
Features

- Advanced Planar Technology
- Low On-Resistance
- Logic Level
- N Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- 150°C Operating Temperature
- · Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.

V _{DSS}	30V
R _{DS(on)} typ.	9.2mΩ
max.	11mΩ
I _D	13A

G	D	S
Gate	Drain	Source

Book port number Booksgo Type		Standard Pack		Orderable Part Number	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
AUIRF7805Q	SO-8	Tape and Reel	4000	AUIRF7805QTR	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol Parameter		Max.	Units	
V _{DS}	Drain-Source Voltage	30		
V_{GS}	Gate-to-Source Voltage	± 12	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	13		
I _D @ T _A = 70°C Continuous Drain Current, V _{GS} @ 10V		10	Α	
I _{DM}	Pulsed Drain Current ①	100		
P _D @T _A = 25°C	Maximum Power Dissipation ③	2.5	10/	
P _D @T _A = 70°C Maximum Power Dissipation ③		1.6	W	
	Linear Derating Factor	0.02	W/°C	
T_J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JL}$	Junction-to-Drain Lead®		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient ③		50	C/VV

HEXFET® is a registered trademark of Infineon.

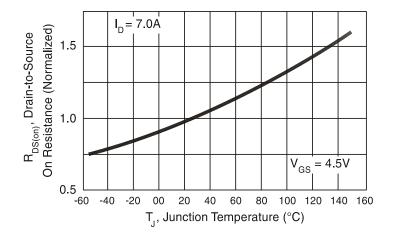
^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
R _{DS(on)}	Static Drain-to-Source On-Resistance		9.2	11	mΩ	V_{GS} = 4.5V, I_{D} = 7.0A ②
$V_{GS(th)}$	Gate Threshold Voltage ®	1.0		3.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}				70		$V_{DS} = 30V, V_{GS} = 0V$
	Drain-to-Source Leakage Current			10	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 100^{\circ}C$
	Gate-to-Source Forward Leakage			100	- Λ	V _{GS} = 12V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -12V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q_g	Total Gate Charge		22	31		$I_{D} = 7.0A$
Q_{gs1}	Pre -Vth Gate-to-Source Charge		3.7			V _{DS} = 16V
Q_{gs2}	Post-Vth Gate-to-Source Charge		1.4		nC	V _{GS} = 5.0V
Q_{gd}	Gate-to-Drain Charge		6.8			
Q_{sw}	Switch Charge (Qgs2 + Qgd)		8.2	11.5		
Q_{oss}	Output Charge		3.0	3.6	nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance	0.5		1.7	Ω	
$t_{d(on)}$	Turn-On Delay Time		16			V _{DD} = 16V,V _{GS} = 4.5V ②
t _r	Rise Time		20		no	$I_{D} = 7.0A$
$t_{d(off)}$	Turn-Off Delay Time		38		ns	$R_G = 2\Omega$
t _f	Fall Time		16			Resistive Load


Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			2.5		MOSFET symbol
_	(Body Diode)				- Δ	showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			106		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage®			1.2	V	$T_J = 25^{\circ}C, I_S = 7.0A, V_{GS} = 0V$
Q _{rr}	Reverse Recovery Charge ④		88			di/dt = $700A/\mu s$ V _{DS} = $16V$, V _{GS} = $0V$, I _S = $7.0A$
Q _{rr}	Reverse Recovery Charge ④		55			di/dt = 700A/ μ s (with 10BQ040) V _{DS} =16V, V _{GS} = 0V, I _S = 7.0A

Notes:

- $\, \, \mathbb{O} \,\,$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ③ When mounted on 1" in square copper board, t < 10 sec.
- 4 Typ = measured Q_{OSS}
- © R_{θ} is measured at T_J of approximately 90°C.
- © Devices are 100% tested to these parameters.

Fig. 1 Normalized On-Resistance vs. Temperature

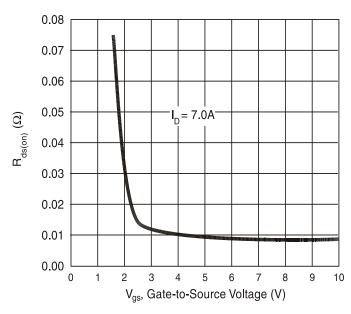
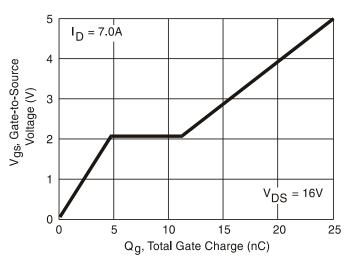



Fig. 3 Typical Rds(on) vs. Gate-to-Source Voltage

Fig. 2 Typical Gate Charge vs. Gate-to-Source Voltage

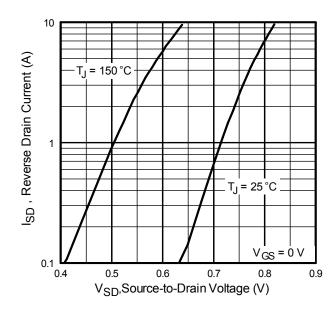
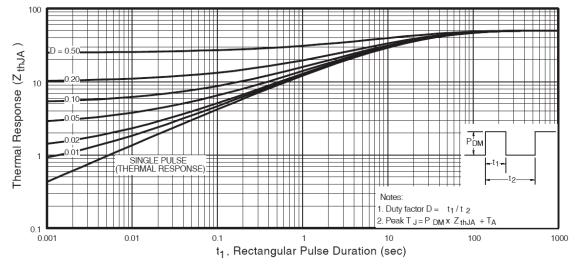
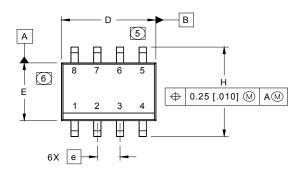
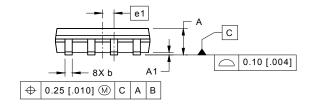
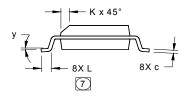


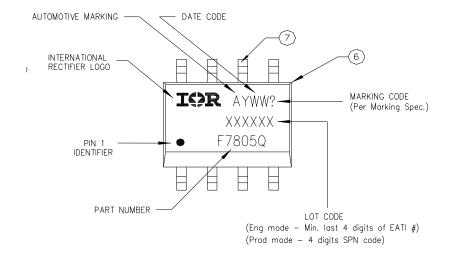
Fig. 4 Typical Source-Drain Diode Forward Voltage

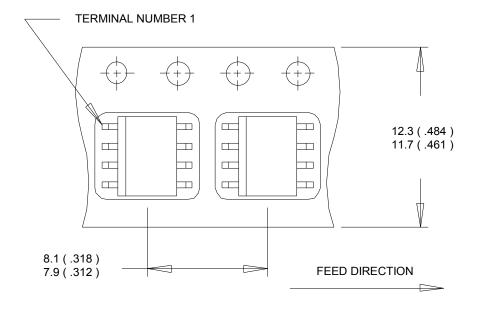

Fig 5. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient



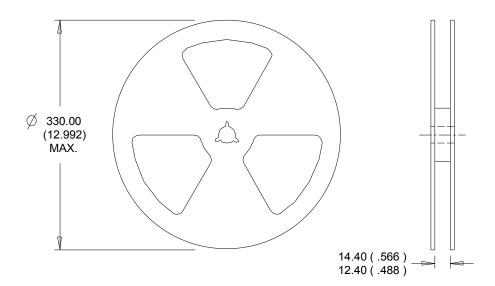
SO-8 Package Outline (Dimensions are shown in millimeters (inches)


DIM	INC	HES	MILLIM	ETERS
DIIVI	MIN	MAX	MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Е	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 B	ASIC
e 1	.025 B	ASIC	0.635 E	BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
у	0°	8°	0°	8°

- NOTES:
 1. DIMENSIONING & TOLERANCING PERASMEY14.5M-1994.
 2. CONTROLLING DIMENSION: MILLIMETER
 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
 3. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
 3. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
 3. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
 4. OUTLIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 A SUBSTRATE.
- 8 X 0.72 [.028] 6.46 [.255] 8 X 1.27 [.050]


SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/



SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive					
		(per AEC-Q101)					
Qualificati	ion Level	Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture	Moisture Sensitivity Level SO-8 MSL1						
	NA - deire - NA - del		Class M3 (+/- 300V) [†]				
	Machine Model	AEC-Q101-002					
FOD	Lluman Dady Madal	Class H1B (+/- 1000V) [†]					
ESD	Human Body Model	AEC-Q101-001					
	Ohannad Barina Madal		Class C5 (+/- 2000V) [†]				
Charged Device Model		AEC-Q101-005					
RoHS Cor	RoHS Compliant Yes						

[†] Highest passing voltage.

Revision History

Date	Comments				
10/5/2015	Updated datasheet with corporate template				
10/3/2013	Corrected ordering table on page 1.				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

AUIRF7805QTR