TC14433/A

3-1/2 Digit, Analog-to-Digital Converter

Features

- Accuracy: $\pm 0.05 \%$ of Reading ± 1 Count
- Two Voltage Ranges: 1.999 V and 199.9 mV
- Up to 25 Conversions Per Second
- $Z_{\text {IN }}>1000 \mathrm{M}$ Ohms
- Single Positive Voltage Reference
- Auto-Polarity and Auto-Zero
- Overrange and Underrange Signals Available
- Operates in Auto-Ranging Circuits
- Uses On-Chip System Clock or External Clock
- Wide Supply Range: $\pm 4.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$

Applications

- Portable Instruments
- Digital Voltmeters
- Digital Panel Meters
- Digital Scales
- Digital Thermometers
- Remote A/D Sensing Systems
- MPU Systems

Device Selection Table

Part Number	Package	Temperature Range
TC14433AEJG	24-Pin CERDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433AELI	28 -Pin PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433AEPG	24 -Pin PDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433COG	$24-$-Pin SOIC (Wide)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC14433EJG	$24-$-Pin CERDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433ELI	28 -Pin PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433EPG	$24-$-Pin PDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

General Description

The TC14433 is a low power, high performance, monolithic CMOS 3-1/2 digit A/D converter. The TC14433 combines both analog and digital circuits on a single IC, thus minimizing the number of external components.

This dual slope A/D converter provides automatic polarity and zero correction with the addition of two external resistors and two capacitors. The full scale voltage range of this ratiometric IC extends from 199.9 millivolts to 1.999 volts. The TC14433 can operate over a wide range of power supply voltages, including batteries and standard 5 -volt supplies.

The TC14433A features improved performance over the industry standard TC14433. Rollover, which is the measurement of identical positive and negative signals, is specified to have the same reading within one count for the TC14433A. Power consumption of the TC14433A is typically 4 mW , approximately onehalf that of the industry standard TC14433.
The TC14433/A is available in 24-Pin PDIP, 24-Pin CERDIP, 24-Pin SOIC (TC14433 device only), and 28-Pin PLCC packages.

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*
Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$) -0.5 V to +18 V
Voltage on Any Pin:
Reference to V_{EE}.....................-0.5V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$
DC Current, Any Pin: .. $\pm 10 \mathrm{~mA}$
Power Dissipation $\left(\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$:
\qquad
Plastic PLCC ...1.0W
Plastic PDIP..940W
SOIC ...940W
CERDIP ...1.45W
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC14433/A ELECTRICAL SPECIFICATIONS

Electrical Characteristics: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F},(\mathrm{Mylar}), \mathrm{C}_{0}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}$, $\mathrm{R}_{1}=27 \mathrm{k} \Omega$ @ $\mathrm{V}_{\mathrm{REF}}=200 \mathrm{mV}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Min	Typ	Max	Units	Test Conditions
Analog Input		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
SYE	Rollover Error (Positive) and Negative Full Scale Symmetry	-1	-	+1	-	-	-	Counts	200 mV Full Scale $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\mathbb{I N}}$
NL	Linearity Output Reading (Note 1)	-0.05	+0.05	+0.05	-	-	-	\%rdg	$V_{\text {REF }}=2 \mathrm{~V}$
		-1 count	-	+1 count	-	-	-	\%rdg	$V_{\text {REF }}=200 \mathrm{mV}$
SOR	Stability Output Reading (Note 2)	-	-	2	-	-	-	LSD	$\begin{aligned} & V_{X}=1.99 \mathrm{~V}, \\ & V_{\text {REF }}=2 \mathrm{~V} \end{aligned}$
		-	-	3	-	-	-	LSD	$\begin{aligned} & V_{X}=199 \mathrm{mV}, \\ & V_{\text {REF }}=200 \mathrm{mV} \end{aligned}$
ZOR	Zero Output Reading Bias Current: Analog Input Reference Input Analog Ground	-	0	0	-	-	-	LSD	$\mathrm{V}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2 \mathrm{~V}$
I_{N}		-	± 20	± 100	-	-	-	pA	
		-	± 20	± 100	-	-	-	pA	
		-	± 20	± 100	-	-	-	pA	
CMRR	Common mode Rejection	-	65	-	-	-	-	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{X}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{OC}}=32 \mathrm{kHz} \end{aligned}$

Note 1: Accuracy - The accuracy of the meter at full scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full scale and zero is defined as the linearity specification.
2: The LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3: Pin numbers refer to 24 -pin PDIP.

TC14433/A ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}$, (Mylar), $\mathrm{C}_{0}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}$ REF $=2 \mathrm{~V}$, $\mathrm{R}_{1}=27 \mathrm{k} \Omega$ @ $\mathrm{V}_{\text {REF }}=200 \mathrm{mV}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Min	Typ	Max	Units	Test Conditions
Digital									
$\mathrm{V}_{\text {OL }}$	Output Voltage (Pins 14 to 23) (Note 3)	-	0	0.05	-	-	0.05	V	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \quad$ "0" Level
		-	-5	-4.95	-	-	-4.95	V	$\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}, \quad$ "0" Level
V_{OH}	Output Voltage (Pins 14 to 23) (Note 3)	4.95	5	-	4.95	-	-	V	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, ~ " 1 "$ Level
		4.95	5	-	4.95	-	-	V	$\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}$, "1" Level
IOH	Output Current (Pins 14 to 23)	-0.2	-0.36	-	-0.14	-	-	mA	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.6 \mathrm{~V}$ Source
		-0.5	-0.9	-	-0.35	-	-	mA	$\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5 \mathrm{~V}$ Source
IOL	Output Current (Pins 14 to 23)	0.51	0.88	-	0.36	-	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \text { Sink } \end{aligned}$
		1.3	2.25	-	0.9	-	-	mA	$\begin{aligned} & V_{S S}=-5 \mathrm{~V}, \\ & V_{\mathrm{OL}}=-4.5 \mathrm{~V} \text { Sink } \end{aligned}$
${ }^{\text {f CLK }}$	Clock Frequency	-	66	-	-	-	-	kHz	$\mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega$
I_{DU}	Input Current -DU	-	± 0.00001	± 0.3	-	-	± 1	$\mu \mathrm{A}$	
Power									
I_{Q}	Quiescent Current: 14433A:	-	-	-	-	-	-	-	$V_{D D}$ to $V_{E E}, I_{S S}=0$
		-	0.4	2	-	-	3.7	mA	$V_{\text {DD }}=5, \mathrm{~V}_{\text {EE }}=-5$
		-	1.4	4	-	-	7.4	mA	$\mathrm{V}_{\mathrm{DD}}=8, \mathrm{~V}_{\mathrm{EE}}=-8$
	Quiescent Current: 14433:	-	-	-	-	-	-	-	V_{DD} to $\mathrm{V}_{\mathrm{EE}}, \mathrm{I}_{\text {SS }}=0$
		-	0.9	2	-	-	3.7	mA	$V_{D D}=5, V_{E E}=-5$
		-	1.8	4	-	-	7.4	mA	$\mathrm{V}_{\mathrm{DD}}=8, \mathrm{~V}_{\mathrm{EE}}=-8$
PSRR	Supply Rejection	-	0.5	-	-	-	-	mV / V	$V_{D D}$ to $V_{E E}, l_{S S}=0$, $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$, $V_{D D}=5, V_{E E}=-5$

Note 1: Accuracy - The accuracy of the meter at full scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full scale and zero is defined as the linearity specification.
2: The LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3: Pin numbers refer to 24 -pin PDIP.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2.0.

TABLE 2-1: PIN FUNCTION TABLE

Pin No. (24-Pin PDIP) (24-Pin CERDIP) (24-Pin SOIC)	Pin No. (28-Pin PLCC)	Symbol	Description
1	2	V_{AG}	This is the analog ground. It has a high input impedance. The pin determines the reference level for the unknown input voltage $\left(\mathrm{V}_{\mathrm{X}}\right)$ and the reference voltage $\left(\mathrm{V}_{\mathrm{REF}}\right)$.
2	3	$\mathrm{V}_{\text {REF }}$	Reference voltage - Full scale output is equal to the voltage applied to $\mathrm{V}_{\text {REF }}$. Therefore, full scale voltage of 1.999 V requires 2 V reference and 199.9 mV full scale requires a 200 mV reference. $\mathrm{V}_{\mathrm{REF}}$ functions as system reset also. When switched to V_{EE}, the system is reset to the beginning of the conversion cycle.
3	4	V_{X}	The unknown input voltage $\left(\mathrm{V}_{\mathrm{X}}\right)$ is measured as a ratio of the reference voltage $\left(\mathrm{V}_{\text {REF }}\right)$ in a rationetric A/D conversion.
4	5	R_{1}	This pin is for external components used for the integration function in the dual slope conversion. Typical values are $0.1 \mu \mathrm{~F}$ (mylar) capacitor for C_{1}.
5	6	$\mathrm{R}_{1} / \mathrm{C}_{1}$	$\mathrm{R}_{1}=470 \mathrm{k} \Omega$ (resistor) for 2V full scale.
6	7	C_{1}	$\mathrm{R}_{1}=27 \mathrm{k} \Omega$ (resistor) for 200 mV full scale. Clock frequency of 66 kHz gives 250 msec conversion time.
7	9	CO_{1}	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
8	10	CO_{2}	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
9	11	DU	Display update input pin. When DU is connected to the EOC output, every conversion is displayed. New data will be strobed into the output latches during the conversion cycle if a positive edge is received on DU, prior to the ramp down cycle. When this pin is driven from an external source, the voltage should be referenced to V_{SS}.
10	12	CLK ${ }_{1}$	Clock input pins. The TC14433 has its own oscillator system clock. Connecting a single resistor between CLK_{1} and CLK_{0} sets the clock frequency.
11	13	CLK_{0}	A crystal or OC circuit may be inserted in lieu of a resistor for improved CLK $_{1}$, the clock input, can be driven from an external clock source, which need only have standard CMOS output drive. This pin is referenced to V_{EE} for external clock inputs. A $300 \mathrm{k} \Omega$ resistor yields a clock frequency of about 66 kHz . See Section 5.0 Typical Characteristics. (Also see Figure 4-3 for alternate circuits.)
12	14	V_{EE}	Negative power current. Connection pin for the most negative supply. Please note the current for the output drive circuit is returned through V_{SS}. Typical supply current is 0.8 mA .
13	16	V_{SS}	Negative power supply for output circuitry. This pin sets the low voltage level for the output pins (BCD, Digit Selects, EOC, OR). When connected to analog ground, the output voltage is from analog ground to V_{DD}. If connected to V_{EE}, the output swing is from $V_{E E}$ to $V_{D D}$. The recommended operating range for $V_{S S}$ is between the $V_{D D}-3$ volts and $V_{E E}$.
14	17	EOC	End of conversion output generates a pulse at the end of each conversion cycle. This generated pulse width is equal to one half the period of the system clock.
15	18	$\overline{\mathrm{OR}}$	Overrange pin. Normally this pin is set high. When V_{X} exceeds $\mathrm{V}_{\text {REF }}$ the OR is low.
16	19	DS_{4}	Digit select pin. The digit select output goes high when the respective digit is selected. The MSD ($1 / 2$ digit turns on immediately after an EOC pulse).
17	20	DS_{3}	The remaining digits turn on in sequence from MSD to LSD.
18	21	DS_{2}	To ensure that the BCD data has settled, an inter digit blanking time of two clock periods is included.
19	23	DS ${ }_{1}$	Clock frequency divided by 80 equals multiplex rate. For example, a system clock of 60 kHz gives a multiplex rate of 0.8 kHz .
20	24	Q_{0}	See Figure 4-4 for digit select timing diagram.

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin No. (24-Pin PDIP) (24-Pin CERDIP) (24-Pin SOIC)	Pin No. (28-Pin PLCC)	Symbol	Description
21	25	Q_{1}	BCD data output pin. Multiplexed BCD outputs contain three full digits of $_{\text {information during digit select } \mathrm{DS}_{2}, \mathrm{DS}_{3}, \mathrm{DS}_{4} \text {. }}$
22	26	Q_{2}	During DS , the $1 / 2$ digit, overrange, underrange and polarity information is available.
23	27	Q_{3}	Refer to the Truth Table 4-1.
24	28	$\mathrm{~V}_{\mathrm{DD}}$	Positive power supply. This is the most positive power supply pin.
	1	NC	Not Used.
-	8	NC	Not Used.
-	15	NC	Not Used.
-	22	NC	Not Used.

3.0 DETAILED DESCRIPTION

The TC14433 CMOS IC becomes a modified dualslope A / D with a minimum of external components. This IC has the customary CMOS digital logic circuitry, as well as CMOS analog circuitry. It provides the user with digital functions such as (counters, latches, multiplexers), and analog functions such as (operational amplifiers and comparators) on a single chip. Refer to the Functional Block diagram, Figure 3-3
Features of the TC14433/A include auto-zero, high input impedances and auto-polarity. Low power consumption and a wide range of power supply voltages are also advantages of this CMOS device. The system's auto-zero function compensates for the offset voltage of the internal amplifiers and comparators. In this "ratiometric system," the output reading is the ratio of the unknown voltage to the reference voltage, where a ratio of 1 is equal to the maximum count of 1999. It takes approximately 16,000 clock periods to complete one conversion cycle. Each conversion cycle may be divided into 6 segments. Figure 3-1 shows the conversion cycle in 6 segments for both positive and negative inputs.

FIGURE 3-1: INTEGRATOR WAVEFORMS AT PIN 6

Segment 1 - The offset capacitor (C_{O}), which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period. However, the integrator capacitor is shorted. This segment requires 4000 clock periods.
Segment 2 - During this segment, the integrator output decreases to the comparator threshold voltage. At this time, a number of counts equivalent to the input offset voltage of the comparator is stored in the offset latches for later use in the auto-zero process. The time for this segment is variable and less than 800 clock periods.
Segment 3 - This segment of the conversion cycle is the same as Segment 1.
Segment 4 - Segment 4 is an up going ramp cycle with the unknown input voltage $\left(\mathrm{V}_{\mathrm{X}}\right.$ as the input to the integrator. Figure 4-2 shows the equivalent configuration of the analog section of the TC14433. The actual configuration of the analog section is dependent upon the polarity of the input voltage during the previous conversion cycle.

FIGURE 3-2: EQUIVALENT CIRCUIT DIAGRAMS OF THE ANALOG SECTION DURING SEGMENT 4 OF THE TIMING CYCLE

Segment 5 - This segment is a down-going ramp period with the reference voltage as the input to the integrator. Segment 5 of the conversion cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeros automatically.
Segment 6 - This is an extension of Segment 5. The time period for this portion is 4000 clock periods. The results of the A / D conversion cycle are determined in this portion of the conversion cycle.

4.0 TYPICAL APPLICATIONS

The Typical Application circuit is an example of a 3-1/2 digit voltmeter using the TC14433 with Commonanode displays. This system requires a 2.5 V reference. Full scale may be adjusted to 1.999 V or 199.9 mV . Input overrange is indicated by flashing a display. This display uses LEDs with common anode digit lines. Power supply for this system is shown as a dual $\pm 5 \mathrm{~V}$ supply; however, the TC14433 will operate over a wide voltage range
The circuit in Figure $4-1$ shows a $3-1 / 2$ digit LCD voltmeter. The 14024B provides the low frequency square wave signal drive to the LCD backplane. Dual power supplies are shown here; however, one supply may be used when V_{SS} is connected to V_{EE}. In this case, V_{AG} must be at least 2.8 V above V_{EE}.
When only segments b and c of the decoder are connected to the $1 / 2$ digit of the display, 4, 0,7 and 3 appear as 1 .
The overrange indication ($Q_{3}=0$ and $Q_{0}=1$) occurs when the count is greater than 1999; (e.g., 1.999V for a reference of 2 V) The underrange indication, useful for auto-ranging circuits, occurs when the count is less than 180; (e.g., 0.180V for a reference of 2 V).

Note: If the most significant digit is connected to a display other than a "1" only, such as a full digit display, segments other than b and c must be disconnected. The BCD to 7 -segment decoder must blank on BCD inputs 1010 to 1111. See Table 4-1

TABLE 4-1: TRUTH TABLE

$\begin{array}{c}\text { Coded } \\ \text { Condition } \\ \text { of MSD }\end{array}$	\mathbf{Q}	$\mathbf{3}$	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	$\begin{array}{c}\text { Q } \\ \mathbf{1}\end{array}$		$\mathbf{0}$
BDC to 7-Segment								
Decoding								

Note 1: $Q_{3}-1 / 2$ digit, low for "1", high for " 0 ".
Q_{2} - Polarity: "1" = positive, " $0 "=$ negative. Q_{0} - Out of range condition exists if $Q_{0}=1$. When used in conjunction with Q_{3}, the type of out of range condition is indicated; i.e., $Q_{3}=0 \rightarrow$ OR or $Q_{3}=1 \rightarrow$ UR.

Figure 4-2 is an example of a 3-1/2 digit LED voltmeter with a minimum of external components, (only 11 additional components). In this circuit, the 14511B provides the segment drive and the 75492 or 1413 provides sink for digit current. Display is blanked during the overrange condition.

TC14433/A

FIGURE 4-1: 3-1/2 DIGIT VOLTMETER WITH LCD DISPLAY

FIGURE 4-2: 3-1/2 DIGIT LED VOLTMETER WITH LOW COMPONENT COUNT USING COMMON CATHODE DISPLAYS

Note 1: For $V_{\text {REF }}=2000 \mathrm{~V}$; V: 1.999 V full scale.
2: For $V_{\text {REF }}=200 \mathrm{mV}$; V: 199.9 mV full scale (change 470 k to $\mathrm{R}=27 \mathrm{k}$ and decimal point position.
3: Peak digit current for an eight displayed is 7 times the segment current:
*To increase segment current capability, add two 75491 ICs between 14511B and resistor network.
The use of the 1413 as digit driver increases digit current capability over the 75492.
${ }^{* *} \mathrm{~V}$ can range between -2.8 V and -11 V .

FIGURE 4-3: ALTERNATE OSCILLATOR CIRCUITS

FIGURE 4-4: DIGIT SELECT TIMING DIAGRAM

5.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Package marking data not available at this time.

6.2 Taping Form

Component Taping Orientation for 24-Pin SOIC (Wide) Devices

Standard Reel Component Orientation for TR Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
24-Pin SOIC (W)	24 mm	12 mm	1000	13 in

Component Taping Orientation for 28-Pin PLCC Devices

Standard Reel Component Orientation for TR Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
28-Pin PLCC	24 mm	16 mm	750	13 in

6.3 Package Dimensions

24-Pin CERDIP (Wide)

Dimensions: inches (mm)

Package Dimensions (Continued)

24-Pin SOIC (Wide)

Dimensions: inches (mm)

28-Pin PLCC

Dimensions: inches (mm)

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature \#) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

TC14433/A

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, Keeloq, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

[^0]
Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd.
200 Middle Road
\#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 4544209895 Fax: 4544209910

France

Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 441189215869 Fax: 44-118 921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Microchip:
$\underline{\text { TC14433EPG TC14433ELI TC14433ELI713 TC14433AELI713 TC14433AEPG TC14433COG TC14433AELI }}$

[^0]: Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro ${ }^{\oplus}$ 8-bit MCUs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

