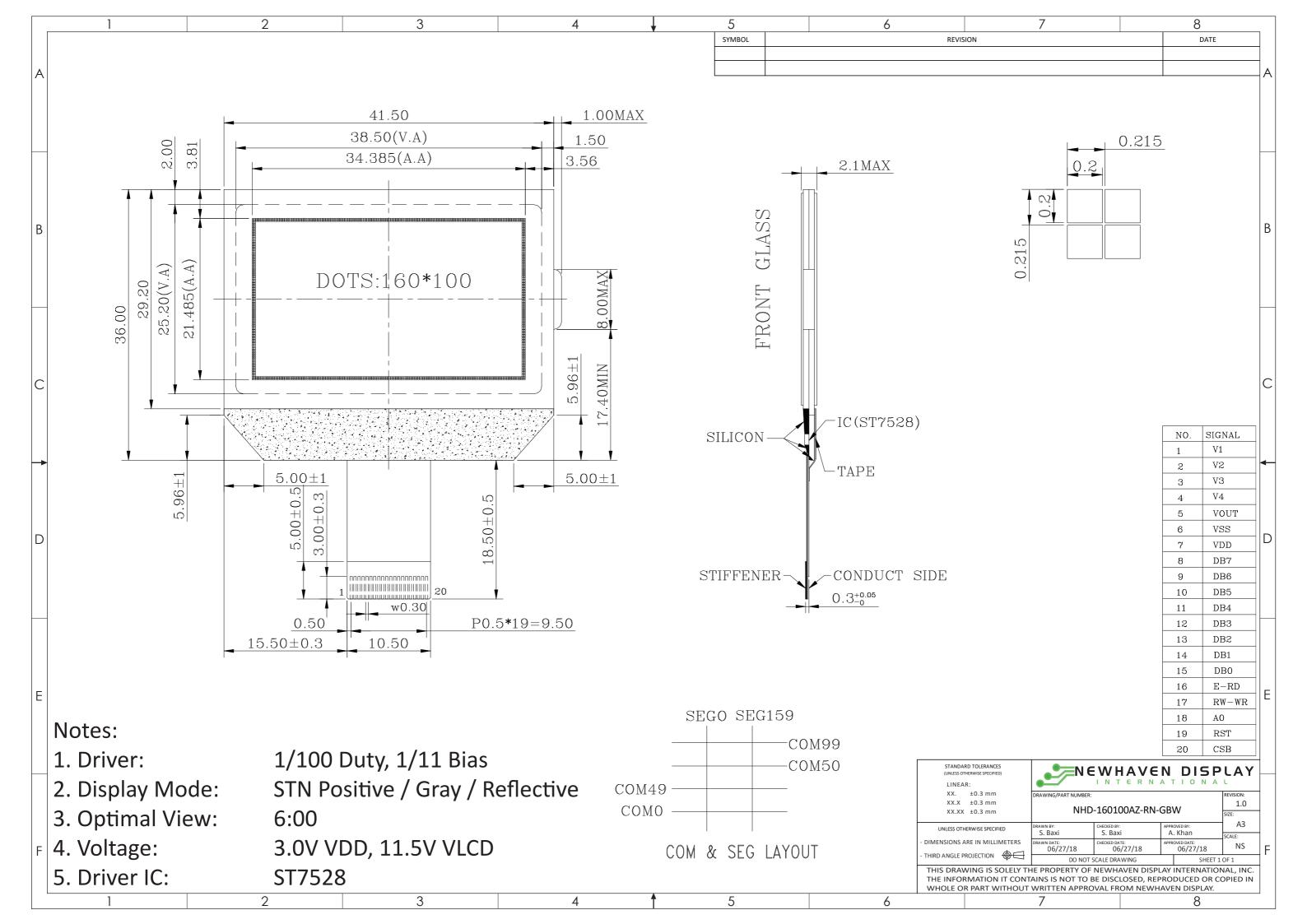


NHD-C160100AZ-RN-GBW

COG (Chip-On-Glass) Liquid Crystal Display Module

NHD-	Newhaven Display			
C160100-	160 x 100 Pixels			
AZ-	Model			
R-	Reflective			
N-	No Backlight			
G-	STN Positive, Gray			
В-	6:00 Optimal View			
W-	Wide Temp			
	RoHS Compliant			

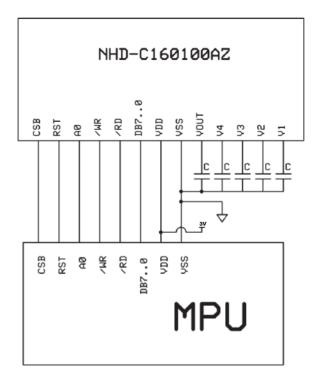

Newhaven Display International, Inc. 2661 Galvin Ct. Elgin IL, 60124 Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	10/31/07	Initial Release	-
1	9/14/09	User guide reformat	BE
2	10/14/09	Updated Electrical Characteristic	MC
3	12/08/09	Updated Block Diagram, Pins 4 and 5, and Timing	MC
		Characteristics	
4	6/27/18	FPC Length, Supply & Logic Voltage Values Updated	SB
5	12/28/18	Fixed Notes on Drawing	SB

Functions and Features

- 160 x 100 pixels
- Built-in ST7528 controller
- +3.0V power supply
- 1/100 duty; 1/11 bias
- RoHS Compliant



Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description					
1	CSB	MPU	Active LOW Chip Select					
2	RST	MPU	Active LOW Reset signal					
3	A0	MPU	Register Select Signal. A0=1: Data, A0=0: Command					
4	/WR	MPU	Active LOW Write signal					
5	/RD	MPU	Active LOW Read signal					
6-13	DB0-DB7	D-DB7 MPU Bi-directional 8-bit Data Bus.						
14	V _{DD}	Power Supply	Supply Voltage for LCD and Logic (+3.0V)					
15	Vss	Power Supply	Ground					
16	Vout	Power Supply	Connect to 1uF cap to V _{SS} or V _{DD}					
17	V4	Power Supply	1.0uF-2.2uF cap to V _{SS}					
18	V ₃	Power Supply	1.0uF-2.2uF cap to V _{SS}					
19	V ₂	Power Supply	1.0uF-2.2uF cap to V _{SS}					
20	V ₁	Power Supply	1.0uF-2.2uF cap to V _{SS}					

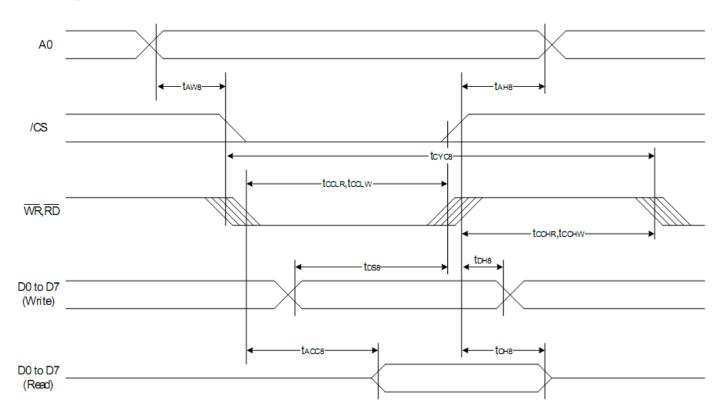
Recommended LCD connector: 0.5mm pitch pins. Molex p/n: 52746-2070

Backlight connector: --- Mates with: ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-10	-	+60	°C
Storage Temperature Range	Tst	Absolute Max	-20	-	+70	°C
Supply Voltage	V _{DD}	-	2.7	3.0	3.3	V
Supply Current	I _{DD}	V _{DD} = 3.0V	0.5	1.5	2.5	mA
Supply for LCD (contrast)	V _{LCD}	T _{OP} = 25°C	11.2	11.5	11.8	V
"H" Level input	VIH	-	0.7 * V _{DD}	-	V _{DD}	V
"L" Level input	VIL	-	Vss	-	0.3 * V _{DD}	V
"H" Level output	Vон	-	0.7 * V _{DD}	-	V _{DD}	V
"L" Level output	Vol	-	Vss	-	0.3 * V _{DD}	V

Optical Characteristics


Item			Symbol	Condition	Min.	Тур.	Max.	Unit
Optimal Viewing Angles	Тор		φΥ+		-	35	-	0
	Bott	om	φY-	- CR ≥ 2	-	60	-	0
	Left		θX-		-	40	-	0
Angles	Righ	t	θX+		-	40	-	0
Contrast Rat	Contrast Ratio		CR	-	2	6	-	-
Response Tir		Rise	T _R		-	150	250	ms
	Ime	Fall	T _F	Т _{ОР} = 25°С	-	150	250	ms

Controller Information

Built-in ST7528 controller.

Please download specification at http://www.newhavendisplay.com/app_notes/ST7528.pdf

Timing Characteristics

(VDD = 3.3V , Ta =25°C)

lterre	Signal	Sumbal	Condition	Rat	Rating	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_]
System cycle time		tCYC8		240	_	
Enable L pulse width (WRITE)	WR	tCCLW		80	_	
Enable H pulse width (WRITE)		tCCHW		80	_	
Enable L pulse width (READ)	RD	tCCLR		140	_	ns
Enable H pulse width (READ)		tCCHR		80		
WRITE Data setup time		tDS8		40	_]
WRITE Data hold time	D0 to D7	tDH8		10	_	
READ access time		tACC8	CL = 100 pF	_	70	
READ Output disable time		tOH8	CL = 100 pF	5	50	

Table of Commands

Instruction	A 0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	Mode and FR(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y 8	¥7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y 4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x	x '	2-byte instruction to specify the initial display line to realize
	0	0	x'	S6	S5	S 4	S3	S2	S1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x	x'	2-byte instruction to specify the initial COM0 to realize
eerinnal eenine register	0	0	x'	C6	C5	C4	C3	C2	C1	C0	window scrolling
Set partial display duty ration	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Set partial display duty fation	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	x'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Example Initialization Program

//			
void write_command(unsigned	char datum)		
{ A0=0;			/*Instruction register*/
E=1;			/*Read inactive*/
P1 = datum;			/*put data on port 1*/
CS1=0;			/*Chip select active*/
RW=0;			/*Write active*/
RW=1;			/*Write inactive; latch in data*/
CS1=1;			/*Chip select inactive*/
}			
//			
void write_data(unsigned char	datum)		
{ A0=1;			/*DDRAM data register*/
E=1;			,
P1=datum;			
,			
CS1=0;			
RW=0;			
RW=1;			
CS1=1;			
}			
//			
void lcd_init(void){			
write_command(0xA2);	//ICON OFF;		
write_command(0xAE);	//Display OFF		
write command(0x48);	//Set Duty ratio		
write_command(0x80);	//No operation		
write_command(0xa1);		on //changed from 0 to 1	
write_command(0xc8);	//SHL select		
write_command(0x40);	//Set START LINE		
write_command(0x00);			
write_command(0xab);	//OSC on		
write_command(0x64);	//3x		
delay(2000);			
write_command(0x65);	//4x		
delay(2000);			
write_command(0x66);	//5x		
delay(2000);	,,,,,,,		
	110.		
write_command(0x67);	//6x		
delay(2000);			
write_command(Ra_Rb);	//RESISTER SET		
write_command(0x81);	//Set electronic v	olume register	
write_command(vopcode)		0	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
write_command(0x57);	//1/12bias		
write_command(0x92);	//FRC and pwm		
write_command(0x2C);			
delay(20000);//200ms			

write_command(0x2E);	
delay(20000);//200ms	
write_command(0x2F);	
delay(20000);//200ms	
write_command(0x92);	//frc and pwm
	//external mode
write_command(0x75);	
//start settings for 16-I	aval gravecalo
write_command(0x97);	//3frc,45pwm
write command(0,00).	
write_command(0x80);	
write_command(0x00);	
write_command(0x81);	
write_command(0x00);	
write_command(0x82);	
write_command(0x00);	
write_command(0x83);	
write_command(0x00);	
write_command(0x00);	
write_command(0x84);	
write command(0x06);	
write_command(0x85);	
write_command(0x06);	
write_command(0x86);	
write_command(0x06);	
write_command(0x87);	
write_command(0x06);	
write_command(0x88);	
write_command(0x0b);	
write_command(0x89);	
write_command(0x0b);	
write_command(0x8a);	
write_command(0x0b);	
write_command(0x8b);	
write command(0x0b);	
write_command(0x8c);	
write_command(0x10);	
write_command(0x8d);	
write_command(0x10);	
write_command(0x8e);	
write_command(0x10);	
write_command(0x8f);	
write_command(0x10);	
write_commanu(0x10),	
write command(0x90);	
write_command(0x15);	
white_command(0x15);	
write_command(0x91);	
write_command(0x15);	
write_command(0x92);	
write_command(0x15);	
write_command(0x93);	
write_command(0x15);	
write_command(0x94);	
write_command(0x1a);	
write_command(0x95);	
write_command(0x1a);	
write_command(0x96);	
write_command(0x1a);	

write command(0x97); write_command(0x1a); write command(0x98); write_command(0x1e); write_command(0x99); write command(0x1e); write command(0x9a); write command(0x1e); write command(0x9b); write_command(0x1e); write_command(0x9c); write command(0x23); write command(0x9d); write_command(0x23); write_command(0x9e); write_command(0x23); write_command(0x9f); write_command(0x23); write_command(0xa0); write_command(0x27); write_command(0xa1); write_command(0x27); write command(0xa2); write command(0x27); write_command(0xa3); write_command(0x27); write_command(0xa4); write command(0x2b); write command(0xa5); write command(0x2b); write command(0xa6); write_command(0x2b); write_command(0xa7); write command(0x2b); write command(0xa8); write_command(0x2f); write_command(0xa9); write_command(0x2f); write command(0xaa); write command(0x2f); write command(0xab); write_command(0x2f); write_command(0xac); write command(0x32); write command(0xad); write command(0x32); write command(0xae); write_command(0x32); write_command(0xaf); write command(0x32); write command(0xb0); write command(0x35); write_command(0xb1); write_command(0x35); write_command(0xb2); write_command(0x35);

write command(0xb3); write_command(0x35); write_command(0xb4); write_command(0x38); write_command(0xb5); write command(0x38); write_command(0xb6); write_command(0x38); write_command(0xb7); write_command(0x38); write_command(0xb8); write_command(0x3a); write_command(0xb9); write_command(0x3a); write_command(0xba); write_command(0x3a); write_command(0xbb); write_command(0x3a); write_command(0xbc); write_command(0x3c); write_command(0xbd); write_command(0x3c); write_command(0xbe); write command(0x3c); write_command(0xbf); write_command(0x3c); //end settings for 16-level grayscale write_command(0x38); write command(0x74); write_command(0xaf); //Display ON

//-----

}

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+70°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-20°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+60°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-10°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C , 90% RH , 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	-0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz, 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at <u>www.newhavendisplay.com/specs/precautions.pdf</u>

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display: NHD-C160100AZ-RN-GBW