -16 $V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 1 nF;$ Charge Injection pC typ see Figure 28 **Off Isolation** $R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; -64 dB typ see Figure 29 Channel-to-Channel Crosstalk -64dB typ $R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; see Figure 30 **Total Harmonic Distortion Plus Noise** 0.016 % typ $R_L = 10 \text{ k}\Omega$, 5 V rms, f = 20 Hz to (THD + N)20 kHz; see Figure 32 -3 dB Bandwidth 135 MHz typ $R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31 $R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; Insertion Loss 0.16 dB typ see Figure 31 C_s (Off) 19 pF typ $f = 1 MHz; V_s = 0 V$ C_D (Off) 44 pF typ $f = 1 MHz; V_s = 0 V$ 114 C_D, C_S (On) $f = 1 MHz; V_s = 0 V$ pF typ

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +16.5 V$, $V_{SS} = -16.5 V$
IDD	0.002			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	
IDD, 8-Lead MSOP	58			μA typ	Digital inputs = 5 V
			95	μA max	
IDD, 8-Lead LFCSP	120			μA typ	Digital inputs = 5 V
			190	μA max	
lss	0.002			μA typ	Digital inputs = 0 V, 5 V, or V_{DD}
			1.0	μA max	
V _{DD} /V _{SS}			±4.5/±16.5	V min/max	Ground = 0 V

¹ Guaranteed by design, not subject to production test.

+12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	4			Ω typ	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 22
	4.6	5.5	6.2	Ωmax	$V_{DD} = +10.8 V, V_{SS} = 0 V$
On-Resistance Match Between Channels, ΔR _{oN}	0.08			Ωtyp	$V_{s} = 0 V$ to 10 V, $I_{s} = -10 \text{ mA}$
	0.25	0.3	0.35	Ωmax	
On-Resistance Flatness, R _{FLAT (ON)}	1.2			Ωtyp	$V_{s} = 0 V$ to 10 V, $I_{s} = -10 mA$
	1.5	1.75	1.9	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	V_{S} = 1 V/10 V, V_{D} = 10 V/1 V; see Figure 23
	±0.5	±2	±75	nA max	
Drain Off Leakage, I _D (Off)	±0.2			nA typ	V_{S} = 1 V/10 V, V_{D} = 10 V/1 V; see Figure 23
	±0.6	±3	±100	nA max	
Channel On Leakage, I _D , I _S (On)	±0.2			nA typ	$V_S = V_D = 1 V$ or 10 V; see Figure 24
	±1	±3	±100	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	200			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	255	265	370	ns max	V _s = 8 V; see Figure 25
ton (EN)	145			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	190	220	245	ns max	V _s = 8 V; see Figure 27
t _{off} (EN)	130			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	170	205	220	ns max	V _s = 8 V; see Figure 27
Break-Before-Make Time Delay, $t_{\scriptscriptstyle D}$	55			ns typ	$R_L = 300 \ \Omega, C_L = 35 \ pF$
			33	ns min	$V_{S1} = V_{S2} = 8 V$; see Figure 26
Charge Injection	13			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 28
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29

Data Sheet

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	95			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	0.3			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
C _s (Off)	32			pF typ	$f = 1 MHz; V_s = 6 V$
C _D (Off)	72			pF typ	$f = 1 MHz; V_s = 6 V$
C _D , C _S (On)	123			pF typ	$f = 1 MHz; V_s = 6 V$
POWER REQUIREMENTS					V _{DD} = 13.2 V
I _{DD}	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	
I _{DD} , 8-Lead MSOP	58			μA typ	Digital inputs = 5 V
			95	μA max	
I _{DD} , 8-Lead LFCSP	120			μA typ	Digital inputs = 5 V
			190	μA max	
V _{DD}			5/16.5	V min/max	$Ground = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design, not subject to production test.

±5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, R _{ON}	4.5			Ωtyp	$V_s = \pm 4.5V$, $I_s = -10$ mA; see Figure 22
	5.2	6.2	7	Ωmax	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On-Resistance Match Between Channels, ΔR _{oN}	0.1			Ωtyp	$V_s = \pm 4.5V$, $I_s = -10$ mA
	0.3	0.35	0.4	Ωmax	
On-Resistance Flatness, R _{FLAT (ON)}	1.3			Ωtyp	$V_{s} = \pm 4.5 \text{ V}, I_{s} = -10 \text{ mA}$
	1.6	1.85	2	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_{s} = \pm 4.5 V$, $V_{D} = \mp 4.5 V$; see Figure 23
	±0.5	±2	±75	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_{S} = \pm 4.5 V$, $V_{D} = \mp 4.5 V$; see Figure 23
	±0.6	±3	±100	nA max	
Channel On Leakage, I _D , I _S (On)	±0.1			nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 24
	±1	±3	±100	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, IINL or IINH	0.001			μA typ	$V_{\text{IN}} = V_{\text{GND}} \text{ or } V_{\text{DD}}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	4			pF typ	

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	310			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	410	495	560	ns max	Vs = 3 V; see Figure 25
ton (EN)	230			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	305	355	390	ns max	Vs = 3 V; see Figure 27
t _{off} (EN)	220			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	290	335	365	ns max	V _s = 3 V; see Figure 27
Break-Before-Make Time Delay, t _D	65			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			31	ns min	$V_{S1} = V_{S2} = 3 V$; see Figure 26
Charge Injection	59			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 28
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
Total Harmonic Distortion Plus Noise	0.04			% typ	$R_L = 10 \text{ k}\Omega$, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 32
–3 dB Bandwidth	105			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	0.28			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
C _s (Off)	26			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	62			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D , C _s (On)	128			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
ldd	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
Iss	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	
V _{DD} /V _{SS}			±4.5/±16.5	V min/max	Ground = 0 V

¹ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 4.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL ¹					
±15 V Dual Supply					$V_{DD} = +13.5 V, V_{SS} = -13.5 V$
8-Lead MSOP ($\theta_{JA} = 206^{\circ}C/W$)	215	135	80	mA maximum	
8-Lead LFCSP ($\theta_{JA} = 50.8^{\circ}C/W$)	390	215	100	mA maximum	
+12 V Single Supply					$V_{DD} = 10.8 V, V_{SS} = 0 V$
8-Lead MSOP ($\theta_{JA} = 206^{\circ}C/W$)	175	115	70	mA maximum	
8-Lead LFCSP ($\theta_{JA} = 50.8^{\circ}C/W$)	320	185	95	mA maximum	
±5 V Dual Supply					$V_{DD} = +4.5 V, V_{SS} = -4.5 V$
8-Lead MSOP ($\theta_{JA} = 206^{\circ}C/W$)	165	110	70	mA maximum	
8-Lead LFCSP ($\theta_{JA} = 50.8^{\circ}C/W$)	310	180	95	mA maximum	

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 5.

1 4010 01	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D (Pulsed at 1 ms, 10% Duty-Cycle Maximum)	
8-Lead MSOP (4-Layer Board)	400 mA
8-Lead LFCSP	600 mA
Continuous Current per Channel, S or D	Data in Table 4 + 15% mA
Operating Temperature Range	
Industrial	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature, Pb Free	260°C

¹ Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 6. Thermal Resistance

Package Type	θ」Α	οιθ	Unit
8-Lead MSOP (4-Layer Board)	206	44	°C/W
8-Lead LFCSP	50.8		°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

80

D	1			8	SB
SA	2	ADG1419		7	V _{SS}
GND	3	TOP VIEW (Not to Scale)	٦	6	IN
v_{DD}	4			5	EN
NOTES 1. EXPOS	SED	PAD TIED TO SU	B	STR	RATE, V _S

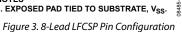


Figure 4.8-Lead MSOP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.			
LFCSP	MSOP	Mnemonic	Description
1	1	D	Drain Terminal. This pin can be an input or output.
2	2	SA	Source Terminal. This pin can be an input or output.
3	3	GND	Ground (0 V) Reference.
4	4	V _{DD}	Most Positive Power Supply Potential.
5	Not applicable	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the IN logic input determines which switch is turned on.
Not applicable	5	NC	No Connect.
6	6	IN	Logic Control Input.
7	7	Vss	Most Negative Power Supply Potential.
8	8	SB	Source Terminal. This pin can be an input or output.
0	Not applicable	EPAD	Exposed Pad. Exposed pad tied to substrate, Vss.

Table 8. 8-Lead LFCSP Truth Table

EN	IN	Switch A	Switch B			
0	Х	Off	Off			
1	0	On	Off			
1	1	Off	On			

Table 9. 8-Lead MSOP Truth Table

IN	Switch A	Switch B
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

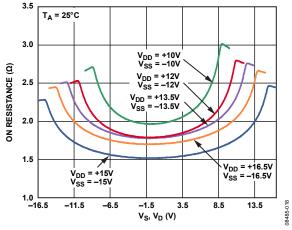


Figure 5. On Resistance as a Function of V_D (V_s) for Dual Supply

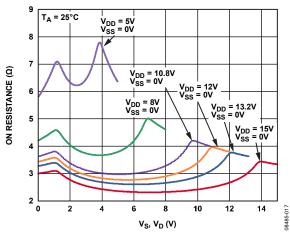


Figure 6. On Resistance as a Function of V_D (V_s) for Single Supply

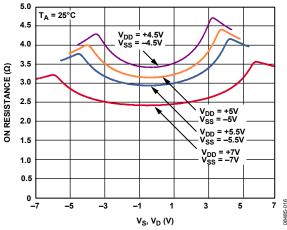


Figure 7. On Resistance as a Function of V_D (V_s) for Dual Supply

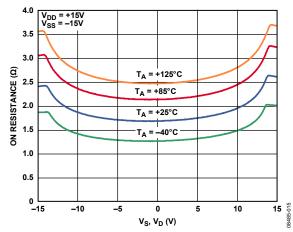


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, ± 15 V Dual Supply

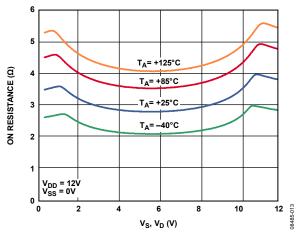


Figure 9. On Resistance as a Function of V_D (V_s) for Different Temperatures, +12 V Single Supply

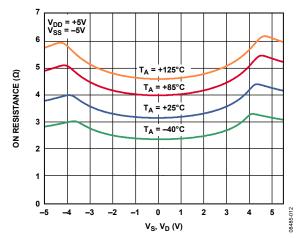
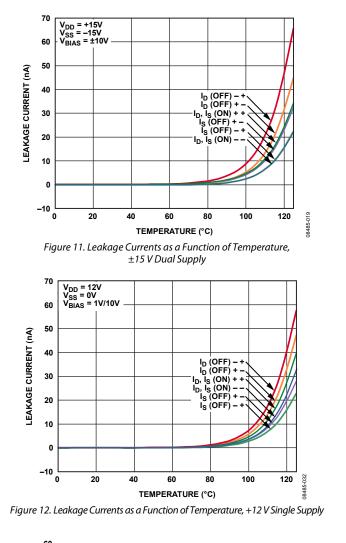



Figure 10. On Resistance as a Function of V_D (V_s) for Different Temperatures, ± 5 V Dual Supply

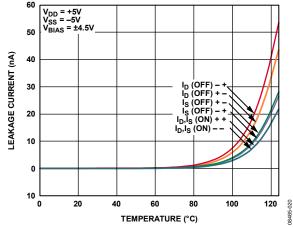
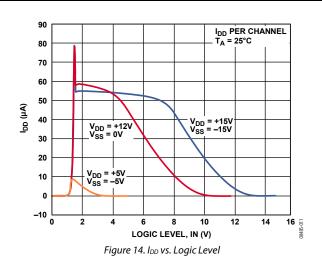
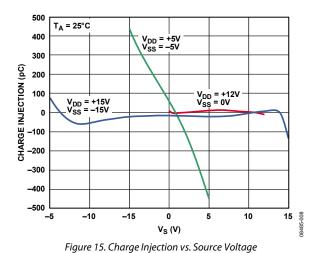




Figure 13. Leakage Currents as a Function of Temperature, ±5 V Dual Supply

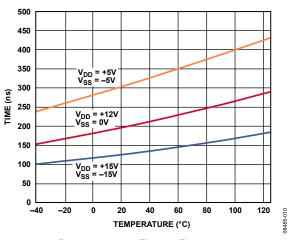
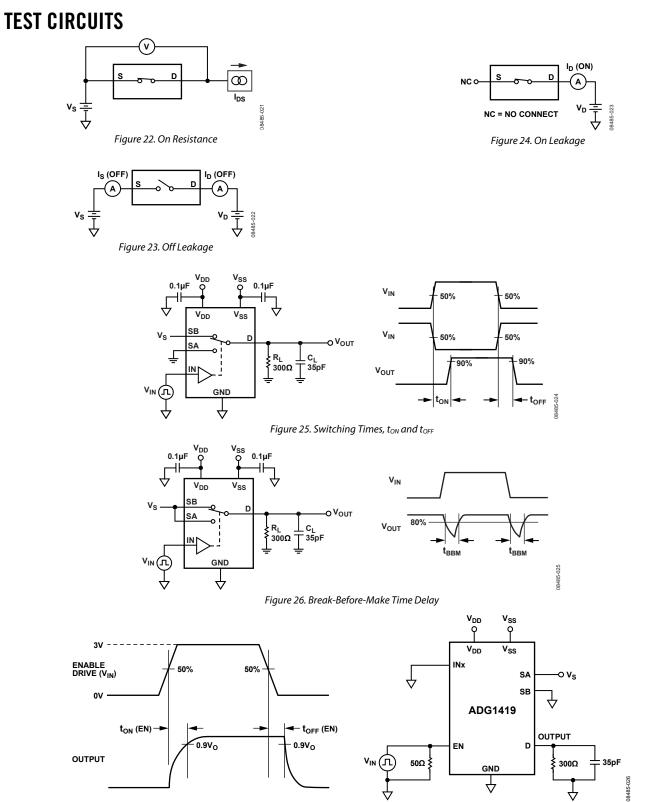
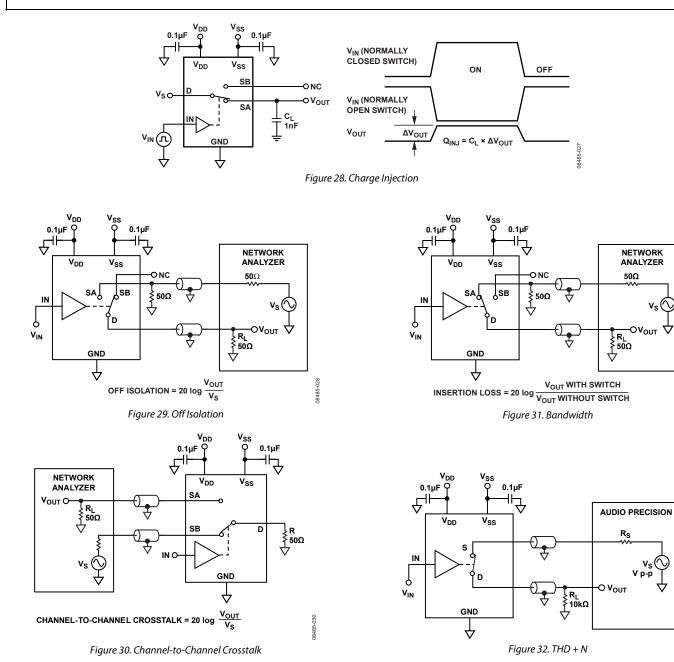



Figure 16. t_{TRANSITION} Times vs. Temperature

Data Sheet

ADG1419




Figure 27. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

v

 \diamond

08485-029

485-031

Rev. A | Page 13 of 16

TERMINOLOGY

IDD

The positive supply current.

Iss

The negative supply current.

\mathbf{V}_{D} (Vs)

The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

RFLAT (ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 \mathbf{I}_{D} (Off) The drain leakage current with the switch off.

 $I_{\rm D}, I_{\rm S}\left(On\right)$ The channel leakage current with the switch on.

VINL

The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

 $I_{\text{INL}} \left(I_{\text{INH}} \right)$ The input current of the digital input.

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

C_D , C_S (On)

The on switch capacitance, measured with reference to ground.

CIN

The digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 27.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 27.

$\mathbf{t}_{\mathrm{TRANSITION}}$

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

Тввм

Off time measured between the 80% point of both switches when switching from one address state to another. See Figure 26.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 28.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 29.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 30.

Bandwidth

The frequency at which the output is attenuated by 3 dB. See Figure 31.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch. See Figure 31.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 32.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 21.

OUTLINE DIMENSIONS

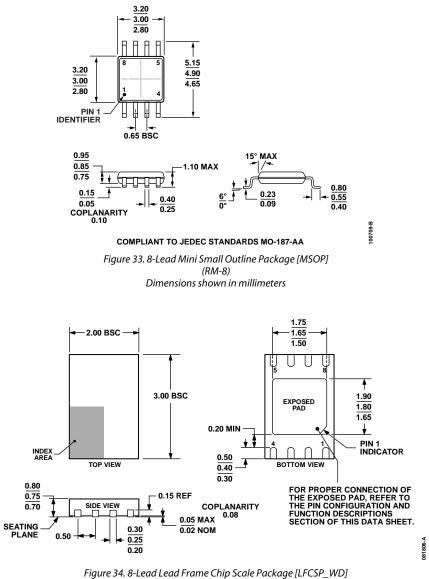


Figure 34. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 2 mm Body, Very Very Thin, Dual Lead (CP-8-4) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG1419BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1L
ADG1419BRMZ-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1L
ADG1419BCPZ-REEL7	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-8-4	1C

¹ Z = RoHS Compliant Part.

Data Sheet

NOTES

www.analog.com

©2009–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08485-0-6/16(A)

Rev. A | Page 16 of 16

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: ADG1419BCPZ-REEL7 ADG1419BRMZ ADG1419BRMZ-REEL7