- Low rods(on) ... 1.3Ω Typ
- Avalanche Energy ... 75 mJ
- Eight Power DMOS Transistor Outputs of 250-mA Continuous Current
- 1.5-A Pulsed Current Per Output
- Output Clamp Voltage up to 45 V
- Low Power Consumption

description

The TPIC6273 is a monolithic high-voltage high-current power logic octal D-type latch with DMOS transistor outputs designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other medium-current or high-voltage loads.
The TPIC6273 contains eight positive-edgetriggered D-type flip-flops with a direct clear input. Each flip-flop features an open-drain power DMOS transistor output.

When clear ($\overline{\mathrm{CLR})}$ is high, information at the D inputs meeting the setup time requirements is transferred to the DRAIN outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input (CLK) is at either the high or low level, the D input signal has no effect at the output. An asynchronous CLR is provided to turn all eight DMOS-transistor outputs off.
The TPIC6273 is characterized for operation over the operating case temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Standard 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
(each channel)

INPUTS			OUTPUT
$\overline{\text { CLR }}$	CLK	D	DRAIN
L	X	X	H
H	\uparrow	H	L
H	\uparrow	L	H
H	L	X	Latched

$H=$ high level, $L=$ low level, $X=$ irrelevant
logic diagram (positive logic)

schematic of inputs and outputs

absolute maximum ratings over recommended operating case temperature range (unless otherwise noted) \dagger

\qquad
Logic supply voltage, V_{CC} (see Note 1)
Power DMOS drain-to-source voltage, V_{DS} (see Note 2) 45 V
Continuous source-drain diode anode current 1 A
Pulsed source-drain diode anode current 2 A
Pulsed drain current, each output, all outputs on, $\mathrm{I}_{\mathrm{Dn}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 3) 750 mA
Continuous drain current, each output, all outputs on, $I_{\mathrm{Dn}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 250 mA
Peak drain current single output, $I_{D M}, T_{A}=25^{\circ} \mathrm{C}$ (see Note 3) 2 A
Single-pulse avalanche energy, $\mathrm{E}_{\text {AS }}$ (see Figure 4) 75 mJ
Avalanche current, IAS (see Note 4) 1 A
Continuous total power dissipation See Dissipation Rating Table
Operating virtual junction temperature range, T_{J} $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values are with respect to GND.
2. Each power DMOS source is internally connected to GND.
3. Pulse duration $\leq 100 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
4. DRAIN supply voltage $=15 \mathrm{~V}$, starting junction temperature $(\mathrm{T} J S)=25^{\circ} \mathrm{C}, \mathrm{L}=100 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=1 \mathrm{~A}$ (see Figure 4).
dISSIPATION RATING TABLE

$\left.$| PACKAGE | $\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$
 POWER RATING | DERATING FACTOR
 ABOVE
 $\mathbf{A}$$=\mathbf{2 5}^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: | | $\mathbf{T}_{\mathbf{A}}=\mathbf{1 2 5} \mathbf{5}^{\circ} \mathbf{C}$ |
| :---: |
| POWER RATING | \right\rvert\, | | 1125 mW | $9.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | 225 mW |
| :---: | :---: | :---: | :---: |
| DW | 1150 mW | $9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | 230 mW |

TPIC6273
 POWER LOGIC OCTAL D-TYPE LATCH

SLIS011A - APRIL 1992 - REVISED OCTOBER 1995
recommended operating conditions over recommended operating temperature range (unless otherwise noted)

	MIN	MAX
	UNIT	
Logic supply voltage, V_{CC}	4.5	5.5
High-level input voltage, V_{IH}	$0.85 \mathrm{~V}_{\mathrm{CC}}$	V
Low-level input voltage, V_{IL}	$0.15 \mathrm{~V}_{\mathrm{CC}}$	V
Pulsed drain output current, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (see Notes 3 and 5)	-1.8	1.5
Setup time, D high before $\mathrm{CLK} \uparrow, \mathrm{t}_{\text {su }}($ see Figure 2)	10	A
Hold time, D high after $\mathrm{CLK} \uparrow, \mathrm{t}_{\mathrm{h}}($ see Figure 2)	15	ns
Pulse duration, t_{W} (see Figure 2)	25	ns
Operating case temperature, T_{C}	-40	125

electrical characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSX}}$	Drain-source breakdown voltage	$\mathrm{l}=1 \mathrm{~mA}$		45			V
$\mathrm{V}_{\text {SD }}$	Source-drain diode forward voltage	$\mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}$, See Note 3			0.85	1	V
${ }^{\text {IIH }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$				1	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=0$				-1	$\mu \mathrm{A}$
ICC	Logic supply current	$\mathrm{I} \mathrm{O}=0, \quad$ All inputs low			15	100	$\mu \mathrm{A}$
${ }^{\text {IN }}$	Nominal current	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DS}} \text { (on) }=0.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{D}}, \quad \mathrm{~T}_{\mathrm{C}}=85^{\circ} \mathrm{C} \end{array}$	See Notes 5, 6, and 7		250		mA
IDSX	Off-state drain current	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}$			0.05	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			0.15	5	
${ }^{\text {r DS }}$ (on)	Static drain-source on-state resistance	$\mathrm{I}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	See Notes 5 and 6 and Figures 8 and 9		1.3	2	Ω
		$\begin{aligned} & \begin{array}{l} \mathrm{I} \mathrm{D}=250 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{array} \end{aligned}$			2	3.2	
		$\mathrm{I}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.3	2	

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tplH	Propagation delay time, low-to-high-level output from CLK	$C_{L}=30 \mathrm{pF}, \quad \mathrm{ID}=250 \mathrm{~mA},$ See Figures 1, 2, and 10		625		ns
tPHL	Propagation delay time, high-to-low-level output from CLK			150		ns
tr_{r}	Rise time, drain output			675		ns
$\mathrm{tf}_{\text {f }}$	Fall time, drain output			400		ns
t_{a}	Reverse-recovery-current rise time	$\mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}, \quad \mathrm{di} / \mathrm{dt}=20 \mathrm{~A} / \mathrm{\mu s},$ See Notes 5 and 6 and Figure 3		100		ns
trr	Reverse-recovery time			300		

NOTES: 3. Pulse duration $\leq 100 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
5. Technique should limit $\mathrm{T}_{J}-\mathrm{T}_{\mathrm{C}}$ to $10^{\circ} \mathrm{C}$ maximum.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at $\mathrm{T}^{\mathrm{C}}=85^{\circ} \mathrm{C}$.

thermal resistance

PARAMETER			TEST CONDITIONS	MIN
$\mathrm{R}_{\theta \mathrm{JA}} \quad$ MAX	UNIT			

PARAMETER MEASUREMENT INFORMATION

Figure 1. Resistive Load Normal Operation

Figure 2. Test Circuit, Switching Times, and Voltage Waveforms
NOTES: A. The word generator has the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=300 \mathrm{~ns}$, pulsed repetition rate $(\mathrm{PRR})=5 \mathrm{KHz}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The $V_{G G}$ amplitude and R_{G} are adjusted for $\mathrm{di} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$. $\mathrm{A} \mathrm{V}_{\mathrm{GG}}$ double-pulse train is used to set $\mathrm{I}_{\mathrm{F}}=0.25 \mathrm{~A}$, where $\mathrm{t}_{1}=10 \mu \mathrm{~s}$, $\mathrm{t}_{2}=7 \mu \mathrm{~s}$, and $\mathrm{t}_{3}=3 \mu \mathrm{~s}$.
B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.

Figure 3. Reverse-Recovery-Current Test Circuit and Waveforms of Source-Drain Diode

\dagger Non-JEDEC symbol for avalanche ftime.
NOTES: A. The word generator A has the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. Input pulse duration, t_{W}, is increased until peak current $I_{A S}=1 A$.

Energy test is defined as $E_{A S}=I_{A S} \times V_{(B R) D S X} \times t_{a v} / 2=75 \mathrm{~mJ}$, where $t_{a v}=$ avalanche time.
Figure 4. Single-Pulse Avalanche Energy Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

Figure 5

MAXIMUM CONTINUOUS DRAIN CURRENT OF EACH OUTPUT vs
 NUMBER OF OUTPUTS CONDUCTING SIMULTANEOUSLY

Figure 6

Figure 7

TYPICAL CHARACTERISTICS

Figure 8

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vS LOGIC SUPPLY VOLTAGE

Figure 9

SWITCHING TIME
vs
FREE-AIR TEMPERATURE

Figure 10

NOTE A: Technique should limit $\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}$ to $10^{\circ} \mathrm{C}$ maximum.

PACKAGING INFORMATION

Orderable Device	$\begin{gathered} \text { Status } \\ \text { (1) } \end{gathered}$	Package Type	Package Drawing	Pins	$\begin{gathered} \text { Package } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Eco Plan } \\ \text { (2) } \end{gathered}$	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPIC6273DW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC6273	Samples
TPIC6273DWG4	ACTIVE	SOIC	DW	20	25	$\begin{aligned} & \text { Green (RoHS } \\ & \text { \& no Sb/Br) } \end{aligned}$	NIPDAU	Level-1-260C-UNLIM		TPIC6273	Samples
TPIC6273DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC6273	Samples
TPIC6273DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM		TPIC6273	Samples
TPIC6273N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	NIPDAU	N/ A for Pkg Type	-40 to 125	TPIC6273N	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TPIC6273DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TPIC6273DWRG4	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPIC6273DWR	SOIC	DW	20	2000	350.0	350.0	43.0
TPIC6273DWRG4	SOIC	DW	20	2000	350.0	350.0	43.0

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

