General Purpose Transistor

NPN Silicon

Features

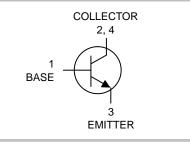
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and **PPAP** Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

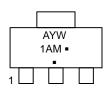
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	200	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) $T_A = 25^{\circ}C$	PD	1.5 12	W mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	83.3	°C/W
Thermal Resistance Junction-to-Lead #4	R_{\thetaJA}	35	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 with 1 oz and 713 mm² of copper area.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

1AM = Specific Device Code А

- = Assembly Location
- = Year

Υ

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
PZT3904T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
SPZT3904T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

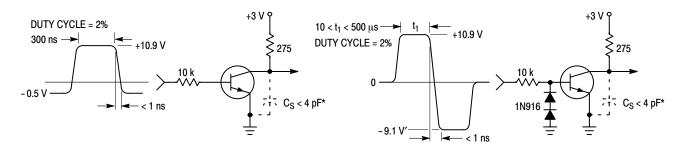
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS (Note 2)				
Collector – Emitter Breakdown Voltage (Note 3) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \ \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	60	-	
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	6.0	-	
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	-	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	_	50	

ON CHARACTERISTICS (Note 3)

$ \begin{array}{l} \text{DC Current Gain (Note 2)} \\ (I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \end{array} $	H _{FE}	40 70 100 60 30	 300 	-
	V _{CE(sat)}		0.2 0.3	Vdc
$\begin{array}{l} \text{Base}-\text{Emitter Saturation Voltage (Note 3)} \\ (I_{C}=10 \text{ mAdc}, I_{B}=1.0 \text{ mAdc}) \\ (I_{C}=50 \text{ mAdc}, I_{B}=5.0 \text{ mAdc}) \end{array}$	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc

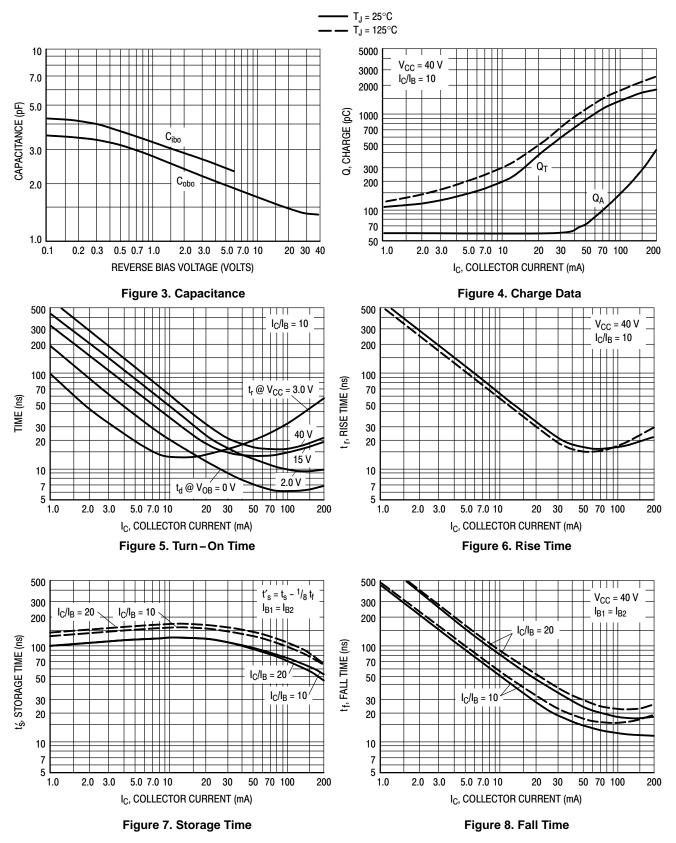
SMALL-SIGNAL CHARACTERISTICS


Current-Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance ($V_{CB} = 5.0$ Vdc, $I_E = 0$, f = 1.0 MHz)		-	5.0	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz)	C _{ibo}	-	8.0	
Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{ie}	1.0	10	kΩ
Voltage Feedback Ratio (V_{CE} = 10 Vdc, I_C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	0.5	8.0	X 10 ⁻⁴
Small-Signal Current Gain (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-
Output Admittance (V_{CE} = 10 Vdc, I_C = 1.0 mAdc, f = 1.0 kHz)	h _{oe}	1.0	40	μMhos
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 kΩ, f = 1.0 kHz)	nF	-	5.0	dB

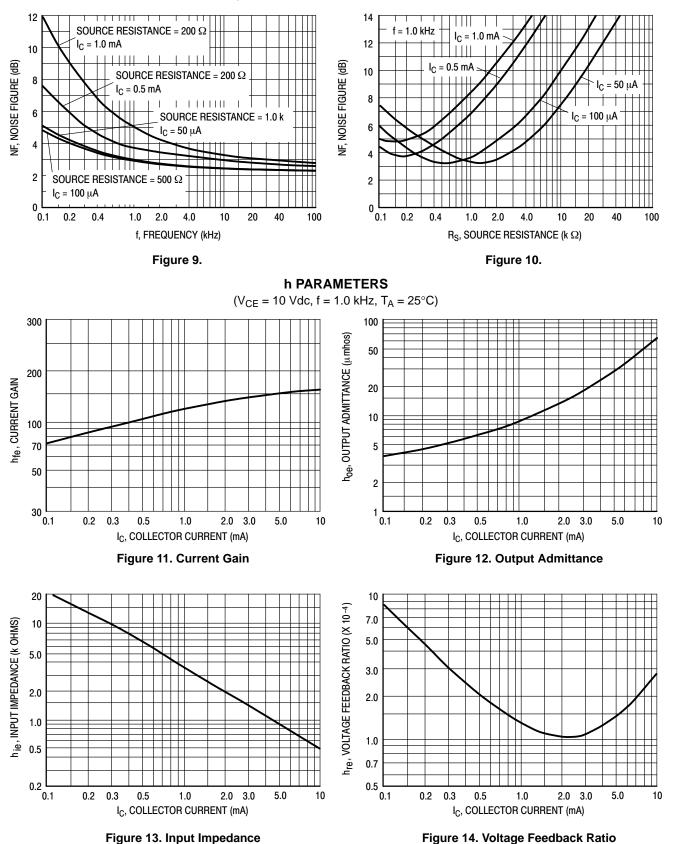
SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc,	t _d	-	35	ns
Rise Time	$I_{\rm C} = 10 \text{ mAdc}, I_{\rm B1} = 1.0 \text{ mAdc})$	t _r	_	35	
Storage Time	(V _{CC} = 3.0 Vdc,	t _s	_	200	
Fall Time	$I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	t _f	-	50	

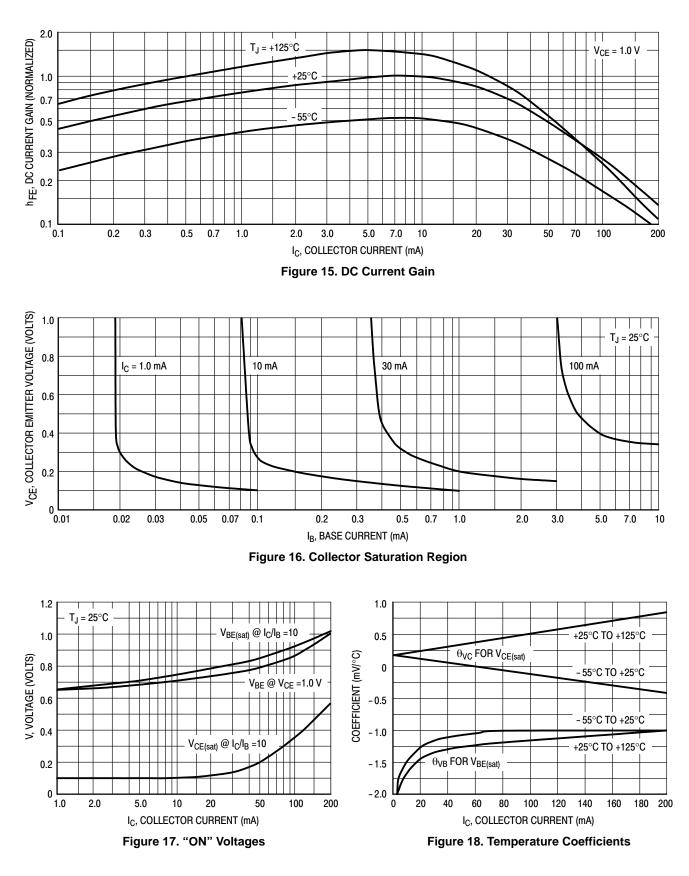
2. FR–5 = 1.0 \times 0.75 \times 0.062 in.


3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

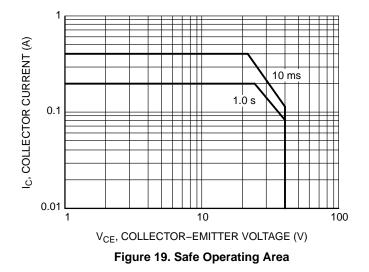
* Total shunt capacitance of test jig and connectors


Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit

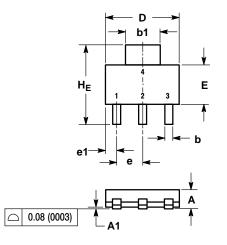
TYPICAL TRANSIENT CHARACTERISTICS

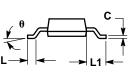


TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS


(V_{CE} = 5.0 Vdc, T_A = 25°C, Bandwidth = 1.0 Hz)

TYPICAL STATIC CHARACTERISTICS


TYPICAL CHARACTERISTICS

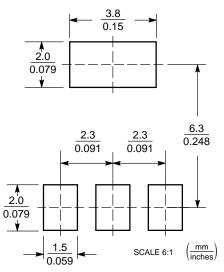


PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

ISSUE N

NOTES:


DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: INCH.

	м	ILLIMETE	PS	INCHES				
DIM	MIN							
DIN		NOM	MAX	MIN		MAX		
Α	1.50	1.63	1.75	0.060	0.064	0.068		
A1	0.02	0.06	0.10	0.001	0.002	0.004		
b	0.60	0.75	0.89	0.024	0.030	0.035		
b1	2.90	3.06	3.20	0.115	0.121	0.126		
c	0.24	0.29	0.35	0.009	0.012	0.014		
D	6.30	6.50	6.70	0.249	0.256	0.263		
E	3.30	3.50	3.70	0.130	0.138	0.145		
е	2.20	2.30	2.40	0.087	0.091	0.094		
e1	0.85	0.94	1.05	0.033	0.037	0.041		
Г	0.20			0.008				
L1	1.50	1.75	2.00	0.060	0.069	0.078		
HE	6.70	7.00	7.30	0.264	0.276	0.287		
θ	0°	_	10°	0°	_	10°		

4. OOLLL

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products for any other application in the rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components insystems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized applicable copyright laws and is not for resarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative A

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

PZT3904T1/D

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: SPZT3904T1G