Power MOSFET -60 V, -2.6 A, Single P-Channel SOT-223

Features

- Design for low R_{DS(on)}
- Withstands High Energy in Avalanche and Commutation Modes
- AEC-Q101 Qualified NVF2955
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supplies
- PWM Motor Control
- Converters
- Power Management

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

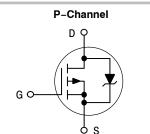
Parame	eter		Symbol	Value	Unit
Drain-to-Source Voltage	Drain-to-Source Voltage				V
Gate-to-Source Voltage	V _{GS}	±20	V		
Continuous Drain	Steady T _A = 25°C		I _D	-2.6	А
Current (Note 1)	State	T _A = 85°C		-2.0	
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	2.3	W
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	۱ _D	-1.7	А
Current (Note 2)	State	$T_A = 85^{\circ}C$		-1.3	
Power Dissipation (Note 2)		$T_A = 25^{\circ}C$	PD	1.0	W
Pulsed Drain Current	tp =	= 10 μs	I _{DM}	-17	А
Operating Junction and St	T _J , T _{STG}	–55 to 175	°C		
Single Pulse Drain-to-So Energy (V _{DD} = 25 V, V _G = L = 10 mH, R _G = 25 Ω)	EAS	225	mJ		
Lead Temperature for Sold (1/8" from case for 10 sect		ooses	ΤL	260	°C

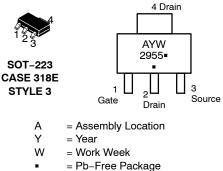
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Tab (Drain) - Steady State (Note 2)	$R_{\theta JC}$	14	
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	65	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	150	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. When surface mounted to an FR4 board using 1 in. pad size (Cu. area = 1.127 in² [1 oz] including traces)


2. When surface mounted to an FR4 board using the minimum recommended pad size (Cu. area = 0.341 in^2)


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
–60 V	145 mΩ @ –10 V	–2.6 A

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTF2955T1G	SOT–223 (Pb–Free)	1000 /Tape & Reel
NVF2955T1G	SOT-223 (Pb-Free)	1000/ Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (TJ=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = –250 μ A		-60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				66.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$ $T_{J} = 25^{\circ}C$ $V_{DS} = -60 V$				-1.0	μΑ
		V _{DS} = -60 V	T _J = 125°C			-50	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±20 V			±100	nA

ON CHARACTERISTICS (Note 3)

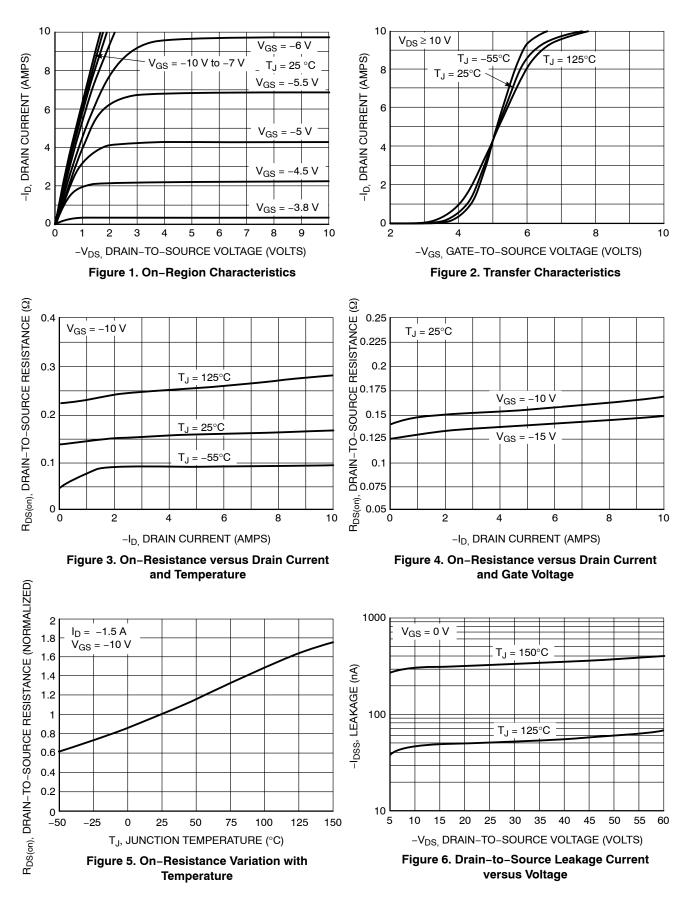
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -1.0 \text{ mA}$	-2.0		-4.0	V
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = -10 V, I _D = -0.75 A		145	170	mΩ
		V _{GS} = –10 V, I _D = –1.5 A		150	180	
		V _{GS} = -10 V, I _D = -2.4 A		154	185	
Forward Transconductance	9 FS	V_{GS} = -15 V, I _D = -0.75 A		1.77		S

CHARGES AND CAPACITANCES

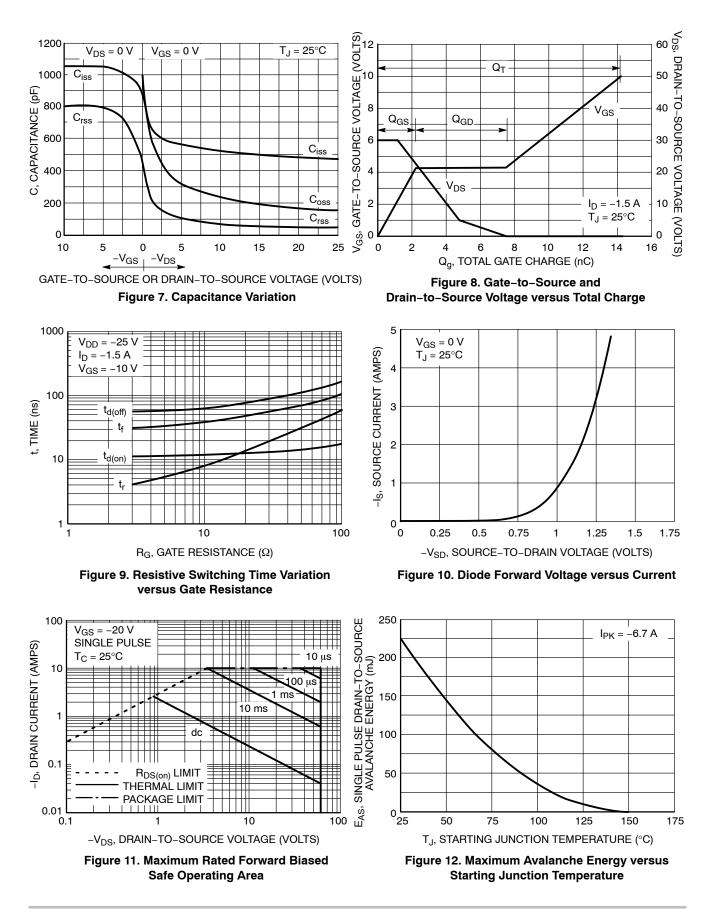
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V	492	pF
Output Capacitance	C _{OSS}	v _{DS} = 25 v	165	
Reverse Transfer Capacitance	C _{RSS}		50	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V},$ $I_{D} = 1.5 \text{ A}$	14.3	nC
Threshold Gate Charge	Q _{G(TH)}	т _D = 1.5 А	1.2	
Gate-to-Source Charge	Q _{GS}		2.3	
Gate-to-Drain Charge	Q _{GD}		5.2	

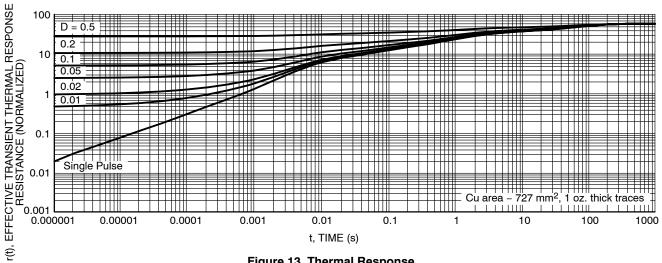
SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DD} = 25 \text{ V},$	11	ns
Rise Time	t _r	I_D = 1.5 A, R_G = 9.1 Ω R_L = 25 Ω	7.6	
Turn-Off Delay Time	t _{d(OFF)}		65	
Fall Time	t _f		38	


DRAIN-SOURCE DIODE CHARACTERISTICS

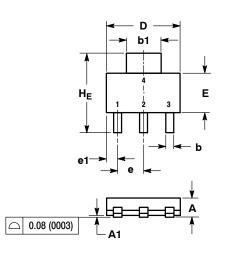
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$	-1.10	-1.30	V
		I _S = 1.5 A	T _J = 125°C	-0.9		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 1.5 A		36		
Charge Time	ta			20		ns
Discharge Time	t _b			16		
Reverse Recovery Charge	Q _{RR}			0.139		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

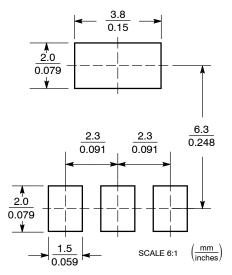
TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)



PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH.


	м	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°

3. 4.

STYLE 3: PIN 1. GATE 2. DRAIN

SOURCE DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended to support or sustain life, or for any other application in which the failure of the SCILLC product could could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death masociated with such unintended or unauthorized applicable copyright has and its role or unauthorized or personal injury or death distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death masociated with

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NTF2955T1G NVF2955T1G