

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

June 2001 Revised March 2004 NC7SV14 TinyLogic® ULP-A Inverter with Schmitt Trigger Input

FAIRCHILD

SEMICONDUCTOR

NC7SV14 TinyLogic® ULP-A Inverter with Schmitt Trigger Input

General Description

The NC7SV14 is a single inverter with Schmitt trigger from Fairchild's Ultra Low Power-A (ULP-A) Series of TinyLogic®. ULP-A is ideal for applications that require extreme high speed, high drive and low power. This product is designed for a wide low voltage operating range (0.9V to 3.6V V_{CC}) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation.

The NC7SV14 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- \blacksquare 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- Extremely High Speed t_{PD}
- 1.5 ns typ for 2.7V to 3.6V V_{CC}
- 1.8 ns typ for 2.3V to 2.7V V_{CC}
- 2.0 ns typ for 1.65V to 1.95V V_{CC}
- 3.2 ns typ for 1.4V to 1.6V V_{CC}
- 5.9 ns typ for 1.1V to 1.3V V_{CC}
- 12.0 ns typ for 0.9V V_{CC}
- Power-Off high impedance inputs and outputs
- High Static Drive (I_{OH}/I_{OL})
- ±24 mA @ 3.00V V_{CC}
- ±18 mA @ 2.30V V_{CC}
- ±6 mA @ 1.65V V_{CC}
- ±4 mA @ 1.4V V_{CC}
- ±2 mA @ 1.1V V_{CC}
- ±0.1 mA @ 0.9V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry

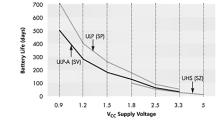
TinyLogic ULP and ULP-A with up to 50% less power consumption can

Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and

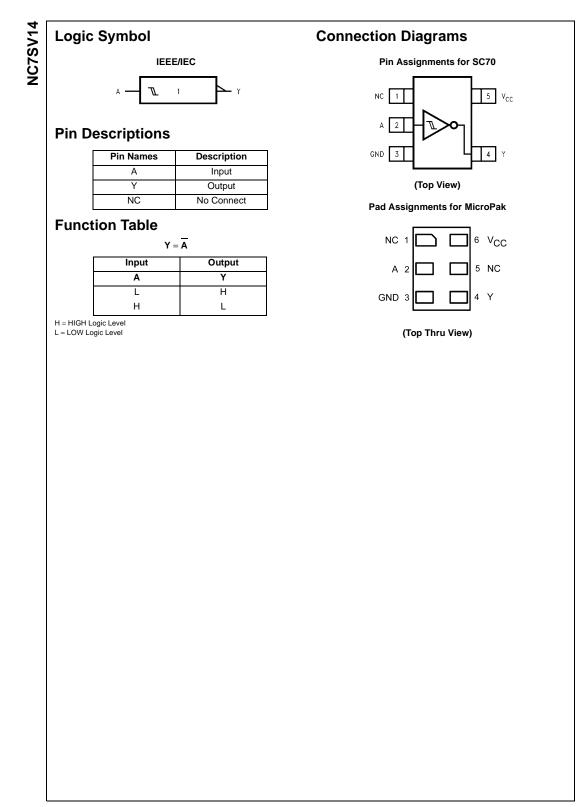
derated 90% and device frequency at 10MHz, with $C_L = 15 \text{ pF}$ load

- Ultra small MicroPak[™] leadfree package
- Ultra low dynamic power

extend your battery life significantly


Battery Life = (V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day

Where, $P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f$


Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SV14P5X	MAA05A	V14	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SV14L6X	MAC06A	G4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™, and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.

Recommended Operating

NC7SV14

Jitions (Note 3) Voltage 0.9V to 3.6V
0
oltage (V _{IN}) 0V to 3.6V
Voltage (V _{OUT})
= 0.0V 0V to 3.6V
H or LOW State 0V to V _{CC}
Current in I _{OH} /I _{OL}
= 3.0V to 3.6V ±24 mA
= 2.3V to 2.7V ±18 mA
= 1.65V to 1.95V ±6 mA
= 1.4V to 1.6V ±4 mA
= 1.1V to 1.3V ±2 mA
= 0.9V ±0.1 mA
ir Operating Temperature (T _A) -40° C to $+85^{\circ}$ C

Minimum Input Edge Rate ($\Delta t/\Delta V$)

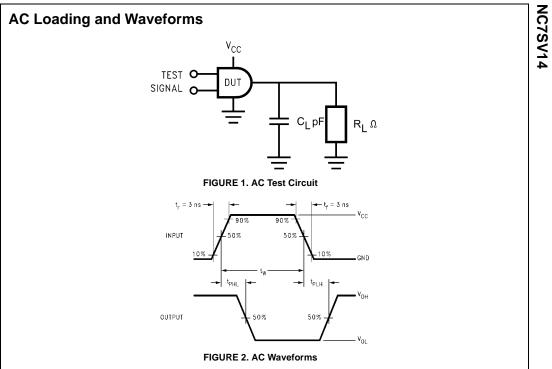
 $V_{\text{IN}} = 0.8 \text{V}$ to 2.0V, $V_{\text{CC}} = 3.0 \text{V}$ 10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be oper-ated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_{O} Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V _{cc}	$T_A = -$	+ 25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Cynnoor		(V)	Min	Max	Min	Max	Units	Conditions
VP	Positive Threshold Voltage	0.90	0.3	0.7	0.3	0.7		
		1.10	0.4	1.0	0.4	1.0		
		1.40	0.5	1.4	0.5	1.4	v	
		1.65	0.7	1.5	0.7	1.5	v	
		2.30	1.0	1.8	1.0	1.8		
		2.70	1.3	2.2	1.3	2.2		
V _N Neg	Negative Threshold Voltage	0.90	0.10	0.6	0.10	0.6		
		1.10	0.15	0.7	0.15	0.7		
		1.40	0.20	0.8	0.20	0.8	v	
		1.65	0.25	0.9	0.25	0.9	v	
		2.30	0.4	1.15	0.4	1.15		
		2.70	0.6	1.5	0.6	1.5		
V _H	Hysteresis Voltage	0.90	0.07	0.5	0.07	0.5		
		1.10	0.08	0.6	0.08	0.6		
		1.40	0.10	0.8	0.10	0.8	v	
		1.65	0.15	1.0	0.15	1.0	v	
		2.30	0.25	1.1	0.25	1.1		
		2.70	0.40	1.2	0.40	1.2		

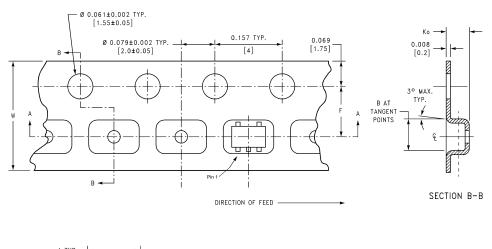

DC Electrical Characteristics

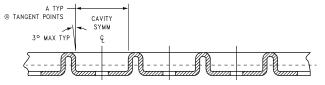
DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{cc}	T _A = -	+ 25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Symbol		(V)	Min	Max	Min	Max	Units	Conditions
V _{OH}	HIGH Level	0.90	V _{CC} - 0.1		V _{CC} - 0.1			
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$	V _{CC} - 0.1		V _{CC} - 0.1			
		$1.40 \leq V_{CC} \leq 1.60$	$V_{CC} - 0.2$		$V_{CC} - 0.2$			I _{OH} = -100 μA
		$1.65 \leq V_{CC} \leq 1.95$	$V_{CC} - 0.2$		V _{CC} - 0.2			$I_{OH} = -100 \mu A$
		$2.30 \leq V_{CC} < 2.70$	$V_{CC} - 0.2$		V _{CC} - 0.2			
		$2.70 \leq V_{CC} \leq 3.60$	$V_{CC} - 0.2$		V _{CC} - 0.2			
		$1.10 \leq V_{CC} \leq 1.30$	0.75 x V _{CC}		0.75 x V _{CC}			$I_{OH} = -2 \text{ mA}$
		$1.40 \leq V_{CC} \leq 1.60$	0.75 x V _{CC}		0.75 x V _{CC}		V	$I_{OH} = -4 \text{ mA}$
		$1.65 \leq V_{CC} \leq 1.95$	1.25		1.25			I _{OH} = -6 mA
		$2.30 \leq V_{CC} < 2.70$	2.0		2.0			IOH O IIIA
		$2.30 \leq V_{CC} < 2.70$	1.8		1.8			I _{OH} = -12 mA
		$2.70 \leq V_{CC} \leq 3.60$	2.2		2.2			10H 12 IIIA
		$2.30 \leq V_{CC} < 2.70$	1.7		1.7			I _{OH} = -18 mA
		$2.70 \leq V_{CC} \leq 3.60$	2.4		2.4			$I_{OH} = -10 \text{ IIIA}$
		$2.70 \leq V_{CC} \leq 3.60$	2.2		2.2			$I_{OH} = -24 \text{ mA}$
V _{OL}	LOW Level	0.90		0.1		0.1		
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$		0.1		0.1		
		$1.40 \leq V_{CC} \leq 1.60$		0.2		0.2		I _{OL} = 100 μA
		$1.65 \leq V_{CC} \leq 1.95$		0.2		0.2		ι _{OL} = 100 μΑ
		$2.30 \leq V_{CC} < 2.70$		0.2		0.2		
		$2.70 \leq V_{CC} \leq 3.60$		0.2		0.2		
		$1.10 \leq V_{CC} \leq 1.30$		0.25 x V _{CC}		$0.25 \times V_{CC}$	v	$I_{OL} = 2 \text{ mA}$
		$1.40 \leq V_{CC} \leq 1.60$		0.25 x V _{CC}		$0.25 \times V_{CC}$	v	$I_{OL} = 4 \text{ mA}$
		$1.65 \leq V_{CC} \leq 1.95$		0.3		0.3		$I_{OL} = 6 \text{ mA}$
		$2.30 \leq V_{CC} < 2.70$		0.4		0.4		I _{OI} = 12 mA
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		10L - 12 IIIA
		$2.30 \leq V_{CC} < 2.70$		0.6		0.6		I _{OL} = 18 mA
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		OL = 10 IIIA
		$2.70 \leq V_{CC} \leq 3.60$		0.55		0.55		$I_{OL} = 24 \text{ mA}$
IN	Input Leakage Current	0.90 to 3.60		±0.1		±0.5	μΑ	$0 \leq V_{I} \leq 3.6V$
OFF	Power Off Leakage Current	0		0.5		0.5	μA	$0 \le (V_I, V_O) \le 3$
cc	Quiescent Supply Current	0.90 to 3.60		0.9		0.9	μA	$V_I = V_{CC}$ or GN
	1	0.90 to 3.60				±0.9	μη	$V_{CC} \le V_I \le 3.6$

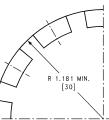
AC Electrical Characteristics

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHL}	Propagation Delay	0.90		12					$C_L = 15 \text{ pF}, \text{ R}_L = 1 \text{ M}\Omega$	
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	2.0	5.9	10.0	1.0	14.9		$C_L=15 \text{ pF}, R_L=2 k\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	1.0	3.2	6.1	0.9	7.0	-		Figures
		$1.65 \leq V_{CC} \leq 1.95$	1.0	2.0	5.2	0.7	6.2	ns	$C_L = 30 \text{ pF}$	1, 2
		$2.30 \leq V_{CC} < 2.70$	0.8	1.8	3.7	0.6	4.4		$R_L = 500\Omega$	
		$2.70 \leq V_{CC} \leq 3.60$	0.7	1.5	3.3	0.5	3.8			
CIN	Input Capacitance	0		2.0				pF		
COUT	Output Capacitance	0		4.5				pF		
C _{PD}	Power Dissipation Capacitance	0.90 to 3.60		10				pF	$V_1 = 0V \text{ or } V_{CC}$ f = 10 MHz	

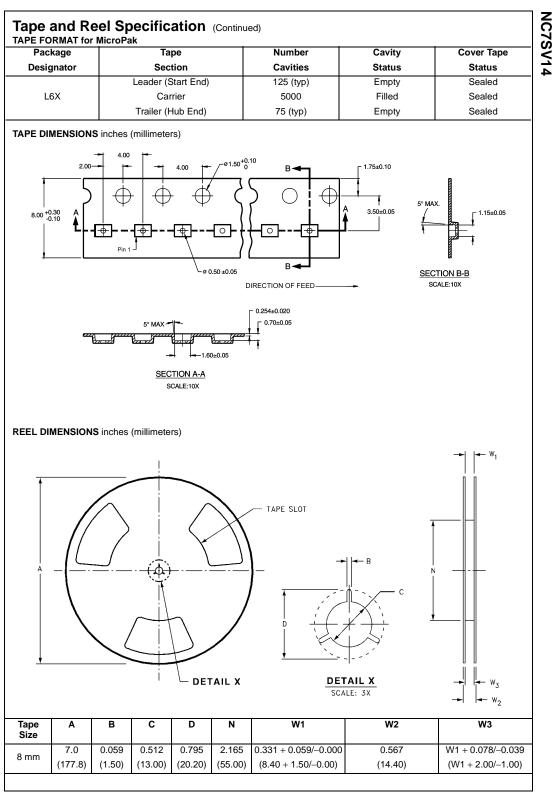

Symbol	V _{CC}							
Cymbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	$\textbf{1.5V} \pm \textbf{0.10V}$	$\textbf{1.2V} \pm \textbf{0.10V}$	0.9V		
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2		
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2		



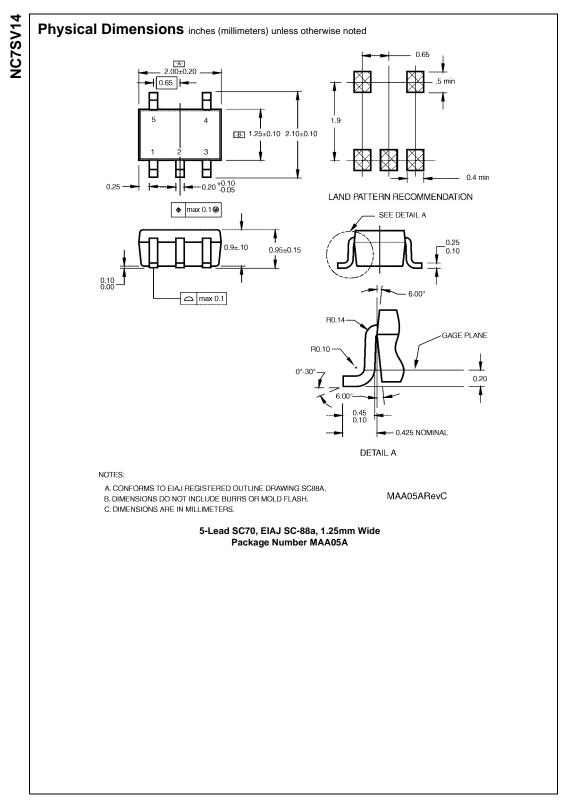
Tape and Reel Specification

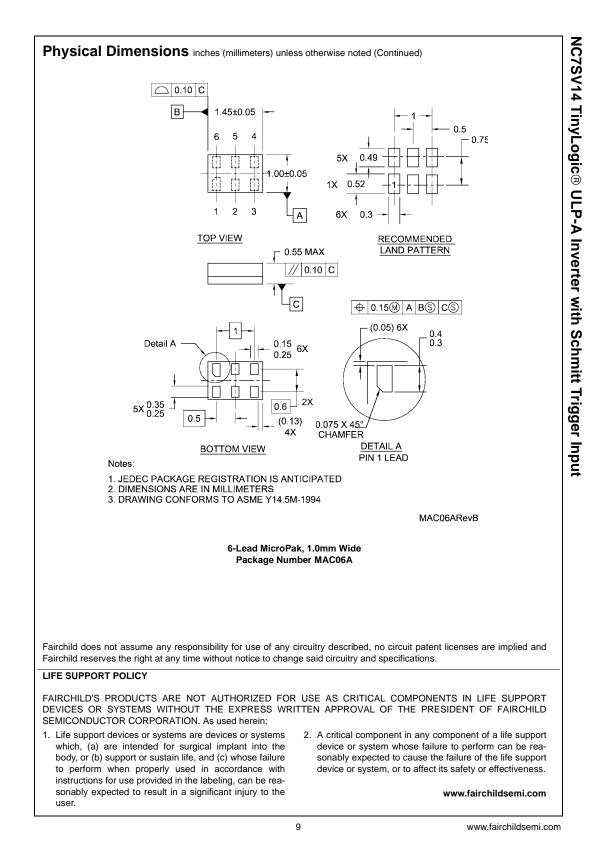

TAPE FORMAT for SC70								
Package	Таре	Number	Cavity	Cover Tape				
Designator	Section	Cavities	Status	Status				
	Leader (Start End)	125 (typ)	Empty	Sealed				
P5X	Carrier	3000	Filled	Sealed				
	Trailer (Hub End)	75 (typ)	Empty	Sealed				

TAPE DIMENSIONS inches (millimeters)



SECTION A-A




BEND RADIUS NOT TO SCALE

7

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NC7SV14P5X NC7SV14L6X