

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF2165R
 Full Function Load Switch with Adjustable Current Limit

Features

- 1.8 to 5.5 V Input Voltage Range
- Controlled Turn-On
- 0.15-1.5 A Adjustable Current Limit
- $\pm 10 \%$ Current Limit Accuracy vs. Temperature
- Under-Voltage Lockout (UVLO)
- Thermal Shutdown
- $<2 \mu \mathrm{~A}$ Shutdown Current
- Fast Current limit Response Time
- 5μ s to Moderate Over Currents
- 30 ns to Hard Shorts
- Reverse Current Blocking
- RoHS Compliant

Applications

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Peripheral Ports
- Hot Swap Supplies

Description

The FPF2165R is a load switch which provides full protection to systems and loads which may encounter large current conditions. The device contains a 0.12Ω current-limited Pchannel MOSFET which can operate over an input voltage range of 1.8-5.5 V. Internally, current is prevented from flowing when the MOSFET is off and the output voltage is higher than the input voltage. Switch control is by a logic input (ON) capable of interfacing directly with low-voltage control signals. The FPF2165R contains thermal shutdown protection, which shuts off the switch to prevent damage to the part when a continuous over-current condition causes excessive heating.
When the switch current reaches the current limit, the part operates in a Constant-Current (CC) mode to prohibit excessive currents from causing damage. The FPF2165R does not turn off after a current limit fault; it remains in the constant current mode indefinitely. The minimum current limit is 150 mA .

The FPF2165R is available in a space-saving 6-pin $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ Molded Leadless Package (MLP).

BOTTOM

TOP

Figure 1. $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ Molded Leadless Package (MLP)

Related Resources

- FPF2165R Product Information

Ordering Information

Part Number	Current Limit $[\mathrm{mA}]$	Current Limit Blanking Time $[\mathrm{ms}]$	Auto Restart Time $[\mathrm{ms}]$	On Pin Activity	Top Mark
FPF2165R	$150-1500$	0	NA	Active HI	65 R

Typical Application

Figure 2. Typical Application
Block Diagram

Figure 3. Block Diagram

Pin Configuration

Figure 4. Pin Assignment (Top Through View)

Pin Descriptions

Name	Type	Description
1	ISET	Current Limit Set Input: A resistor from ISET to ground sets the current limit for the switch.
2	VIN	Supply Input: Input to the power switch and the supply voltage For the IC
3	V $_{\text {OUT }}$	Switch Output: Output of the power switch
4	FLAGB	Fault Output: Active LO, open drain output which indicates an over-current supply under- voltage or over-temperature state.
5,7	GND	Ground
6	ON	ON Control Input

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Vin, Vout, ON, FLAGB, ISET to GND			-0.3	6.0	V
PD	Power Dissipation				1.2	W
$\mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature			-65	150	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction to Ambient				86	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model; JEDEC A1141		4000		V
		Charged Device Model; JEDEC C101C		2000		
		Machine Model; JEDEC A115		400		
		IEC 61000-4-2	Air Discharge	15000		
			Contact Discharge	8000		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{N}	Input Voltage	1.8	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
$\mathrm{V}_{\mathbb{I N}}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathbb{I}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Unit
Basic Operation							
$\mathrm{V}_{\text {IN }}$	Operating Voltage			1.8		5.5	V
I_{Q}	Quiescent Current	$\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$		63	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$		68		
			$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		77	120	
R_{ON}	On Resistance	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			120	160	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=85^{\circ} \mathrm{C}$			135	180	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		65		180	
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, I Iout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			95	124	
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, l lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			110	143	
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		58		143	
V_{IH}	ON Input Logic High Voltage (ON)	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		0.8			V
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.4			
$V_{\text {IL }}$	ON Input Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$				0.5	V
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				1	
	ON Input Leakage	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND		-1		1	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}$ Shutdown Current	$\mathrm{V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=$ Short to GND		-2		2	$\mu \mathrm{A}$
	FLAGB Output Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$			0.05	0.20	V
		$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=10 \mathrm{~mA}$			0.12	0.30	
	FLAGB Output High Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text {, Switch On }$				1	$\mu \mathrm{A}$
Reverse Block							
	Vout Shutdown Current	$\mathrm{V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ Short to GND		-2		2	$\mu \mathrm{A}$

Protections

ILIM	Current Limit	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V}, \mathrm{R}_{\text {SET }}=1840 \mathrm{U}$	135	150	165	mA
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V}$, $\mathrm{R}_{\text {SET }}=361 \mathrm{U}$	720	800	880	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$, $\mathrm{R}_{\text {SET }}=196 \mathrm{U}$	1350	1500	1650	
	Thermal Shutdown	Shutdown Threshold		140		${ }^{\circ} \mathrm{C}$
		Return from Shutdown		130		
		Hysteresis		10		
UVLO	Under-Voltage Shutdown	$\mathrm{V}_{\text {IN }}$ Increasing	1.55	1.65	1.75	V
	Under-Voltage Shutdown Hysteresis			50		mV

Dynamic

tdon	Delay On Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, C_{L}=0.1 \mu \mathrm{~F}$	25	$\mu \mathrm{s}$
tdoff	Delay Off Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	45	$\mu \mathrm{s}$
$t_{\text {RISE }}$	Vout Rise Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	10	$\mu \mathrm{s}$
$\mathrm{t}_{\text {FALL }}$	Vout Fall Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	110	$\mu \mathrm{s}$
	Short-Circuit Response Time	Vin $=$ Vout $=3.3 \mathrm{~V}$, Moderate Over-Current Condition	5	$\mu \mathrm{S}$
		VIN = Vout = 3.3 V, Hard Short	30	ns

Note:

1. Package power dissipation on 1square inch pad, 2 oz copper board.

Typical Performance Characteristics

Figure 5. Quiescent Current vs. Input Voltage

Figure 7. $\quad V_{O N}$ High Voltage vs. Input Voltage

Figure 9. Ron vs. V_{IN}

Figure 6. Quiescent Current vs. Temperature

Figure 8. $\quad V_{\text {ON }}$ Low Voltage vs. Input Voltage

Figure 10. Ron vs. Temperature

Typical Performance Characteristics

Figure 11. tdon / tdoff vs. Temperature

Figure 13. tdon Response

Figure 15. Current Limit Response Time (Switch Powered into Short)

Description of Operation

The FPF2165R is a current limited switch that protects systems and loads which can be damaged or disrupted by the application of high currents. The core of each device is a $0.12 \Omega \mathrm{P}$-channel MOSFET and a controller capable of functioning over a wide input operating range of $1.8-5.5 \mathrm{~V}$. The controller protects against system malfunctions through current limiting, under-voltage lockout and thermal shutdown. The current limit is adjustable from 0.15 A to 1.5 A through the selection of an external resistor.

On/Off Control

The ON pin controls the state of the switch. When ON is high, the switch is in the On state. Activating ON continuously holds the switch in the On state so long as there is no fault. An under-voltage on V_{IN} or a junction temperature in excess of $140^{\circ} \mathrm{C}$ overrides the ON control to turn off the switch. The FPF2165R does not turn off in response to an over-current condition but instead remains operating in a constant current mode so long as ON is active and the thermal shutdown or under-voltage lockout have not activated.

The ON pin control voltage and V_{IN} pin have independent recommended operating ranges. The ON pin voltage can be driven by a voltage level higher than the input voltage.

Fault Reporting

Upon the detection of an over-current, an input undervoltage, or an over-temperature condition, the FLAGB signals the fault mode by activating LOW. With the FPF2165R, FLAGB is LOW during the faults and immediately returns HI at the end of the fault condition. FLAGB is an open-drain MOSFET which requires a pullup resistor between VIN and FLAGB. During shutdown, the pull-down on FLAGB is disabled to reduce current draw from the supply.

Current Limiting

The current limit ensures that the current through the switch doesn't exceed a maximum value while not limiting at less than a minimum value. The current at which the parts will limit is adjustable through the selection of an external resistor connected to ISET. Information for selecting the resistor is found in the Application Info section. The FPF2165R has no current limit blanking period so it remains in a constant-current
state until the ON pin is deactivated or the thermal shutdown turns-off the switch.

For preventing the switch from large power dissipation during heavy load a short circuit detection feature is introduced. Short circuit condition is detected by observing the output voltage. The switch is put into short circuit current limiting mode if the switch is loaded with a heavy load. When the output voltage drops below $\mathrm{V}_{\text {sстн, }}$, short circuit detection threshold voltage, the current limit value re-conditioned and short circuit current limit value is decreased to 62.5% of the current limit value. This keeps the power dissipation of the part below a certain limit even at dead short conditions at 5.5 V input voltage. The VSCTH value is set to be 1 V . At around 1.1 V of output voltage the switch is removed from short circuit current limiting mode and the current limit is set to the current limit value.

Under-Voltage Lockout

The under-voltage lockout turns-off the switch if the input voltage drops below the under-voltage lockout threshold. With the ON pin active the input voltage rising above the under-voltage lockout threshold causes a controlled turnon of the switch which limits current over-shoots.

Reverse Current Blocking

The FPF2165R family has a Reverse Current Blocking feature that protects input source against current flow from output to input. For a standard USB power design, this is an important feature that protects the USB host from being damaged due to reverse current flow on $\mathrm{V}_{\text {BUS }}$. The reverse-current blocking feature is active when the load switch is turned off.

If ON pin is LOW and output voltage becomes greater than input voltage, no current can flow from the output to the input. FLAGB operation is independent of the reverse current blocking and does not report a fault condition if this feature is activated.

Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperatures. During an over-temperature condition the FLAGB is activated and the switch is turned-off. The switch automatically turnson again if temperature of the die drops below the threshold temperature.

Applications Information

Figure 16. Typical Application

Setting Current Limit

The FPF2165R has a current limit which is set with an external resistor connected between ISET and GND. This resistor is selected by using equation (1),

$$
\begin{equation*}
I_{L I M}=340.1 \times R_{S E T}-1.0278 \tag{1}
\end{equation*}
$$

Table 1 can be used to select $R_{\text {SET. }}$. A typical application would be the 500 mA current that is required by a single USB port. Using Table 1 an appropriate selection for the RSET resistor would be 570Ω.

Table 1. Current Limit Various R $_{\text {SET }}$ Values

$\mathbf{R}_{\mathbf{S E T}}$ [Ω]	Min. Current Limit [mA]	Typ. Current Limit [mA]	Max. Current Limit [mA]
1840	135	150	165
1391	180	200	220
937	270	300	330
708	360	400	440
632	405	450	495
570	450	500	550
478	540	600	660
411	630	700	770
361	720	800	880
322	810	900	990
290	900	1000	1100
265	990	1100	1210
243	1080	1200	1320
225	1170	1300	1430
209	1260	1400	1540
196	1350	1500	1650

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch is turned on into a discharged load capacitor or a short-circuit; a capacitor needs to be placed between $\mathrm{V}_{\mathbb{I N}}$ and GND. A $4.7 \mu \mathrm{~F}$ ceramic capacitor, $\mathrm{C}_{\mathrm{IN}_{\mathrm{N}}}$, must be placed close to the $\mathrm{V}_{\mathbb{I N}}$ pin. A higher value of $\mathrm{C}_{\mathbb{I N}}$ can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor Cout, should be placed between Vout and GND. This capacitor prevents parasitic board inductances from forcing $\mathrm{V}_{\text {Out }}$ below GND when the switch turns-off.

Power Dissipation

During normal operation as a switch, the power dissipated in the part depends upon the level at which the current limit is set. The maximum allowed setting for the current limit is 0.77 A and this results in a power dissipation of,

$$
\begin{equation*}
P=\left(I_{L I M}\right)^{2} \times R_{D S}=(0.77)^{2} \times 0.12=71.148 \mathrm{~mW} \tag{2}
\end{equation*}
$$

If the part goes into current limit the maximum power dissipation occurs when the output is shorted to ground. This is more power than the package can dissipate, but the thermal shutdown of the part activates to protect the part from damage due to excessive heating. A short on the output causes the part to operate in a constantcurrent state dissipating a worst case power of,

$$
\begin{align*}
& P(\max)=V_{I N}(\max) \times I_{L I M}(\max) \tag{3}\\
& =5.5 \times 0.77=4.235 \mathrm{~W}
\end{align*}
$$

This large amount of power activates the thermal shutdown and the part cycles in and out of thermal shutdown so long as the ON pin is active and the short is present.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for V_{IN}, $\mathrm{V}_{\text {OUt }}$ and GND helps minimize parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.

The middle pad (pin 7) should be connected to the GND plate of PCB for improving thermal performance of the load switch. An improper layout could result higher junction temperature and triggering the thermal shutdown protection feature. This concern applies when the switch is set at higher current limit value and an over-current condition occurs. In this case power dissipation of the switch ($\left.\mathrm{P}_{\mathrm{D}}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {LIM }}(\max)\right)$ could exceed the maximum absolute power dissipation of 1.2 W .

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
FPF2165R

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

