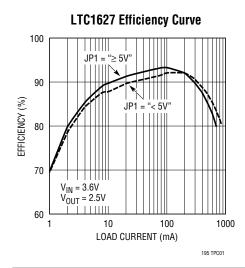


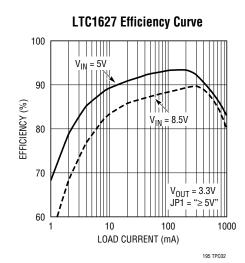
# DLOGY LTC 1627 Monolithic Synchronous Step-Down Regulator

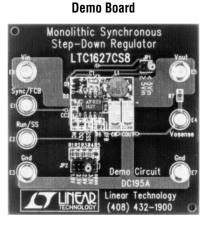
#### DESCRIPTION

Demonstration circuit DC195 is a constant-frequency step-down converter using an LTC®1627 monolithic synchronous regulator. It provides low input voltage, high efficiency conversion for cell phones and other portable electronics operating from one or two Li-lon cells or three to six NiCd cells. Constant 350kHz operation and up to 500mA output capability in an SO-8 package provide a low noise, space-efficient solution for wireless applications.

The circuit highlights the capability of the the LTC1627. Designed to work at low voltages, the input voltage ( $V_{IN}$ ) can range from 2.65V to 8.5V. At input voltages lower than


4.5V, a charge pump bootstrapped to the SW node can be enabled via a jumper to produce a negative supply. This supply is used by the top driver to increase the gate overdrive of the top P-channel MOSFET, lowering its  $R_{DS(0N)}$  and increasing efficiency. At  $V_{IN} < 2.5 \text{V}, \ the LTC1627 \ shuts \ down \ and \ draws \ just \ a \ few \ microamperes, making it ideal for single lithium-ion battery applications. The output voltage is programmable from 1.8V to 3.3V via a second jumper.$ 


(T, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.


#### PERFORMANCE SUMMARY

| SYMBOL           | PARAMETER                                                                                  | CONDITIONS                                                                                                                                                                                                                                                                                                             | JUMPER POSITION                                                                                          | VALUE                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>IN</sub>  | Input Voltage Range                                                                        |                                                                                                                                                                                                                                                                                                                        | JP1 = "≥ 5V"<br>JP1 = "< 5V"                                                                             | 2.65V to 8.5V<br>2.65V to 4.5V                                                                                                       |
| V <sub>OUT</sub> | Output Voltage                                                                             | See Figure 2                                                                                                                                                                                                                                                                                                           | JP2 = "1.8V"<br>JP2 = "2.5V"<br>JP2 = "2.9V"<br>JP2 = "3.3V"<br>JP2 = "0PEN"                             | $ \begin{array}{c} 1.82 V \pm 0.043 V \\ 2.52 V \pm 0.06 V \\ 2.94 V \pm 0.07 V \\ 3.33 V \pm 0.079 V \\ \text{Note 1} \end{array} $ |
| ΙQ               | Forced Continuous Supply Current<br>Burst Mode™ Enabled Supply Current<br>Shutdown Current | $ \begin{array}{l} V_{\text{IN}} = 5\text{V, SYNC/FCB} = 0\text{V, RUN/SS} = 2\text{V, } I_{\text{OUT}} = 0\text{mA} \\ V_{\text{IN}} = 5\text{V, SYNC/FCB} = 2\text{V, RUN/SS} = 2\text{V, } I_{\text{OUT}} = 0\text{mA} \\ V_{\text{IN}} = 5\text{V, RUN/SS} = 0\text{V, } I_{\text{OUT}} = 0\text{mA} \end{array} $ | JP1 = " $\geq$ 5V," JP2 = "3.3V"<br>JP1 = " $\geq$ 5V," JP2 = "3.3V"<br>JP1 = " $\geq$ 5V," JP2 = "3.3V" | 3.5mA<br>200μA<br>15μA                                                                                                               |

#### TYPICAL PERFORMANCE CHARACTERISTICS AND BOARD PHOTO



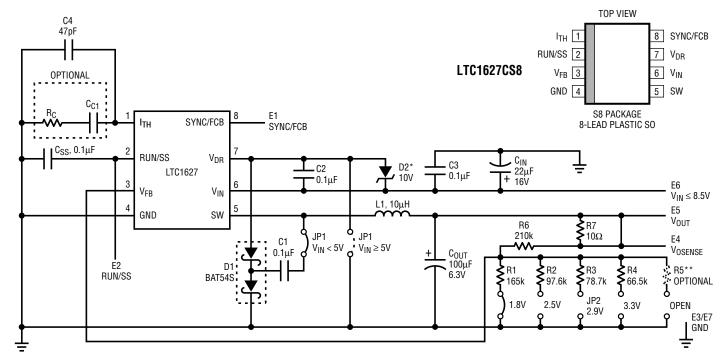






#### DESCRIPTION

At low output currents, the LTC1627 automatically switches to Burst Mode operation to reduce switching losses and maintain high operating efficiencies. In switching-noise sensitive applications, Burst Mode operation can be inhib-


ited by grounding the SYNC/FCB pin or synchronizing it with an external clock. Gerber files for this circuit board are available. Call the LTC factory.

#### PERFORMANCE SUMMARY

| SYMBOL              | PARAMETER                           | CONDITIONS                                                                   | JUMPER POSITION            | VALUE                      |
|---------------------|-------------------------------------|------------------------------------------------------------------------------|----------------------------|----------------------------|
| I <sub>OUT</sub>    | Minimum Output Current              | $V_{IN} = 5V$ , $V_{OUT} = 3.3V$<br>$V_{IN} = 3V$ , $V_{OUT} = 2.5V$         | JP1= "≥ 5V"<br>JP1= "< 5V" | 500mA<br>500mA             |
| f <sub>OSC</sub>    | Operating Frequency                 | Unsynchronized<br>Synchronized                                               | AII<br>AII                 | 350kHz<br>385kHz to 525kHz |
| V <sub>RIPPLE</sub> | Typical Output Ripple               | I <sub>OUT</sub> = 500mA, V <sub>IN</sub> = 5V, V <sub>OUT</sub> = 3.3V      | JP1= "≥ 5V"                | 30mV <sub>P-P</sub>        |
| V <sub>OUT</sub>    | Typical Load Regulation             | 0mA < I <sub>OUT</sub> < 0.5A, V <sub>IN</sub> = 5V, V <sub>OUT</sub> = 3.3V | JP1= "≥ 5V"                | 0.5%                       |
| $V_{FCB}$           | Forced Continuous Threshold Voltage |                                                                              | All                        | V8.0                       |
| V <sub>SYNC</sub>   | Synchronize Threshold Voltage       |                                                                              | All                        | 1.2V                       |
| V <sub>RUN/SS</sub> | Minimum Shutdown Threshold Voltage  |                                                                              | All                        | 0.4V                       |

**Note 1:** Programmable via optional R5.  $V_{OUT} = 0.8V(1 + 210k/R5)$ 

#### PACKAGE A ID SCHEMATIC DIAGRAMS



<sup>\*</sup> D2 IS FOR PROTECTION AGAINST MISAPPLIED INPUT VOLTAGES WITH JP1 IN THE "< 5V" POSITION.

DC195 • SCHEMATIC

Figure 1. LTC1627 Constant Frequency, High Efficiency Converter



<sup>\*\*</sup> SPACE IS PROVIDED FOR AN OPTIONAL RESISTOR TO PROGRAM A CUSTOM OUTPUT VOLTAGE. THE OUTPUT VOLTAGE MUST NOT EXCEED 3.3V.

## DEMO MANUAL DC 195 NO-DESIGN SWITCHER

## **PARTS LIST**

| REFERENCE                   |          |                  |                                            |          |                |
|-----------------------------|----------|------------------|--------------------------------------------|----------|----------------|
| DESIGNATOR                  | QUANTITY | PART NUMBER      | DESCRIPTION                                | VENDOR   | TELEPHONE      |
| C <sub>IN</sub>             | 1        | TPSC226M016R0375 | 22µF 16V TPS Tantalum Capacitor            | AVX      | (803) 448-9411 |
| C <sub>OUT</sub>            | 1        | TPSC107M006R0150 | 100µF 6V TPS Tantalum Capacitor            | AVX      | (803) 448-9411 |
| C1, C2, C3, C <sub>SS</sub> | 4        | 0603YC104KAT     | 0.1μF 16V X7R Chip Capacitor               | AVX      | (803) 946-0362 |
| C4                          | 1        | 06035A470JAT     | 47pF 50V NPO Chip Capacitor                | AVX      | (803) 946-0362 |
| C <sub>C1</sub>             |          |                  | Optional                                   |          |                |
| D1                          | 1        | BAT54S           | Dual Schottky Diode in SOT-23              | Zetex    | (516) 543-7100 |
| E1 to E6                    | 6        | 2501-2           | Turret, Testpoint                          | Mill-Max | (516) 922-6000 |
| JP1                         | 1        | 3914-04-G2       | 0.05" Double Row Header                    | COMM CON | (818) 301-4200 |
| JP2                         | 1        | 3914-10-G2       | 0.05" Double Row Header                    | COMM CON | (818) 301-4200 |
| JP1, JP2                    | 2        | 50633-R          | 0.05" Center Shunt                         | COMM CON | (818) 301-4200 |
| L1                          | 1        | CD54-150MC       | 15μH 20% Inductor                          | Sumida   | (847) 956-0666 |
| D2                          | 1        | MMBZ5240B        | 10V Zener Diode in SOT-23                  | Motorola | (602) 244-3576 |
| R1                          | 1        | CR16-1653FM      | 165k 1% 1/16W Chip Resistor                | TAD      | (800) 508-1521 |
| R2                          | 1        | CR16-9762FM      | 97.6k 1% 1/16W Chip Resistor               | TAD      | (800) 508-1521 |
| R3                          | 1        | CR16-7872FM      | 78.7k 1% 1/16W Chip Resistor               | TAD      | (800) 508-1521 |
| R4                          | 1        | CR16-6652FM      | 66.5k 1% 1/16W Chip Resistor               | TAD      | (800) 508-1521 |
| R6                          | 1        | CR16-2103FM      | 210k 1% 1/16W Chip Resistor                | TAD      | (800) 508-1521 |
| R7                          | 1        | CR16-100JM       | 10Ω 5% 1/16W Chip Resistor                 | TAD      | (800) 508-1521 |
| R5                          |          |                  | Optional                                   |          |                |
| R <sub>C</sub>              |          |                  | Optional                                   |          |                |
| U1                          | 1        | LTC1627CS8       | Monolithic Synchronous Step-Down Regulator | LTC      | (408) 432-1900 |



 $\exists$ 

### **QUICK START GUIDE**

This demonstration board is easily set up to evaluate the performance of the LTC1627 IC. Please follow the procedure outlined below for proper operation.

- Refer to Figure 6 for proper connection of monitoring equipment to ensure correct measurement.
- Connect the input power supply to the V<sub>IN</sub> and GND terminals on the left-hand side of the board. Do not increase V<sub>IN</sub> over 10V or the Zener, D2, will be damaged. Select the appropriate position of jumper JP1 for the V<sub>IN</sub> voltage (position "V<sub>IN</sub> <5V" for V<sub>IN</sub> <4.5V only).</li>
- Connect the load between the V<sub>OUT</sub> and GND terminals on the right side of the board.
- The RUN/SS pin can be left unconnected. To shut down the LTC1627, tie this pin to GND.
- Set the desired output voltage with jumper JP2, as shown in Figure 2 and Table 1.

Table 1. Maximum Allowable Input Voltage vs Selected Output Voltage and JP1 Position

| JP2 OUTPUT VOLTAGE   | MAXIMUM V <sub>IN</sub> FOR JP1 POSITION |                 |  |
|----------------------|------------------------------------------|-----------------|--|
| JI Z GOTI OT VOLTAGE | "≥5V"                                    | "< 5V" (Note 1) |  |
| 1.8V                 | 8.5V                                     | 4.5V            |  |
| 2.5V                 | 8.5V                                     | 4.5V            |  |
| 2.9V                 | 8.5V                                     | 4.5V            |  |
| 3.3V                 | 8.5V                                     | 4.5V            |  |
| N/A                  |                                          |                 |  |

**Note 1:** The silkscreen label "<5V" on the demo board is a simplified notation. The actual voltage should be  $\le 4.25$ V.

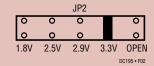



Figure 2. Output Voltage Selection (JP2) (3.3V Position Shown)

### **OPERATION**

The circuit in Figure 1 highlights the capabilities of the LTC1627. The application circuit is set up for a variety of output voltages. Output voltages from 1.8V to 3.3V or user programmable voltages can be obtained by selecting the appropriate jumper position.

The LTC1627 is a monolithic synchronous step-down switching regulator using a fixed-frequency architecture. Burst Mode operation provides high efficiency at low load currents. Operating efficiencies typically exceed 90% over two decades of load current range. 100% duty cycle provides low dropout operation, which extends operating time in battery-operated systems.

Do not use small spring-clip leads when testing this circuit. Small spring-clip leads are very convenient for small-signal bench testing and voltage measurements, but should not be used with this circuit. Soldered wire connections are required to properly ascertain the performance of the PC board.

This demonstration board is intended for the evaluation of the LTC1627 switching regulator IC and was not designed for any other purpose.

The operating frequency of this demo circuit is 350kHz, the frequency of the LTC1627's internal oscillator. For higher frequencies, SYNC/FCB (E1) can be synchronized with an external clock. Burst Mode operation is automatically disabled when the SYNC/FCB pin is externally driven. Grounding SYNC/FCB also disables Burst Mode operation, potentially reducing noise and interference.

Soft start is provided by an external capacitor,  $C_{SS}$ , which can be used to properly sequence supplies. The maximum operating current level is 0.5A.

This demo board is optimized for 3.3V outputs and 5V input. Output voltages from 1.8V to 3.3V are available by selecting the appropriate jumper position of JP2. For other output voltages, select the OPEN (E) position and add an

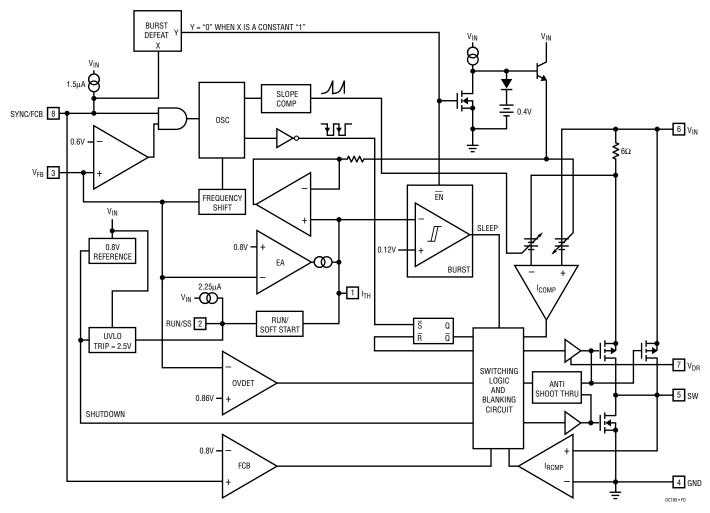



Figure 3. Functional Block Diagram

appropriate resistor value in the space provided. The output voltage must never exceed 3.3V because the output capacitor may be damaged. The input supply can range from 2.65V to 8.5V.

#### Main Control Loop (Refer to Functional Diagram)

The LTC1627 uses a constant-frequency, current mode step-down architecture. Both the main and synchronous switches, consisting of top P-channel and bottom N-channel power MOSFETs, are internal. During normal operation, the internal top power MOSFET is turned on

during each cycle when the oscillator sets the RS latch, and turned off when the current comparator,  $I_{COMP}$ , resets the RS latch. The peak inductor current at which  $I_{COMP}$  resets the RS latch is controlled by the voltage on the  $I_{TH}$  pin, which is the output of error amplifier EA. The  $V_{FB}$  pin allows EA to receive an output feedback voltage from an external resistive divider. When the load current increases, it causes a slight decrease in the feedback voltage relative to the 0.8V reference, which, in turn, causes the  $I_{TH}$  voltage to increase until the average inductor current matches the new load current. While the top MOSFET is off, the bottom



MOSFET is turned on until either the inductor current starts to reverse, as indicated by the current reversal comparator I<sub>RCMP</sub>, or the next cycle begins.

The main control loop is shut down by pulling the RUN/SS pin low. Releasing RUN/SS allows an internal 2.25 $\mu$ A current source to charge soft start capacitor C<sub>SS</sub>. When C<sub>SS</sub> reaches 0.7V, the main control loop is enabled with the I<sub>TH</sub> voltage clamped at approximately 5% of its maximum value. As C<sub>SS</sub> continues to charge, I<sub>TH</sub> is gradually released, allowing normal operation to resume.

Comparator OVDET guards against transient overshoots > 7.5% by turning the main switch off and turning the synchronous switch on. With the synchronous switch turned on, the output is crowbarred. This may cause a large amount of current to flow from  $V_{IN}$  if the main switch is damaged, blowing the system fuse.

## SYNC/FCB Pin Function (Frequency Synchronization and Burst Mode Disable)

The LTC1627 can be synchronized with an external TTL/CMOS-compatible clock signal driving the SYNC/FCB pin (E1). The frequency range of this signal must be from 385kHz to 525kHz. DO NOT attempt to synchronize the LTC1627 below 385kHz as this may cause abnormal operation and an undesired frequency spectrum. The top

MOSFET turn-on follows the rising edge of the external source.

When the LTC1627 is clocked by an external source, Burst Mode operation is disabled; the LTC1627 then operates in PWM pulse-skipping mode. In this mode, when the output load is very low, current comparator  $I_{COMP}$  remains tripped for more than one cycle and forces the main switch to stay off for the same number of cycles. Increasing the output load slightly allows constant-frequency PWM operation to resume.

Frequency synchronization is inhibited when the feedback voltage,  $V_{FB}$ , is below 0.6V. This prevents the external clock from interfering with the frequency foldback for short-circuit protection.

The LTC1627 is capable of Burst Mode operation, in which the internal power MOSFETs operate intermittently based on load demand. To enable Burst Mode, simply allow the SYNC/FCB pin to float or connect it to a logic high. To disable Burst Mode operation and enable forced continuous mode (continuous switching even at no load), connect the SYNC/FCB pin to GND. The threshold voltage between Burst Mode and forced continuous mode is 0.8V. This provides a means to regulate a flyback winding output. See the LTC1627 data sheet for additional information.

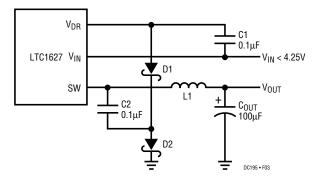



Figure 4. Using a Charge Pump to Bias VDR

When the converter uses Burst Mode operation, the peak current of the inductor is set to approximately 200mA, even though the voltage at the  $I_{TH}$  pin indicates a lower value. The voltage at the  $I_{TH}$  pin drops when the inductor's average current is greater than the load requirement. As the  $I_{TH}$  voltage drops below 0.12V, the BURST comparator trips, causing the internal sleep line to go high and turn off both power MOSFETs.

In sleep mode, both power MOSFETs are held off and the internal circuitry is partially turned off, reducing the quiescent current to  $200\mu A$ . The load current is now supplied from the output capacitor. When the output voltage drops, causing  $I_{TH}$  to rise above 0.22V, the top MOSFET is again turned on and this process repeats.

#### SHORT-CIRCUIT PROTECTION

When the output is shorted to ground, the frequency of the oscillator is reduced to about 35kHz, 1/10 of the nominal frequency. This frequency foldback ensures that the inductor current has more time to decay, thereby preventing runaway. The oscillator's frequency will gradually increase to 350kHz (or the synchronized frequency) when  $V_{\text{FB}}$  rises above 0.3V.

#### DROPOUT OPERATION

When the input supply voltage decreases toward the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for more than one cycle until it reaches 100% duty cycle. The output voltage will then be determined by the input voltage minus the voltage drop across the P-channel MOSFET and the inductor. In Burst Mode operation or pulse skipping mode operation (externally synchronized) with the outputs lightly loaded, the LTC1627 transistions through continuous mode as it enters dropout.

#### UNDERVOLTAGE LOCKOUT

A precision undervoltage lockout shuts down the LTC1627 when  $V_{IN}$  drops below 2.5V, making it ideal for single lithium-ion battery applications. In shutdown, the LTC1627

draws only several microamperes, which is low enough to prevent deep discharge and possible damage to a lithiumion battery nearing its end of charge. A 150mV hysteresis ensures reliable operation with noisy supplies.

#### **LOW SUPPLY OPERATION**

The LTC1627 is designed to operate down to 2.65V supply voltage. At this voltage the converter is most likely to be running at high duty cycles or in dropout, where the main switch is on continuously. Hence, the  $I^2R$  loss is due mainly to the  $R_{DS(0N)}$  of the P-channel MOSFET. See the LTC1627 data sheet for additional information.

When  $V_{IN}$  is low (< 4.5V), the  $R_{DS(ON)}$  of the P-channel MOSFET can be lowered by driving its gate below ground. The top P-channel MOSFET driver makes use of a floating return pin,  $V_{DR}$ , to allow biasing below GND. A simple charge pump bootstrapped to the SW pin realizes a negative voltage at the  $V_{DR}$  pin, as shown in Figure 4. This charge pump can be enabled via jumper JP1 for  $V_{IN}$  < 4.5V. For  $V_{IN} \ge 4.5V$ , do not enable the charge pump to ensure that  $V_{IN} - V_{DR}$  does not exceed its absolute maximum voltage. A 10V Zener clamp (Z3) prevents  $V_{IN} - V_{DR}$  from exceeding 10V even if  $V_{IN} \ge 5V$  is inadvertently applied.

When  $V_{IN}$  decreases to a voltage close to  $V_{OUT}$ , the loop may enter dropout and attempt to turn on the P-channel MOSFET continuously. When the  $V_{DR}$  charge pump is enabled, a dropout detector counts the number of oscillator cycles that the P-channel MOSFET remains on and periodically forces a brief off period to allow C1 to recharge. 100% duty cycle is allowed when  $V_{DR}$  is grounded.

## SLOPE COMPENSATION AND PEAK INDUCTOR CURRENT

Slope compensation provides stability by preventing subharmonic oscillations. It works by internally adding a ramp to the inductor current signal at duty cycles in excess of 40%. As a result, the maximum inductor peak current is lower for  $V_{OUT}/V_{IN} > 0.4$  than when  $V_{OUT}/V_{IN} < 0.4$ . See the maximum inductor peak current vs duty cycle graph in Figure 5.



The graph labeled "With External Clock" shows the worstcase peak current reduction obtained when the oscillator is synchronized at its minimum frequency, that is, to a clock just above the oscillator's free-running frequency.

#### **HOW TO MEASURE VOLTAGE REGULATION**

When trying to measure voltage regulation, remember that all measurements must be taken at the point of regulation. This point is where the LTC1627's control loop looks for the information to keep the output voltage constant. In this demonstration board, this information point occurs between Pin 4, the GND of the LTC1627, and

the output side of R6. These points correspond to the GND (E7) and  $V_{OSENSE}$  (E4) terminals of the board. Output voltage test leads should be attached directly to these terminals. The load should be placed between  $V_{OUT}$  (E5) and GND (E7). Measurements *should not* be taken at the end of test leads at the load. Refer to Figure 6 for the proper monitoring equipment configuration.

This applies to line regulation (input-to-output voltage regulation) as well as load regulation tests. In doing the line regulation tests, always look at the input voltage across the input terminals.

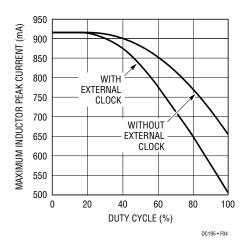



Figure 5. Maximum Inductor Peak Current Vs Duty Cycle

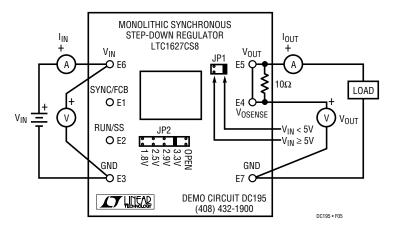



Figure 6. Proper Measurement Setup

For the purposes of these tests, the demonstration circuit should be powered from a regulated DC bench supply, so that variations on the DC input do not add errors to the regulation measurements.

#### REMOTE OUTPUT-VOLTAGE SENSING

Remote output-voltage sensing can be accomplished by modifying the PC board. A small PC trace connecting  $V_{OUT}$  to  $V_{OSENSE}$  must be cut, as shown in Figure 7. An external connection from  $V_{OSENSE}$  directly to the load must be made. To prevent uncertainty, there is a  $10\Omega$  resistor placed across the  $V_{OUT}$  and  $V_{OSENSE}$  terminals. Never, under any circumstance, allow  $V_{OSENSE}$  to float!

#### **RUN/SOFT START FUNCTION**

The RUN/SS pin (E2) is a dual-purpose pin that provides the soft start function and a means to shut down the LTC1627. Soft start reduces surge currents from  $V_{\text{IN}}$  by gradually increasing the internal current limit. Power supply sequencing can also be accomplished using this pin.

An internal 2.25 $\mu$ A current source charges an external capacitor, C<sub>SS</sub>. When the voltage on RUN/SS reaches

0.7V, the LTC1627 begins operating. As the voltage on RUN/SS continues to increase from 0.7V to 1.8V, the internal current limit also increases at a proportional linear rate. The current limit begins at 25mA (at  $V_{RUN/SS} \! \leq \! 0.7V)$  and ends at the Figure 5 value ( $V_{RUN/SS} \! \geq \! 1.8V$ ). The output current thus increases slowly, charging the output capacitor. If RUN/SS has been pulled all the way to ground, there is a delay before starting of approximately 310ms/ $\mu$ F, followed by an additional 490ms/ $\mu$ F to reach full current.  $C_{SS} = 0.1 \mu$ F on this PC board.

Pulling the RUN/SS pin below 0.7V (0.4V min) puts the LTC1627 into a low quiescent current shutdown mode ( $I_Q < 15\mu A$ ). See the LTC1627 data sheet for further information.

#### **COMPONENT MANUFACTURERS**

Table 2 is a partial list of manufacturers of components that can be used in LTC1627 applications. Using components other than the ones supplied on the demonstration board will require careful analysis to verify that all component specifications are not exceeded. Finally, recharacterizing the circuit for efficiency is necessary.

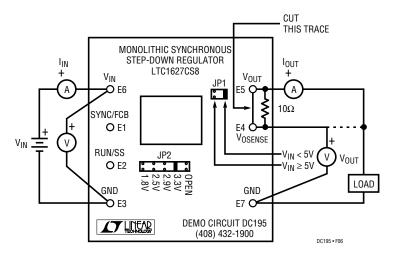
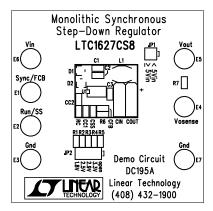


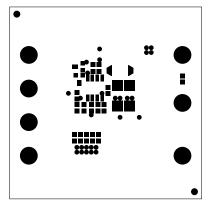

Figure 7. Remote Output Voltage Sense



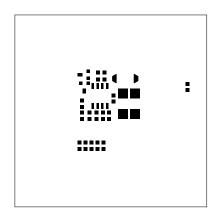
## DEMO MANUAL DC 195 NO-DESIGN SWITCHER


## **OPERATION**

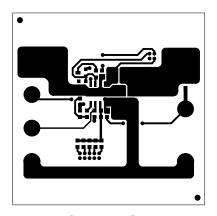
**Table 2. List of Alternative Component Manufacturers** 


| MANUFACTURER            | DEVICE     | PHONE                               | FAX                                 |
|-------------------------|------------|-------------------------------------|-------------------------------------|
| AVX                     | Capacitors | (803) 448-9411                      | (803) 448-1943                      |
| Central Semiconductor   | Diodes     | (516) 435-1110                      | (516) 435-1824                      |
| Coilcraft               | Inductors  | (847) 639-6400                      | (847) 639-1469                      |
| Coiltronics             | Inductors  | (561) 241-7876                      | (561) 241-9339                      |
| COMM CON                | Connectors | (818) 301-4200                      | (818) 301-4212                      |
| Dale                    | Inductors  | (605) 665-9301                      | (605) 665-0817                      |
| International Rectifier | Diodes     | (310) 322-3331                      | (310) 322-3332                      |
| Motorola                | Diodes     | (602) 244-3576                      | (602) 244-4015                      |
| Murata-Erie             | Capacitors | (814) 237-1431                      | (814) 238-0490                      |
| Sanyo                   | Capacitors | (619) 661-6835<br>(81) 0952-82-3959 | (619) 661-1055<br>(81) 0952-82-4655 |
| Sprague                 | Capacitors | (603) 224-1961                      | (603) 224-1430                      |
| Sumida                  | Inductors  | (847) 956-0666<br>(81) 03-3607-5111 | (847) 956-0702<br>(81) 03-3607-5114 |
| TDK                     | Inductors  | (847) 803-6100                      | (847) 803-6294                      |
| TAD                     | Resistors  | (714) 255-9123                      | (714) 255-9291                      |
| Zetex                   | Diodes     | (516) 543-7100                      | (516) 864-7630                      |

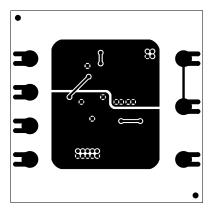



## PCB LAYOUT AND FILM

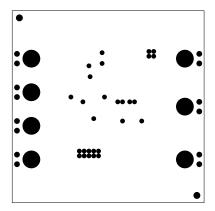



**Component Side Silkscreen** 



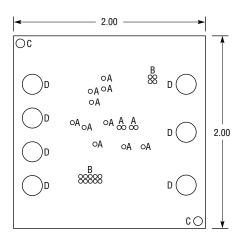

**Component Side Solder Mask** 




**Pastemask** 



**Component Side** 




**Solder Side** 



Solder Side Solder Mask

#### PC FAB DRAWING



| SYMBOL | DIAMETER | NUMBER<br>OF HOLES |
|--------|----------|--------------------|
| A      | 0.020    | 14                 |
| В      | 0.023    | 14                 |
| С      | 0.072    | 2                  |
| D      | 0.095    | 7                  |

#### **NOTES: UNLESS OTHERWISE SPECIFIED**

FR4 OR EQUIVALENT EPOXY, 2 OZ COPPER CLAD 1. MATERIAL:

THICKNESS 0.062 ±0.006 TOTAL OF 2 LAYERS ALL PLATED HOLES 0.001 MIN/0.0015 MAX COPPER PLATE 2. FINISH:

ELECTRODEPOSITED TIN-LEAD COMPOSITION BEFORE REFLOW, SOLDER MASK OVER BARE COPPER (SMOBC)

3. SOLDER MASK: BOTH SIDES USING SR1020 OR EQUIVALENT 4. SILKSCREEN: USING WHITE NONCONDUCTIVE EPOXY INK

5. ALL DIMENSIONS ARE IN INCHES

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: