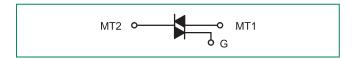


2N6071A/B Series

Pin Out

- 1. Cathode
- 2. Anode 3. Gate


Description

Designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

Features

- Sensitive Gate Triggering Uniquely Compatible for Direct Coupling to TTL, HTL, CMOS and Operational Amplifier Integrated Circuit Logic Functions
- Gate Triggering: 4 Mode 2N6071A, B; 2N6073A, B; 2N6075A, B
- Blocking Voltages to 600 V
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Device Marking: Device Type, e.g., 2N6071A, Date Code

Functional Diagram

Additional Information

Datasheet

Samples

Maximum Ratings and Thermal Characteristics $(T_1 = 25^{\circ}\text{C unless otherwise noted})$

Rating	Symbol	Value	Unit
*Peak Repetitive Off-State Voltage (Note 1) $ (T_J = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave, } 50 \text{ to } 60 \text{ Hz, Gate Open}) $ $ 2N6071\text{A}, \text{B} $ $ 2N6073\text{A}, \text{B} $ $ 2N6075\text{A}, \text{B} $	V _{DRM} , V _{RRM}	200 400 600	
*On-State RMS Current ($T_c = 85^{\circ}$ C) Full Cycle Sine Wave 50 to 60 Hz	I _{T(RMS)}	4.0	А
*Peak Non-repetitive Surge Current (One Full cycle, 60 Hz, T _J = +110°C)	I _{TSM}	30	А
Circuit Fusing Considerations (t = 8.3 ms)	l _{2t}	3.7	A2s
*Peak Gate Power (Pulse Width "1.0 μs, T _C = 85°C)	P _{GM}	10	W
*Average Gate Power (t = 8.3 ms , $T_C = 85^{\circ}\text{C}$)	P _{G(AV)}	0.5	W
*Peak Gate Voltage (Pulse Width "1.0 μ s, $T_c = 85$ °C)	V_{GM}	5.0	V
*Operating Junction Temperature Range	T _J	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque (6-32 Screw) (Note 2)	-	8.0	in. lb.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating	Symbol	Value	Unit
*Thermal Resistance, Junction to Case	R _{suc}	3.5	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	R _{sJA}	75	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C

^{*}Indicates JEDEC Registered Data..

^{1.} V_{DBM} and V_{RBM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

^{2.} Torque rating applies with use of a compression washer. Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heatsink contact pad are common.

Electrical Characteristics - OFF (T_c = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
*Peak Repetitive Blocking Current $(V_D = V_{DRM} = V_{RRM})$; Gate Open)	$T_J = 25^{\circ}C$	I _{DRM} ,	-	-	10	μΑ
(V _D = V _{DRM} = V _{RRM} , Gate Open)	$T_{_{\rm J}} = 110^{\circ}\text{C}$	I _{RRM}	-	-	2	mA

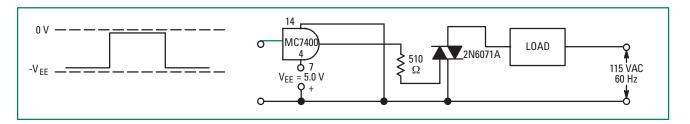
Electrical Characteristics - ON (TC = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
*Peak On-State Voltage (Note 3) ($I_{TM} = \pm 6.0 \text{ A Peak}$)		С	-	-	2	V
*Gate Trigger Voltage (Continuous DC), All Quadrants (Main Terminal Voltage = 12 Vdc, R_L = 100 Ω , T_J = -40 °C)		$V_{\rm GT}$	-	1.4	2.5	V
Gate Non-Trigger Voltage, All Quadrants (Main Terminal Voltage = 12 Vdc, $R_L = 100 \Omega$, $T_J = 110$ °C)		V_{GD}	.02	-	-	V
*Holding Current (Main Terminal Voltage = 12 Vdc,	T _J = -40°C		-	-	30	A
Gate Open, Initiating Current = ±1 Adc)	$T_J = 25^{\circ}C$	I _H	-	-	15	mA
Turn-On Time ($I_{TM} = 14 \text{ Adc}, I_{GT} = 100 \text{ mAdc}$)		t _{gt}	-	1.5	-	μs
					DRANT um Value)	
	Туре	I _{GT} @ T _J	I mA	II mA	III mA	IV mA
Gate Trigger Current (Continuous DC)	2N6071A 2N6073A	+25°C	5	5	5	10
date migger current (Continuous DC)	ZINOU/3A					

(Main Terminal Voltage = 12 Vdc, $R_{_{I}}$ = 100 Ω)

Туре	I _{GT} @ T _J	mA	II mA	III mA	IV mA
N6071A N6073A	+25°C	5	5	5	10
N6075A	-40°C	20	20	20	30
N6071B N6073B	+25°C	3	3	3	5
V6075B	-40°C	15	15	15	20

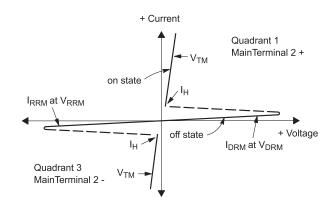
Dynamic Characteristics


Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage @ V_{DRM} , $T_J = 85^{\circ}$ C, Gate Open, $I_{TM} = 5.7$ A, Exponential Waveform, Commutating di/dt = 2.0 A/ms	dv/dt(c)	-	5	10	V/µs

^{3.} Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

^{*}Indicates JEDEC Registered Data.

SAMPLE APPLICATION: TTL-Sensitive Gate 4 Ampere Triac Triggers in Modes II and III

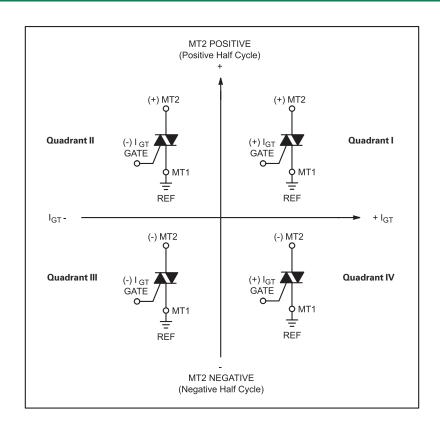


Trigger devices are recommended for gating on Triacs. They provide:

- 1. Consistent predictable turn-on points.
- 2. Simplified circuitry.
- 3. Fast turn-on time for cooler, more efficient and reliable operation.

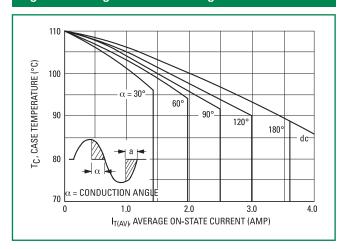
Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current



Sensitive Gate Logic Reference

IC Logic Functions	Firing Quadrant					
io Logic Functions	ı	II	III	IV		
ΠL	-	2N6071A Series	2N6071A Series	-		
HTL	-	2N6071A Series	2N6071A Series	-		
CMOS (NAND)	2N6071B Series	-	-	2N6071B Series		
CMOS (Buffer)	-	2N6071B Series	2N6071B Series	-		
Operational Amplifier	2N6071A Series	-	-	2N6071A Series		
Zero Voltage Switch	-	2N6071A Series	2N6071A Series	-		


Quadrant Definitions for a Triac

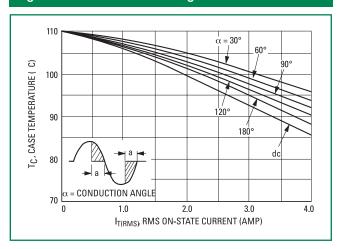
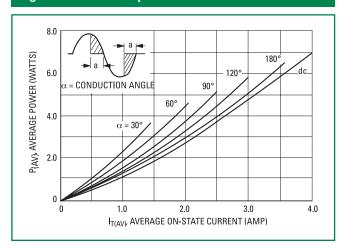

Ratings and Characteristic Curves

Figure 1. Average Current Derating



Thyristors

Figure 2. RMS Current Derating

Figure 3. Power Dissipation

Figure 4. Power Dissipation

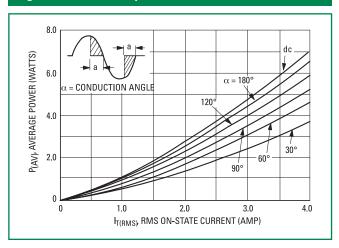
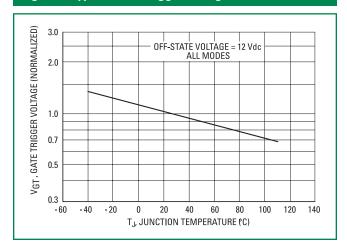
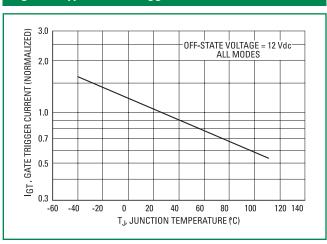




Figure 5. Typical Gate-Trigger Voltage

Figure 6. Typical Gate-Trigger Current

Figure 7. Maximum On-State Characteristics

Thyristors

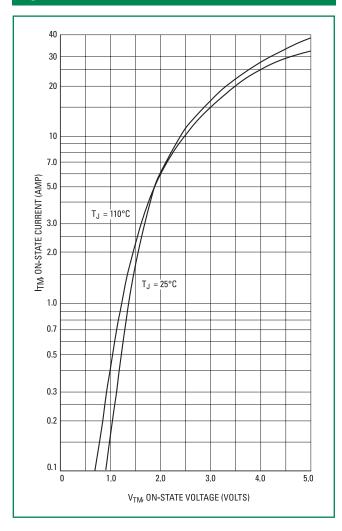


Figure 8. Typical Holding Current



Figure 9. Maximum Allowable Surge Current

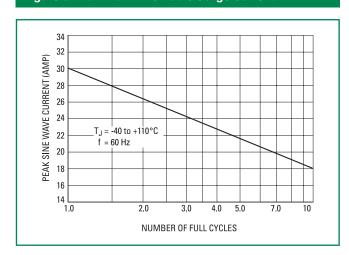
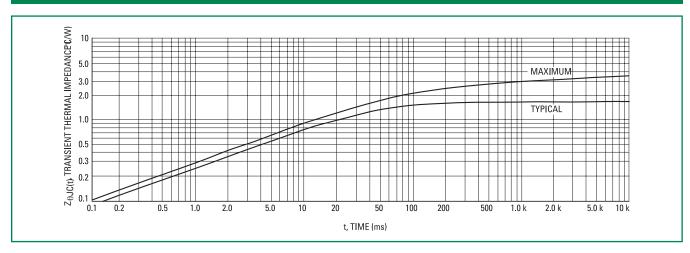
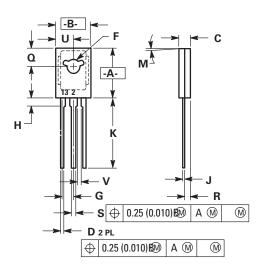




Figure 10. Thermal Response

Dimensions

<u>.</u>	Inches		Millim	neters
Dim	Min	Max	Min	Max
А	0.425	0.435	10.80	11.04
В	0.295	0.305	7.50	7.74
С	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094 BSC		2.39 BSC	
Н	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
М	5 7	ΥP	5 T	YP
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
V	0.040		1.02	

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.

Part Marking System

REAR VIEW SHOW TAB

TO-225 **CASE 077** STYLE 5

1. Cathode 2. Anode 3. Gate

YWW 2N 607xyG

= 1, 3, 5 = A, B = Year WW = Work Week = Pb-Free Package

Ordering Information

Device	Package	Shipping†
2N6071A	TO-225	500 H :: /B
2N6071AG	TO-225 (Pb-Free)	500 Units / Box
2N6071AT	TO-225	50 Units / Tube
2N6071ATG	TO-225 (Pb-Free)	2000 Units / Box
2N6071B	TO-225	500 H :: /B
2N6071BG	TO-225 (Pb-Free)	500 Units / Box
2N6071BT	TO-225	50 Units / Tube
2N6071BTG	TO-225 (Pb-Free)	2000 Units / Box
2N6073A	TO-225	
2N6073AG	TO-225 (Pb-Free)	
2N6073B	TO-225	
2N6073BG	TO-225 (Pb-Free)	500 Units / Box
2N6075A	TO-225	300 Offits / Box
2N6075AG	TO-225 (Pb-Free)	
2N6075B	TO-225	
2N6075BG	TO-225 (Pb-Free)	