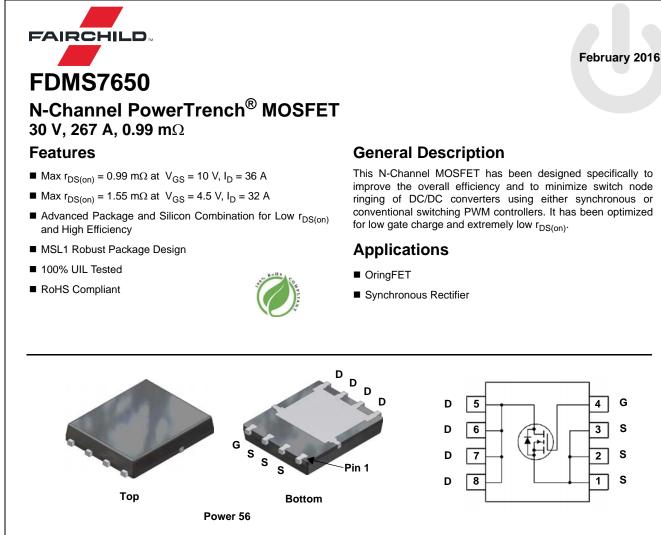


Is Now Part of



ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

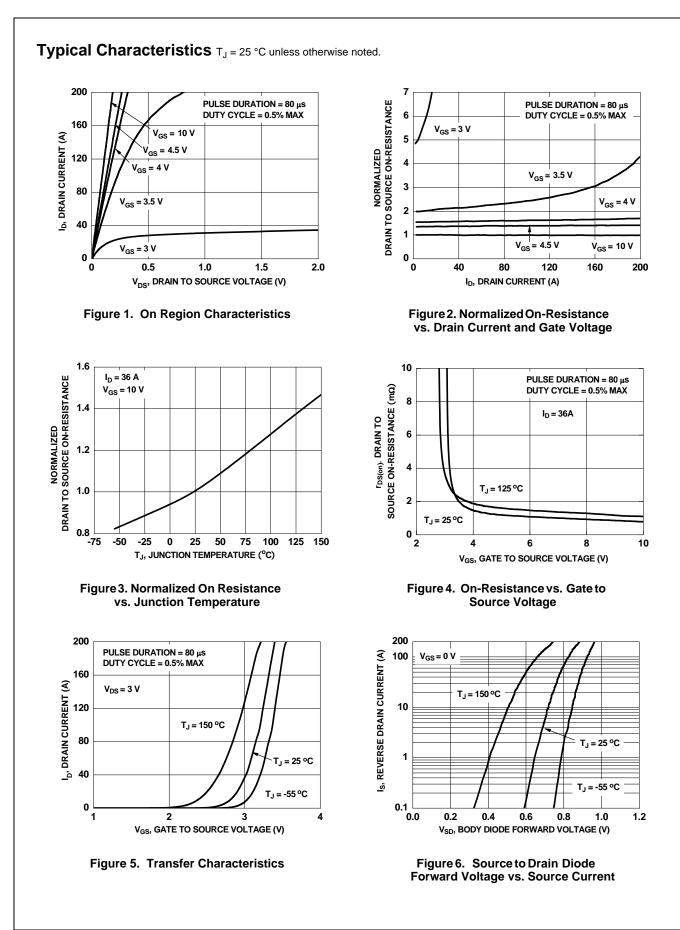
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

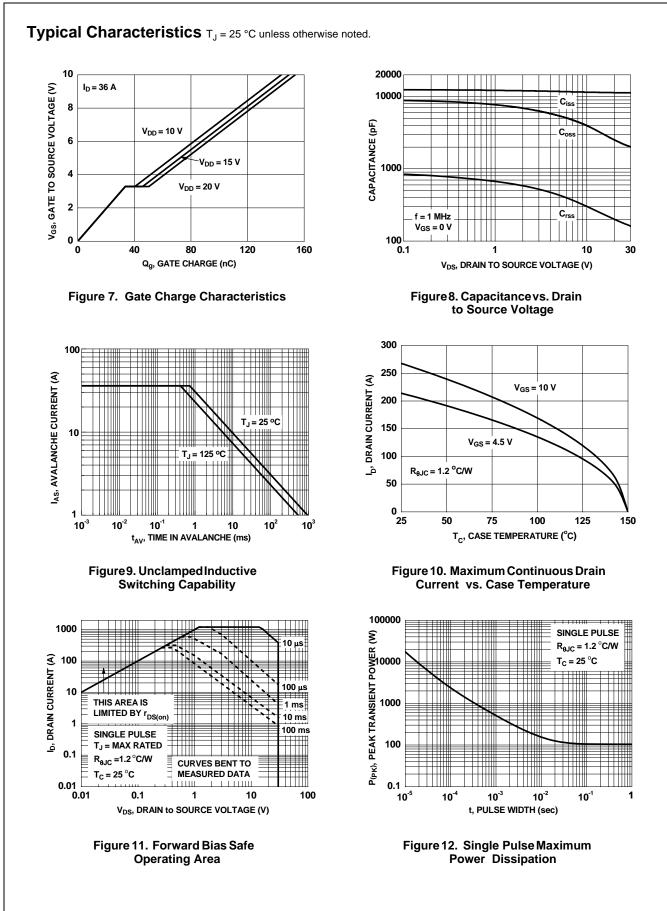
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
I _D	Drain Current -Continuous	T _C = 25 °C	(Note 5)	267		
	-Continuous	T _C = 100 °C	(Note 5)	169	٨	
	-Continuous	T _A = 25 °C	(Note 1a)	36	A	
	-Pulsed		(Note 6)	1210		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	544	mJ	
	Power Dissipation	T _C = 25 °C		104		
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5		
T _J , T _{STG}	Operating and Storage Junction Temper	ature Range		-55 to +150	°C	

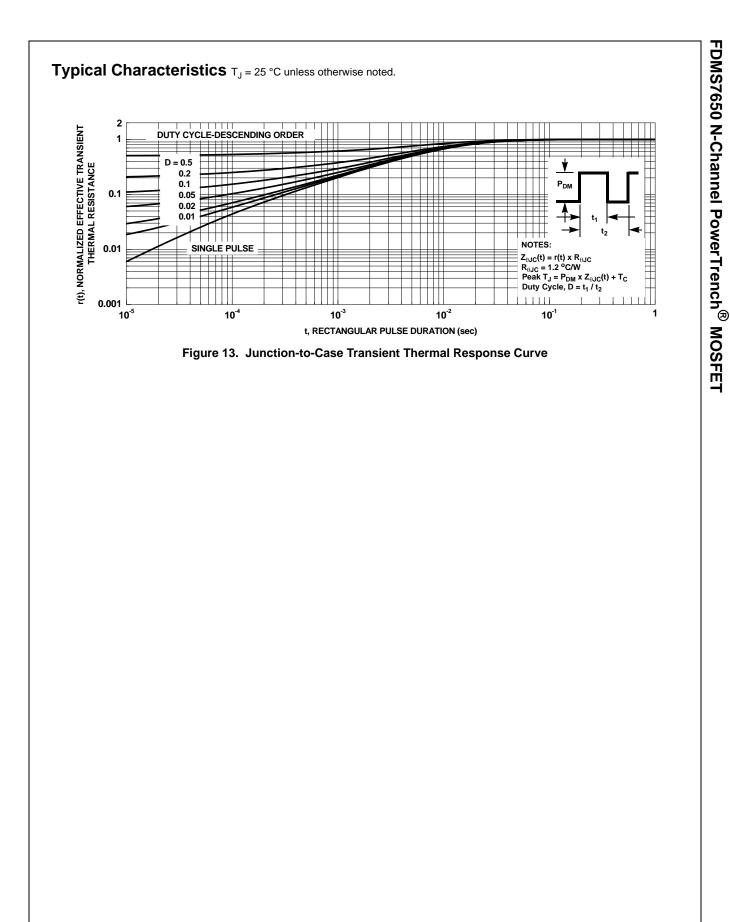
Thermal Characteristics

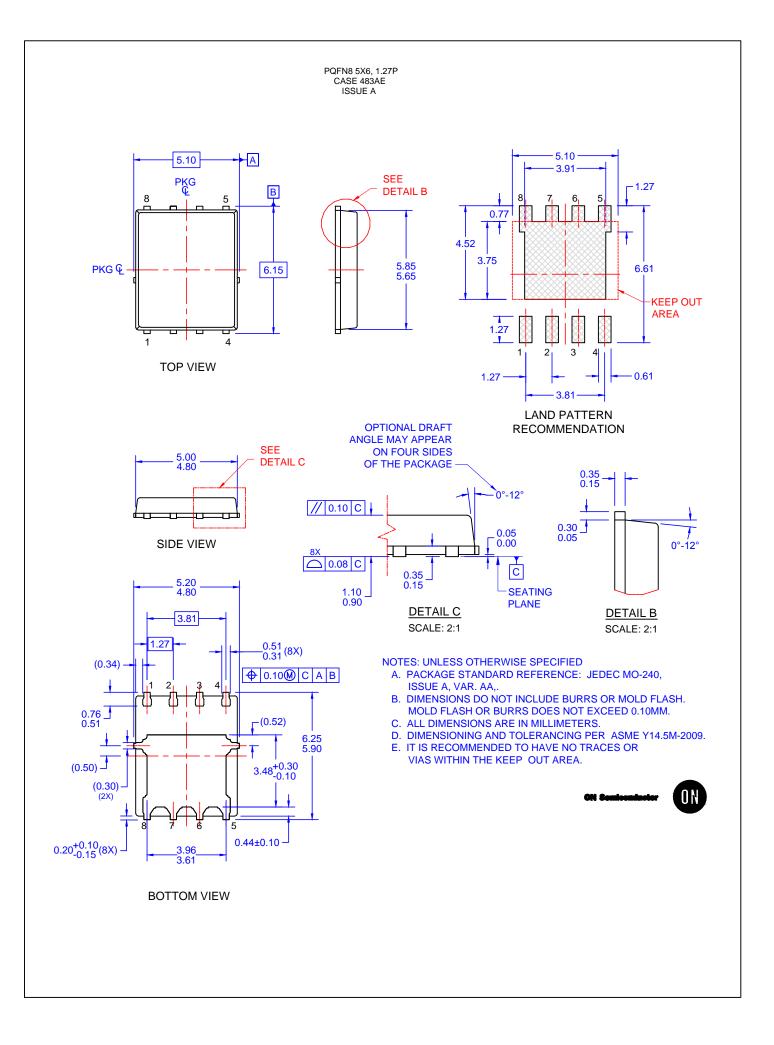
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.2	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	C/W


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7650	FDMS7650	Power 56	13 "	12 mm	3000 units


ics o Source Breakdown Voltage own Voltage Temperature ent ate Voltage Drain Current Source Leakage Current cs Source Threshold Voltage Source Threshold Voltage ature Coefficient orain to Source On Resistance d Transconductance	$\begin{split} & I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} \\ & I_D = 250 \; \mu \text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ & V_{DS} = 24 \; \text{V}, \; V_{GS} = 0 \; \text{V} \\ & V_{GS} = 20 \; \text{V}, \; V_{DS} = 0 \; \text{V} \\ & V_{GS} = V_{DS}, \; I_D = 250 \; \mu \text{A} \\ & I_D = 250 \; \mu \text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ & V_{GS} = 10 \; \text{V}, \; I_D = 36 \; \text{A} \\ & V_{GS} = 4.5 \; \text{V}, \; I_D = 32 \; \text{A} \\ & V_{GS} = 10 \; \text{V}, \; I_D = 36 \; \text{A}, \; T_J = 125 \; ^\circ\text{C} \\ & V_{DS} = 5 \; \text{V}, \; I_D = 36 \; \text{A} \\ \end{split}$	30	15 1.9 -6 0.8 1.1 1.1	1 100 3 0.99 1.55	V mV/°C μA nA V mV/°C
o Source Breakdown Voltage own Voltage Temperature ent ate Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage ature Coefficient Orain to Source On Resistance	$\begin{split} I_D &= 250 \; \mu\text{A}, \text{ referenced to } 25 \; ^\circ\text{C} \\ V_{DS} &= 24 \; \text{V}, \; V_{GS} = 0 \; \text{V} \\ V_{GS} &= 20 \; \text{V}, \; V_{DS} = 0 \; \text{V} \\ \end{split} \\ \hline \\ V_{GS} &= V_{DS}, \; I_D = 250 \; \mu\text{A} \\ I_D &= 250 \; \mu\text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 32 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A}, \; T_J = 125 \; ^\circ\text{C} \\ \end{split}$		1.9 -6 0.8 1.1	100 3 0.99	mV/°C μA nA V
own Voltage Temperature ent ate Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage ature Coefficient Drain to Source On Resistance d Transconductance	$\begin{split} I_D &= 250 \; \mu\text{A}, \text{ referenced to } 25 \; ^\circ\text{C} \\ V_{DS} &= 24 \; \text{V}, \; V_{GS} = 0 \; \text{V} \\ V_{GS} &= 20 \; \text{V}, \; V_{DS} = 0 \; \text{V} \\ \end{split} \\ \hline \\ V_{GS} &= V_{DS}, \; I_D = 250 \; \mu\text{A} \\ I_D &= 250 \; \mu\text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 32 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A}, \; T_J = 125 \; ^\circ\text{C} \\ \end{split}$	1	1.9 -6 0.8 1.1	100 3 0.99	μA nA V
Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Orain to Source On Resistance d Transconductance	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ referenced to } 25 ^\circ\text{C}$ $V_{GS} = 10 V, I_D = 36 \text{A}$ $V_{GS} = 4.5 V, I_D = 32 \text{A}$ $V_{GS} = 10 V, I_D = 36 \text{A}, T_J = 125 ^\circ\text{C}$	1	-6 0.8 1.1	100 3 0.99	nA V
Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Orain to Source On Resistance d Transconductance	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ referenced to } 25 ^\circ\text{C}$ $V_{GS} = 10 V, I_D = 36 \text{A}$ $V_{GS} = 4.5 V, I_D = 32 \text{A}$ $V_{GS} = 10 V, I_D = 36 \text{A}, T_J = 125 ^\circ\text{C}$	1	-6 0.8 1.1	3	V
CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Drain to Source On Resistance	$V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A}$ $I_D = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ V, I_D = 36 \ \text{A}$ $V_{GS} = 4.5 \ V, I_D = 32 \ \text{A}$ $V_{GS} = 10 \ V, I_D = 36 \ \text{A}, T_J = 125 \ ^{\circ}\text{C}$	1	-6 0.8 1.1	0.99	
Source Threshold Voltage Source Threshold Voltage rature Coefficient Orain to Source On Resistance d Transconductance	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}$ $V_{GS} = 4.5 \ V, I_{D} = 32 \ \text{A}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$	1	-6 0.8 1.1	0.99	
Source Threshold Voltage ature Coefficient Drain to Source On Resistance	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}$ $V_{GS} = 4.5 \ V, I_{D} = 32 \ \text{A}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$		-6 0.8 1.1	0.99	
ature Coefficient	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 36 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 32 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 36 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$		0.8 1.1		mV/°C
Prain to Source On Resistance	V_{GS} = 4.5 V, I _D = 32 A V_{GS} = 10 V, I _D = 36 A, T _J = 125 °C		1.1		
d Transconductance	V_{GS} = 4.5 V, I _D = 32 A V_{GS} = 10 V, I _D = 36 A, T _J = 125 °C			1.55	
	V_{GS} = 10 V, I _D = 36 A, T _J = 125 °C		1.1		mΩ
				1.7	
teristics			267		S
lensucs			4		
apacitance			11250	14965	pF
	V _{DS} = 15 V, V _{GS} = 0 V,		3050	4055	
Capacitance	f = 1 MHz				pF
•			-		pF Ω
			1.4	5	32
			,		
n Delay Time	_		28	45	ns
	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 36 \text{ A},$		24		ns
ff Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		83		ns
			21	34	ns
ate Charge			149	209	nC
•	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$		63	88	nC
-	I _D = 36 A		34		nC
Drain "Miller" Charge			13		nC
ode Characteristics					
	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	1.2	
to Drain Diode Forward Voltage	$\label{eq:VGS} \begin{array}{ c c c c c } \hline V_{GS} = 0 \ V, \ I_S = 2.1 \ A & (Note \ 2) \\ \hline V_{GS} = 0 \ V, \ I_S = 36 \ A & (Note \ 2) \\ \hline \end{array}$		0.7	1.2 1.3	V
					V
	e Transfer Capacitance esistance acteristics n Delay Time me ff Delay Time ne ate Charge ate Charge o Source Charge o Drain "Miller" Charge	termVacteristicsmeVMathematical display TimeVMathematical display Time	Transfer Capacitance Vertice esistance acteristics acteristics $V_{DD} = 15 \text{ V}, I_D = 36 \text{ A},$ me $V_{DD} = 15 \text{ V}, I_D = 36 \text{ A},$ ff Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ ne ate Charge ate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ o Source Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$	the Transfer Capacitance240desistance1.4acteristicsn Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 36 \text{ A},$ me $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 28ff Delay Time $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 83ne2121ate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 149ate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ 63o Source Charge $I_D = 36 \text{ A}$ 34	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


00000


- Pulse Test: Pulse Width < 300 ms, Duty cycle < 2.0%.
 Starting T_J = 25 °C, L = 1 mH, I_{AS} = 33 A, V_{DD} = 27 V, V_{GS} = 10 V.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.
 Pulsed Id please refer to Fig 11 SOA graph for more details.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDMS7650