

# Surface Mount Ceramic Capacitor Products





#### IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

# **Surface Mount Ceramic Capacitor Products**



X5R



| How to Or    | der                                        | Automotive MLCC                                       |     |
|--------------|--------------------------------------------|-------------------------------------------------------|-----|
| Part Numbe   | r Explanation1                             | General Specifications                                | 53  |
|              | '                                          | Capacitance Range                                     |     |
| COG (NPO     | ) Dielectric                               |                                                       |     |
| General Spe  | cifications3                               | APS for COTS+ High Reliability Applications           |     |
| Specificatio | ns and Test Methods4                       | General Specifications                                | 58  |
| Capacitance  | e Range                                    | Capacitance Range                                     | 59  |
| U Dielectr   | ic                                         | MLCC with FLEXITERM®                                  |     |
|              | ve C0G (NP0) Capacitors (RoHS)             | General Specifications                                | 62  |
|              | nformation7                                | Specifications and Test Methods                       | 63  |
| •            | nce Range                                  | Capacitance Range                                     | 65  |
|              | ive COG (NPO) Capacitors (Sn/Pb)           |                                                       |     |
|              | nformation                                 | FLEXISAFE MLC Chips                                   |     |
| •            | ive Automotive COG (NP0) Capacitors (RoHS) | General Specifications and Capacitance Range          | 67  |
|              | 0 Qualified Ultra Low ESR                  |                                                       |     |
|              | s                                          | Capacitor Array                                       |     |
| 2 00.g       |                                            | Capacitor Array (IPC)                                 |     |
| X8R/X8L      | Dielectric                                 | Automotive Capacitor Array (IPC)                      |     |
|              | cifications                                | Part & Pad Layout Dimensions                          | 73  |
| •            | ns and Test Methods                        |                                                       |     |
|              |                                            | Low Inductance Capacitors                             |     |
| X7R Diele    | ctric                                      | Introduction                                          |     |
| General Spe  | cifications                                | LICC (Low Inductance Chip Capacitors)                 |     |
| •            | ns and Test Methods19                      | IDC (InterDigitated Capacitors)                       |     |
| Capacitance  | e Range                                    | LGA Low Inductance Capacitors                         | 84  |
| X7S Diele    | ctric                                      | High Temperature MLCCs                                | -   |
| General Spe  | cifications22                              | AT Series - 200°C & 250°C Rated                       | 87  |
|              | ns and Test Methods23                      | High Voltage MI C China                               |     |
| •            | e Range                                    | High Voltage MLC Chips                                |     |
| ·            | -                                          | For 600V to 5000V Applications                        |     |
| X5R Diele    | ctric                                      | Tin/Lead Termination "B" - 600V to 5000V Applications |     |
| General Spe  | cifications25                              | FLEXITERM® - 600V to 5000V Applications               |     |
| Specificatio | ns and Test Methods26                      | For 600V to 3000V Automotive Applications - AEC-Q200  | 103 |
| Capacitance  | e Range                                    | MIL-PRF-55681/Chips                                   |     |
|              |                                            | CDR01 thru CDR06                                      | 10- |
| Y5V Diele    | ctric                                      | CDR01 thru CDR05                                      |     |
| General Spe  | cifications                                | CDR31 tillu CDR33                                     | 105 |
| Specificatio | ns and Test Methods30                      | MLCC Medical Applications                             |     |
| Capacitance  | e Range                                    | MM Series                                             | 113 |
|              |                                            | IVIIVI Geries                                         | 110 |
|              | d Termination — AU Series                  | Packaging of Chip Components                          | 119 |
| •            | cifications                                |                                                       |     |
| Capacitance  | Range                                      | Embossed Carrier Configuration                        |     |
| MLCC Tin     | /Lead Termination "B" (LD Series)          | Paper Carrier Configuration                           | 120 |
| C0G (NP0) -  | - General Specifications39                 | Basic Capacitor Formulas                              | 121 |
|              | Specifications and Test Methods40          | General Description                                   | 122 |
| VOD          | Capacitance Range                          |                                                       |     |
| X8R          | General Specifications                     | Surface Mounting Guide                                | 127 |
|              | Capacitance Range                          |                                                       |     |
| X7R          | General Specifications                     |                                                       |     |
|              | Specifications and Test Methods47          |                                                       |     |
|              | Capacitance Range                          |                                                       |     |
| X5R          | General Specifications 50                  |                                                       |     |
|              | Specifications and Test Methods51          |                                                       |     |

# **How to Order**

# **Part Number Explanation**



**Commercial Surface Mount Chips** 

#### **EXAMPLE: 08055A101JAT2A**

| 0805       | 5        | Α            | 101                  | J*                | Α              | T               | 2                | <b>A</b> **               |
|------------|----------|--------------|----------------------|-------------------|----------------|-----------------|------------------|---------------------------|
|            | T        | T            | T                    | T                 | T              | T               | T                | T                         |
| Size       | Voltage  | Dielectric   | Capacitance          | Tolerance         | Failure        | Terminations    | Packaging        | Special                   |
| (L" x W")  | 4 = 4V   | A = NP0(C0G) | ) 2 Sig. Fig +       | $B = \pm .10  pF$ | Rate           | T = Plated Ni   | <u>Available</u> | Code                      |
| 0101*      | 6 = 6.3V | C = X7R      | No. of Zeros         | $C = \pm .25  pF$ | A = N/A        | and Sn          | 2 = 7" Reel      | A = Std                   |
| 0201       | Z = 10V  | D = X5R      | Examples:            | $D = \pm .50 pF$  | 4 = Automotive | 7 = Gold Plated | 4 = 13" Reel     | K = 30K (0603 2mm pitch)  |
| 0402       | Y = 16V  | F = X8R      | 100 = 10 pF          | F = ±1%           |                | U = Conductive  | U = 4mm TR       | 22K (0805/1206            |
| 0603       | 3 = 25V  | G = Y5V      | 101 = 100 pF         | (≥ 10 pF)         |                | Expoxy for      | (01005)          | <0.030"/ 0.76mm)          |
| 0805       | D = 35V  | U = U Series | 102 = 1000 pF        | G = ±2%           |                | Hybrid          | , ,              | H = 18K (0603/0805/1206   |
| 1206       | 5 = 50V  | W = X6S      | 223 = 22000 pF       | (≥ 10 pF)         |                | Applications    | 0                | <0.037" / 0.94mm)         |
| 1210       | 1 = 100V | Z = X7S      | 224 = 220000 pF      | $J = \pm 5\%$     |                | Z = FLEXITERM®  | _ Contact        | J = 15K (0805/1206        |
| 1812       | 2 = 200V |              | 105 = 1µF            | K = ±10%          |                | *X = FLEXITERM® | Factory For      | <0.050" / 1.27mm)         |
| 1825       | 7 = 500V |              | 106 = 10μF           | $M = \pm 20\%$    |                | with 5% min     | Multiples        | 1 = 12K (0805/1206        |
| 2220       |          |              | 107 = 100μF          | Z = +80%,         |                | lead (X7R &     | •                | <0.055 / 1.4mm)           |
| 2225       |          | Factory for  | For values below     | -20%              |                | X8R only)       |                  | **Non std options upon    |
|            | Special  | Voltages     | 10 pF, use "R"       | P = +100%,        |                |                 |                  | approval from the factory |
| *EIA 01005 | F = 63V  | 9 = 300V     | in place of          | -0%               |                | Contact         |                  |                           |
|            | * = 75V  | X = 350V     | Decimal point, e.g., |                   |                | Factory For     |                  |                           |
|            | E = 150V | 8 = 400V     | 9.1 pF = 9R1.        |                   |                | = Pd/Ag Term    |                  |                           |
|            | V = 250V | 3 .301       |                      |                   |                | - ru/Ay lellii  |                  |                           |
|            | v - 250V |              |                      |                   |                |                 |                  |                           |

<sup>\*</sup> B, C & D tolerance for ≤10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

#### **High Voltage MLC Chips**

#### **EXAMPLE: 1808AA271KA11A**

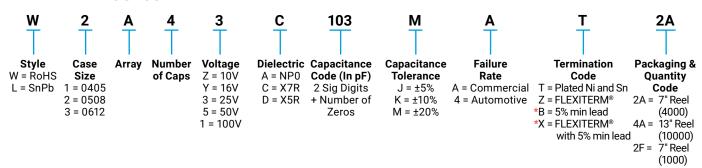
| 1808                                                                          | A                                                                                                        | A           | 271                                                                                                                                   | K                                                                              | A                           | <u>T</u>                                                                                                                        | 2                                             | A                           |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|
| AVX                                                                           | Voltage                                                                                                  | Temperature | Capacitance                                                                                                                           | Capacitance                                                                    | Failure                     | Termination                                                                                                                     | Packaging/                                    | Special                     |
| Style<br>0805<br>1206<br>1210<br>1808<br>1812<br>1825<br>2220<br>2225<br>3640 | C = 600V/630V<br>A = 1000V<br>S = 1500V<br>G = 2000V<br>W = 2500V<br>H = 3000V<br>J = 4000V<br>K = 5000V | 2:          | Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 2,000 pF = 223 0,000 pF = 224 1 µF = 105 | Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20% | Rate<br>A=Not<br>Applicable | 1 = Pd/Ag<br>T = Plated Ni<br>and Sn<br>B = 5% Min Pb<br>Z = FLEXITERM®<br>*X = FLEXITERM®<br>with 5% min<br>lead (X7R<br>only) | <b>Marking</b><br>2 = 7" Reel<br>4 = 13" Reel | <b>Code</b><br>A = Standard |

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

**Not RoHS Compliant** 



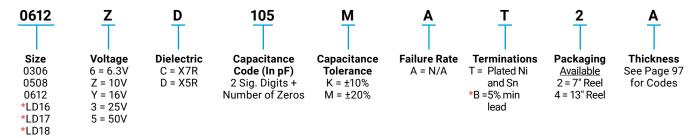
For RoHS compliant products, please select correct termination style.


## **How to Order**

## **Part Number Explanation**



**Capacitor Array** 


#### **EXAMPLE: W2A43C103MAT2A**



NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

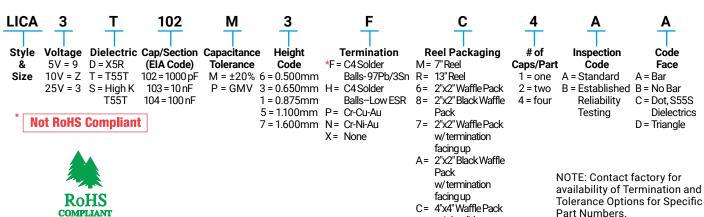
Low Inductance Capacitors (LICC)

#### EXAMPLE: 0612ZD105MAT2A



NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

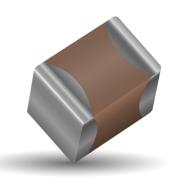
Interdigitated Capacitors (IDC)


#### **EXAMPLE: W3L16D225MAT3A**



NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Low Inductance Decoupling Capacitor Arrays (LICA)

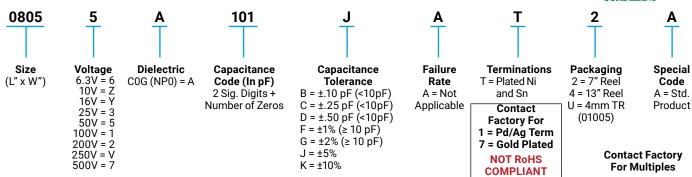

#### **EXAMPLE: LICA3T183M3FC4AA**



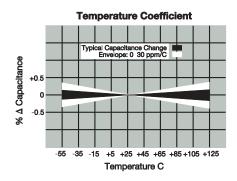
w/clearlid

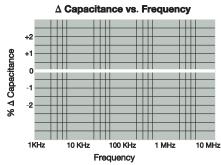
## **General Specifications**

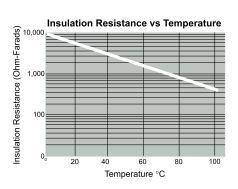


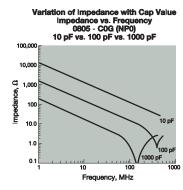


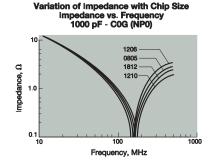

COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.

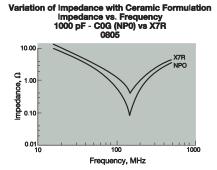

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is  $0\pm30$ ppm/°C which is less than  $\pm0.3\%$  C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NP0) ceramics is negligible at less than  $\pm0.05\%$  versus up to  $\pm2\%$  for films. Typical capacitance change with life is less than  $\pm0.1\%$  for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.


## PART NUMBER (see page 4 for complete part number explanation)





NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.


















| Parame           | ter/Test                 | NP0 Specification Limits                                                       | Measuring (                                                                                                                                                                       | Conditions                              |  |  |  |  |
|------------------|--------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Operating Tem    | perature Range           | -55°C to +125°C                                                                | Temperature Cy                                                                                                                                                                    |                                         |  |  |  |  |
| •                | itance<br>Q              | Within specified tolerance<br><30 pF: Q≥ 400+20 x Cap Value<br>≥30 pF: Q≥ 1000 | Freq.: 1.0 MHz ± 10%<br>1.0 kHz ± 10% for<br>Voltage: 1.0\                                                                                                                        | r cap > 1000 pF                         |  |  |  |  |
| Insulation       | Resistance               | 100,000MΩ or 1000MΩ - $\mu$ F, whichever is less                               | Charge device with rated<br>@ room tem                                                                                                                                            |                                         |  |  |  |  |
| Dielectric       | : Strength               | No breakdown or visual defects                                                 | Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max)  Note: Charge device with 150% of rated voltage for 500V devices. |                                         |  |  |  |  |
|                  | Appearance               | No defects                                                                     | D. fl. ations Course                                                                                                                                                              |                                         |  |  |  |  |
| Resistance to    | Capacitance<br>Variation | ±5% or ±.5 pF, whichever is greater                                            | Deflection: 2mm Test Time: 30 seconds 1mm/sec                                                                                                                                     |                                         |  |  |  |  |
| Flexure          | Q                        | Meets Initial Values (As Above)                                                |                                                                                                                                                                                   |                                         |  |  |  |  |
| Stresses         | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                          | 90 mm                                                                                                                                                                             |                                         |  |  |  |  |
| Solder           | rability                 | ≥ 95% of each terminal should be covered with fresh solder                     | Dip device in eutectic sol<br>± 0.5 se                                                                                                                                            |                                         |  |  |  |  |
|                  | Appearance               | No defects, <25% leaching of either end terminal                               |                                                                                                                                                                                   |                                         |  |  |  |  |
|                  | Capacitance<br>Variation | ≤ ±2.5% or ±.25 pF, whichever is greater                                       | Dip device in eutectic solder at 260°C for                                                                                                                                        |                                         |  |  |  |  |
| Resistance to    | Q                        | Meets Initial Values (As Above)                                                | 60sec- onds. Store at room temperature for 24 ± 2hours before measuring elec                                                                                                      |                                         |  |  |  |  |
| Solder Heat      | Insulation<br>Resistance | Meets Initial Values (As Above)                                                | for 24 ± 2hours befor properties.                                                                                                                                                 | e measuring electrical                  |  |  |  |  |
|                  | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                |                                                                                                                                                                                   |                                         |  |  |  |  |
|                  | Appearance               | No visual defects                                                              | Step 1: -55°C ± 2°                                                                                                                                                                | 30 ± 3 minutes                          |  |  |  |  |
|                  | Capacitance<br>Variation | ≤ ±2.5% or ±.25 pF, whichever is greater                                       | Step 2: Room Temp                                                                                                                                                                 | ≤ 3 minutes                             |  |  |  |  |
| Thermal Shock    | Q                        | Meets Initial Values (As Above)                                                | Step 3: +125°C ± 2°                                                                                                                                                               | 30 ± 3 minutes                          |  |  |  |  |
|                  | Insulation<br>Resistance | Meets Initial Values (As Above)                                                | Step 4: Room Temp                                                                                                                                                                 | ≤ 3 minutes                             |  |  |  |  |
|                  | Dielectric               | Meets Initial Values (As Above)                                                | Repeat for 5 cycles                                                                                                                                                               |                                         |  |  |  |  |
|                  | Strength<br>Appearance   | No visual defects                                                              | 24 hours at roor                                                                                                                                                                  | n temperature                           |  |  |  |  |
|                  | Capacitance<br>Variation | ≤ ±3.0% or ± .3 pF, whichever is greater                                       | Charge device with twic                                                                                                                                                           |                                         |  |  |  |  |
| Load Life        | Q<br>(C=Nominal Cap)     | ≥ 30 pF: Q≥ 350<br>≥10 pF, <30 pF: Q≥ 275 +5C/2<br><10 pF: Q≥ 200 +10C         | chamber set at<br>for 1000 hou<br>Remove from test chal                                                                                                                           | rs (+48, -0).                           |  |  |  |  |
|                  | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                              | room temperatu<br>before me                                                                                                                                                       | re for 24 hours                         |  |  |  |  |
|                  | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                |                                                                                                                                                                                   |                                         |  |  |  |  |
|                  | Appearance               | No visual defects                                                              |                                                                                                                                                                                   |                                         |  |  |  |  |
|                  | Capacitance<br>Variation | ≤ ±5.0% or ± .5 pF, whichever is greater                                       | Store in a test chamber s                                                                                                                                                         | et at 85°C ± 2°C/ 85% ±                 |  |  |  |  |
| Load<br>Humidity | Q                        | ≥ 30 pF: Q≥ 350<br>≥10 pF, <30 pF: Q≥ 275 +5C/2<br><10 pF: Q≥ 200 +10C         | 5% relative humidit<br>(+48, -0) with rated                                                                                                                                       | ty for 1000 hours<br>I voltage applied. |  |  |  |  |
|                  | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                              | Remove from chamber temperature for 24 ± 2 ho                                                                                                                                     |                                         |  |  |  |  |
|                  | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                |                                                                                                                                                                                   |                                         |  |  |  |  |

# **Capacitance Range**



## **PREFERRED SIZES ARE SHADED**

| SI                | ZE              | 010             | 01*             | 02       | 01         |         | 0402                 |                 |          |                | 0603           |                |        |        |        |            | 0805                  |           |                 |             |                                |        | 1206        |             |     |        |
|-------------------|-----------------|-----------------|-----------------|----------|------------|---------|----------------------|-----------------|----------|----------------|----------------|----------------|--------|--------|--------|------------|-----------------------|-----------|-----------------|-------------|--------------------------------|--------|-------------|-------------|-----|--------|
| Sold              | ering           | Reflov          | v Only          | Reflov   | v Only     | Ref     | low/Wa               | ave             |          | Re             | eflow/W        | ave            |        |        |        | Refl       | ow/Wave               | <br>e     |                 |             |                                | R      | teflow/W    | ave         |     |        |
| Pack              | aging           | All P           | -               | All P    |            | Δ       | II Pape              | r               |          |                | All Pape       | er             |        |        |        | Paper      | /Emboss               | ed        |                 |             |                                | Par    | per/Emb     | ossed       |     |        |
| (L) Length        | mm              | 0.40 ±          |                 | 0.60 ±   |            |         | 00 ± 0.1             |                 |          |                | .60 ± 0.       |                |        |        |        |            | 1 ± 0.20              |           |                 | 3.20 ± 0.20 |                                |        |             |             |     |        |
| (=) congui        | (in.)<br>mm     | (0.016 ±        |                 | 0.30     |            | _       | 40 ± 0.0<br>50 ± 0.1 |                 |          |                | 063 ± 0.       |                |        |        |        |            | 9 ± 0.00<br>25 ± 0.20 | B)        |                 |             | (0.126 ± 0.008)<br>1.60 ± 0.20 |        |             |             |     |        |
| W) Width          | (in.)           | (0.008 ±        |                 | (0.011 ± |            |         | 20 ± 0.0             | i               |          |                | 032 ± 0.       |                |        |        |        |            | 19 ± 0.00             | 8)        |                 |             |                                |        | .063 ± 0.   |             |     |        |
| (t) Terminal      | mm              | 0.10 ±          | £ 0.04          | 0.15     | 0.05       | 0.:     | 25 ± 0.1             | 5               |          | 0              | .35 ± 0.       | 15             |        |        |        | 0.5        | 50 ± 0.25             |           |                 |             |                                |        | 0.50 ± 0.   | .50 ± 0.25  |     |        |
| (1) 1011111101    | (in.)           | (0.004 ±        | 0.0016)         | (0.006 ± | 50         | (0.0°   | 10 ± 0.0             | 006)<br>50      | 16       | (0.0<br>25     | 014 ± 0.<br>50 | 006)<br>100    | 200    | 16     | 25     | (0.02      | 20 ± 0.01             | 0)<br>200 | 250             | 16          | 25                             | 50     | .020 ± 0.   | 010)<br>200 | 250 | 500    |
| Сар               | 0.5             |                 | _               | Α        | A          | С       | С                    | С               | G        | G              | G              | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J      |
| (pF)              | 1.0<br>1.2      | E               |                 | A        | A          | C       | C<br>C               | C<br>C          | G<br>G   | G<br>G         | G<br>G         | G<br>G         |        | J      | J      | J          | J                     | J<br>J    |                 | J           | J                              | J      | J           | J           |     | J      |
|                   | 1.5             | E               | 3               | Α        | Α          | С       | С                    | С               | G        | G              | G              | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J      |
|                   | 1.8<br>2.2      | E               |                 | A        | A          | C       | C<br>C               | C<br>C          | G<br>G   | G<br>G         | G<br>G         | G<br>G         |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J<br>J |
|                   | 2.7             | E               | 3               | Α        | Α          | С       | С                    | С               | G        | G              | G              | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J      |
|                   | 3.3<br>3.9      | E               |                 | A<br>A   | A          | C       | C                    | C<br>C          | G<br>G   | G<br>G         | G<br>G         | G<br>G         |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J<br>J |
|                   | 4.7             | E               | 3               | Α        | Α          | С       | С                    | С               | G        | G              | G              | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J      |
|                   | 5.6<br>6.8      | E               |                 | A<br>A   | A          | C       | C                    | C<br>C          | G<br>G   | G<br>G         | G<br>G         | G<br>G         |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | J<br>J |
|                   | 8.2             | E               |                 | A        | A          | c       | c                    | С               | G        | G              | G              | G              |        | J      | Ĵ      | Ĵ          | Ĵ                     | Ĵ         |                 | Ĵ           | J                              | Ĵ      | Ĵ           | Ĵ           |     | Ĵ      |
|                   | 10<br>12        | E               |                 | A<br>A   | A<br>A     | 00      | C                    | C               | G<br>G   | G<br>G         | G<br>G         | G<br>G         | G<br>G | J      | J      | J          | J                     | J         | N<br>N          | J           | J                              | J      | J           | J           | J   | J<br>J |
|                   | 15              | E               | 3               | Ā        | Ā          | С       | c                    | С               | G        | G              | G              | G              | G      | J      | J      | J          | J                     | J         | N               | J           | J                              | J      | J           | J           | J   | J      |
|                   | 18<br>22        | E               |                 | A        | A          | 00      | C                    | C               | G<br>G   | G<br>G         | G<br>G         | G<br>G         | G<br>G | J      | J      | J          | J                     | J         | N<br>N          | J           | J                              | J      | J           | J           | J   | J      |
|                   | 27              | E               | 3               | Α        | Ā          | С       | С                    | С               | G        | G              | G              | G              | G      | J      | J      | J          | J                     | J         | N               | J           | J                              | J      | J           | J           | J   | J      |
|                   | 33<br>39        | E               |                 | A<br>A   | A          | C       | C<br>C               | C<br>C          | G<br>G   | G<br>G         | G G            | G<br>G         | G<br>G | J      | J      | J          | J                     | J         | N<br>N          | J           | J                              | J      | J           | J           | J   | J<br>J |
|                   | 47              | E               | 3               | Α        | Ā          | С       | С                    | С               | G        | G              | G              | G              | G      | J      | J      | J          | J                     | J         | N               | J           | J                              | J      | J           | J           | J   | J      |
|                   | 56<br>68        | E               |                 | A<br>A   | A<br>A     | С       | C<br>C               | C               | G<br>G   | G<br>G         | G G            | G<br>G         | G<br>G | J      | J      | J          | J                     | J         | N<br>N          | J           | J                              | J      | J           | J           |     | J      |
|                   | 82              | E               | 3               | Α        | Α          | С       | С                    | С               | G        | G              | G              | G              | G      | J      | Ĵ      | Ĵ          | J                     | J         | N               | J           | J                              | J      | J           | J           |     | J      |
|                   | 100<br>120      | E               | 3               | Α        | Α          | 0 0     | C<br>C               | C<br>C          | G<br>G   | G<br>G         | G G            | G<br>G         | G<br>G | J      | J      | J          | J                     | J         | N<br>N          | J           | J                              | J      | J           | J           |     | J      |
|                   | 150             |                 |                 |          |            | C       | c                    | С               | G        | G              | 9 G            | G              | G      | J      | J      | J          | J                     | J         | N               | J           | J                              | J      | J           | J           |     | J      |
|                   | 180<br>220      |                 |                 |          |            | C       | C<br>C               | C<br>C          | G<br>G   | G<br>G         | G<br>G         | G<br>G         | G<br>G | J      | J      | J          | J                     | J         | N<br>N          | J           | J                              | J      | J           | J           |     | J<br>M |
|                   | 270             |                 |                 |          |            | C       | c                    | С               | G        | G              | 9 G            | G              | G      | J      | J      | J          | J                     | י ר       | N               | י ר         | J                              | J      | J           | J           |     | М      |
|                   | 330<br>390      |                 |                 |          |            | C       | C<br>C               | C<br>C          | G<br>G   | G<br>G         | G              | G<br>G         |        | J      | J      | J          | J                     | J         | N               | J           | J                              | J      | J           | J           |     | M<br>M |
|                   | 470             |                 |                 |          |            | С       | С                    | С               | G        | G              | G              | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | M      |
|                   | 560<br>680      |                 |                 |          |            | C       | C                    | C<br>C          | G<br>G   | G<br>G         | G<br>G         | G<br>G         |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | J           |     | M<br>P |
|                   | 820             |                 |                 |          |            | c       | С                    | С               | G        | G              | G              | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | М           |     | •      |
|                   | 1000<br>1200    |                 |                 |          |            | С       | С                    | С               | G<br>G   | G<br>G         | G<br>G         | G              |        | J      | J      | J          | J                     | J         |                 | J           | J                              | J      | J           | Q<br>Q      |     |        |
|                   | 1500            |                 |                 |          |            |         |                      |                 | G        | G              | G              |                |        | Ĵ      | Ĵ      | Ĵ          | J                     |           |                 | Ĵ           | J                              | J      | М           | Q           |     |        |
|                   | 1800<br>2200    |                 |                 |          |            |         |                      |                 | G<br>G   | G<br>G         | G<br>G         |                |        | J<br>N | J      | J          | N<br>N                |           |                 | J           | J                              | M<br>M | M<br>P      | Q<br>Q      |     |        |
|                   | 2700            |                 |                 |          |            |         |                      |                 | G        | G              | G              |                |        | N      | N      | N          | N                     |           |                 | J           | J                              | М      | Р           | Q           |     |        |
|                   | 3300<br>3900    |                 |                 |          |            |         |                      |                 | G<br>G   | G<br>G         | G<br>G         |                |        | P<br>P | N<br>P | N<br>P     | N<br>N                |           |                 | J           | J                              | M<br>M | P<br>P      | Q           |     |        |
|                   | 4700            |                 |                 |          |            |         |                      |                 | G        | G              | G              |                |        | Р      | Р      | Р          | N                     |           |                 | J           | J                              | М      | Р           |             |     |        |
|                   | 5600<br>6800    |                 |                 |          |            |         |                      |                 |          |                |                |                |        | P<br>P | P<br>P | P<br>P     |                       |           |                 | J<br>M      | J<br>M                         | M<br>M | P<br>P      |             |     |        |
|                   | 8200            |                 | _               | .1/      |            | <u></u> | <b>₹</b> V           | ٧               |          |                |                |                |        | P      | P      | P          |                       |           |                 | М           | M                              | М      | P           |             |     |        |
| Cap<br>(μF)       | 0.010<br>0.012  |                 | ~               |          | <          |         | $\sqrt{}$            |                 | T        |                |                |                |        | P<br>P | P<br>P | P<br>P     |                       |           |                 | Р           | Р                              | Р      | Р           |             |     |        |
| u ,               | 0.015           |                 | _               | ( -      |            | )       |                      | ノュ              | <u>'</u> |                |                |                |        | Р      | Р      | Р          |                       |           |                 |             |                                |        |             |             |     |        |
|                   | 0.018<br>0.022  |                 |                 |          |            |         |                      |                 |          |                |                |                |        | P<br>P | P<br>P | P<br>P     |                       |           |                 |             |                                |        |             |             |     |        |
|                   | 0.027           |                 | _               |          | <b>₹</b>   |         |                      |                 | 4        |                |                |                |        |        |        |            |                       |           |                 |             |                                |        |             |             |     |        |
|                   | 0.033<br>0.039  |                 |                 | l        | '          | ,<br>   | I                    | ١               |          |                |                |                |        |        |        |            |                       |           |                 |             |                                |        |             |             |     |        |
|                   | 0.047           |                 |                 |          |            |         |                      |                 |          |                |                |                |        |        |        |            |                       |           |                 |             |                                |        |             |             |     |        |
|                   | 0.068<br>0.082  |                 |                 |          |            |         |                      |                 |          |                |                |                |        |        |        |            |                       |           |                 |             |                                |        |             |             |     |        |
|                   | 0.1             |                 |                 |          |            |         |                      |                 |          |                |                |                |        |        |        |            |                       |           |                 |             |                                |        |             |             |     |        |
| W                 | VDC             | 1               | 6               | 25       | 50         | 16      | 25                   | 50              | 16       | 25             | 50             | 100            | 200    | 16     | 25     | 50         | 100                   | 200       | 250             | 16          | 25                             | 50     | 100         | 200         | 250 | 500    |
| S                 | IZE             | 010             | 01*             | 02       | 01         |         | 0402                 |                 |          |                | 0603           |                |        |        |        |            | 0805                  |           |                 |             |                                |        | 1206        |             |     |        |
| 1 -41             |                 | D               |                 |          |            | ^       |                      | ,               |          | V              |                | м              |        | , 1    |        |            |                       |           | V               |             | V                              |        | 7           |             |     |        |
| Letter            | A               | В               | С               | _        | E          | G       |                      | J               |          | K              |                | М              | N      |        |        | P          | Q                     | -+        | Х               | 1           | Υ                              | +      | Z           |             |     |        |
| Max.<br>Thickness | 0.33<br>(0.013) | 0.22<br>(0.009) | 0.56<br>(0.022) |          | 71<br>028) | 0.90    |                      | 0.94<br>(0.037) |          | 1.02<br>0.040) |                | 1.27<br>).050) | (0.0   |        |        | 52<br>060) | 1.78                  |           | 2.29<br>(0.090) |             | 2.54<br>).100)                 |        | .79<br>110) |             |     |        |
|                   | -/              | ,               |                 | PAPER    |            | ,       | ,   (                | ,               | 1        | ,              |                | ,              | 1 (5.0 | -/     | (,     |            | OSSEI                 |           | /               | ,,          | -,                             | ,,,,   | -/          |             |     |        |
|                   |                 |                 |                 | ~: LI    |            |         |                      |                 |          |                |                |                |        |        |        | _,,,,,,    | JUULL                 | -         |                 |             |                                |        |             |             |     |        |

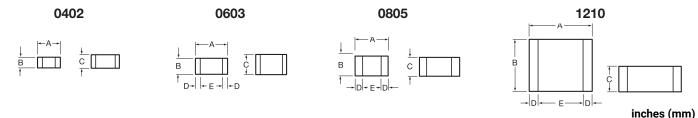
# **Capacitance Range**



## PREFERRED SIZES ARE SHADED

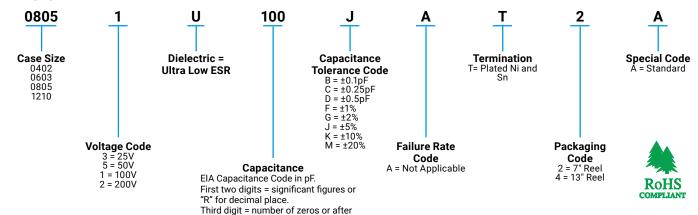
|                             |                 |                |        |                             |                 |               |        |                     | П                           |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|-----------------------------|-----------------|----------------|--------|-----------------------------|-----------------|---------------|--------|---------------------|-----------------------------|---------------|--------|----------------------|-----------------------------|--------------|--------|-----------------------------|----------------------|-------------|---------------------------|--------|
|                             |                 |                |        |                             |                 |               |        |                     | Ш                           |               |        |                      | Ш                           |              |        | Ш                           |                      |             | Ш                         |        |
| SIZ                         |                 |                |        | 1210                        |                 |               |        |                     | 1812                        |               |        |                      | 1825                        |              |        | 2220                        |                      |             | 2225                      |        |
| Solde                       |                 |                |        | Reflow Only                 |                 |               |        |                     | Reflow Only                 |               |        | _                    | Reflow Only                 |              |        | Reflow Onl                  |                      |             | eflow Only                |        |
| Packa                       | ging<br>mm      |                |        | per/Embos<br>3.20 ± 0.20    |                 |               |        |                     | 4.50 ± 0.30                 |               |        |                      | 4.50 ± 0.30                 |              |        | 5.70 ± 0.40                 |                      |             | .72 ± 0.25                |        |
| (L) Length                  | (in.)           |                | (0     | .126 ± 0.00                 | 08)             |               |        | (                   | 0.177 ± 0.01                | 2)            |        | (0                   | 0.177 ± 0.01                | 2)           | (0     | 0.225 ± 0.01                | 16)                  | (0.:        | 225 ± 0.010               | 0)     |
| W) Width                    | mm<br>(in.)     |                |        | 2.50 ± 0.20<br>0.098 ± 0.00 |                 |               |        | ((                  | 3.20 ± 0.20<br>0.126 ± 0.00 |               |        |                      | 6.40 ± 0.40<br>0.252 ± 0.01 |              |        | 5.00 ± 0.40<br>0.197 ± 0.01 |                      |             | .35 ± 0.25<br>250 ± 0.010 |        |
| (t) Terminal                | mm              |                |        | 0.50 ± 0.25                 |                 |               |        |                     | 0.61 ± 0.36                 |               |        |                      | 0.61 ± 0.36                 |              |        | 0.64 ± 0.39                 |                      |             | .64 ± 0.39                |        |
| (t) reminal                 | (in.)<br>WVDC   | 25             | 50     | 100 ± 0.01                  | 200             | 500           | 25     | 50                  | 0.024 ± 0.01                | 4)<br>200     | 500    | 50                   | 0.024 ± 0.01                | 200          | 50     | 0.025 ± 0.01                | 15)                  | 50          | 025 ± 0.01                | 5) 200 |
| Сар                         | 0.5             | 23             | 30     | 100                         | 200             | 300           | 23     | 30                  | 100                         | 200           | 300    | 30                   | 100                         | 200          | 30     | 100                         | 200                  | 30          | 100                       | 200    |
| (pF)                        | 1.0             |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 1.2<br>1.5      |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 1.8             |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           | 1      |
|                             | 2.2             |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      | <b>*</b>    | ≪W.                       | -      |
|                             | 2.7<br>3.3      |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        | <u> </u>                    |                      |             |                           | ) T    |
|                             | 3.9             |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      | 7 )         |                           | 1      |
|                             | 4.7<br>5.6      |                |        |                             |                 |               |        | -                   | -                           |               |        | -                    |                             |              |        | <u> </u>                    |                      | +           | -                         |        |
|                             | 6.8             |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      | t           |                           |        |
|                             | 8.2             |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 10<br>12        |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 15              |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 18              |                |        |                             |                 | J .           |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 22<br>27        |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 33              |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 39              |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 47<br>56        |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 68              |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 82              |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 100<br>120      |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 150             |                |        |                             |                 | J             |        | <u> </u>            |                             |               |        | ļ                    |                             |              |        |                             |                      |             |                           |        |
|                             | 180<br>220      |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 270             |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 330             |                |        |                             |                 | J             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 390<br>470      |                |        |                             |                 | M<br>M        |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 560             | J              | J      | J                           | J               | М             |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 680<br>820      | J              | J      | J                           | K               | P<br>P        |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
|                             | 1000            | J              | J      | J<br>P                      | K<br>P          | P             | K      | K                   | N                           | N             | М      | M                    | M                           | М            |        |                             |                      | М           | M                         | P      |
|                             | 1200            | Р              | Р      | Р                           | Р               | Р             | K      | К                   | N                           | N             | М      | М                    | М                           | М            |        |                             |                      | М           | М                         | Р      |
|                             | 1500<br>1800    | P<br>P         | P<br>P | P<br>P                      | P<br>P          | P<br>P        | K<br>K | K                   | N<br>N                      | N<br>N        | M      | M<br>M               | M<br>M                      | M<br>M       |        |                             |                      | M<br>M      | M<br>M                    | P<br>P |
|                             | 2200            | P              | P      | P                           | P               | N N           | K      | K                   | N                           | N             | P      | X                    | X                           | М            |        |                             |                      | М           | М                         | P      |
|                             | 2700            | P              | P      | P                           | P               |               | K      | K                   | N                           | P             | Q      | X                    | X                           | М            |        |                             | .,                   | M           | М                         | P      |
|                             | 3300<br>3900    | P<br>P         | P<br>P | P<br>P                      | Р               |               | K<br>K | K<br>K              | N<br>N                      | P<br>P        | Q<br>Q | X<br>X               | X                           | X<br>X       |        |                             | X                    | M<br>M      | M<br>M                    | P<br>P |
|                             | 4700            | Р              | Р      | Р                           |                 |               | K      | К                   | N                           | Р             | Υ      | Х                    | Х                           | Х            | X      | Х                           | Х                    | М           | М                         | Р      |
|                             | 5600<br>6800    | P<br>P         | P<br>P | P<br>P                      |                 |               | K<br>K | K<br>K              | P<br>Q                      | P<br>Q        | Y      | X<br>X               | X<br>X                      | X<br>X       | X<br>X | X<br>X                      | X<br>X               | M<br>M      | M<br>M                    | P<br>P |
|                             | 8200            | P              | P      |                             |                 |               | K      | M                   | Q                           | Q             |        | X                    | X                           | X            | X      | X                           | x                    | M           | M                         | P      |
| Cap                         | 0.010           | N              | N      |                             |                 |               | K      | М                   | Q                           | Q             |        | X                    | X                           | X            | X      | X                           | X                    | М           | М                         | Р      |
| (pF)                        | 0.012<br>0.015  | N              | N      |                             |                 |               | K<br>P | M<br>P              | Q<br>Q                      |               |        | X<br>X               | X<br>X                      | X<br>X       | X<br>X | X<br>X                      | X<br>X               | M<br>M      | M<br>M                    | P<br>Y |
|                             | 0.018           |                |        |                             |                 |               | Р      | Р                   | Q                           |               |        | Х                    | Х                           | Х            | Х      | Х                           | X                    | М           | М                         | Υ      |
|                             | 0.022<br>0.027  |                |        |                             |                 |               | P      | P                   | Q                           |               |        | X                    | X                           | X            | X      | X                           |                      | M<br>P      | Y                         | Y      |
|                             | 0.027           |                |        |                             |                 |               | Q<br>Q | Q                   | X                           |               |        | X                    | X                           | Υ            | X      | X                           |                      | X           | Y                         | Y      |
|                             | 0.039           |                |        |                             |                 |               | Х      | х                   | X                           |               |        | х                    |                             |              | Y      |                             |                      | X           | Y                         | Y      |
|                             | 0.047<br>0.068  |                |        |                             |                 |               | Z Z    | X<br>Z              | X                           |               |        | Х                    |                             |              | Y<br>Z |                             |                      | X           | Z<br>Z                    |        |
|                             | 0.082           |                |        |                             |                 |               | Z      | Z                   | Y                           |               |        |                      |                             |              | Z      |                             |                      | Х           | Z                         |        |
|                             | 0.1             |                |        |                             |                 |               | Z      | Z                   | Z                           |               |        |                      |                             |              | Z      |                             |                      | Z           | Z                         |        |
|                             | WVDC            | 25             | 50     | 100                         | 200             | 500           | 25     | 50                  | 100                         | 200           | 500    | 50                   | 100                         | 200          | 50     | 100                         | 200                  | 50          | 100                       | 200    |
|                             | SIZE            |                |        | 1210                        |                 |               |        |                     | 1812                        |               |        |                      | 1825                        |              |        | 2220                        |                      |             | 2225                      |        |
|                             |                 |                |        |                             |                 |               |        |                     |                             |               |        |                      |                             |              |        |                             |                      |             |                           |        |
| Letter                      | А               | В              |        | С                           | Е               | G             |        | J                   | K                           | М             |        | N                    | Р                           | Q            | -      | Х                           | Υ                    | Z           |                           |        |
| Letter<br>Max.<br>Thickness | 0.33<br>(0.013) | 0.22<br>(0.009 |        | 0.56<br>0.022)              | 0.71<br>(0.028) | 0.90<br>(0.03 |        | J<br>0.94<br>0.037) | 1.02<br>(0.040)             | 1.27<br>(0.05 |        | N<br>1.40<br>(0.055) | P<br>1.52<br>(0.060)        | 1.7<br>(0.07 | 8      | X<br>2.29<br>0.090)         | Y<br>2.54<br>(0.100) | 2.7<br>(0.1 | 9                         |        |

# RF/Microwave C0G (NP0) Capacitors (RoHS)


## Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors



#### **GENERAL INFORMATION**


"U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

#### **DIMENSIONS: INCHES (MILLIMETERS)**



| Size | Α                       | В                       | С                        | D                         | E                |
|------|-------------------------|-------------------------|--------------------------|---------------------------|------------------|
| 0402 | 0.039±0.004 (1.00±0.1)  | 0.020±0.004 (0.50±0.1)  | 0.022 (0.55mm) max       | N/A                       | N/A              |
| 0603 | 0.060±0.010 (1.52±0.25) | 0.030±0.010 (0.76±0.25) | 0.036 (0.91mm) max       | 0.010±0.005 (0.25±0.13)   | 0.030 (0.76) min |
| 0805 | 0.079±0.008 (2.01±0.2)  | 0.049±0.008 (1.25±0.2)  | 0.040±0.005 (1.02±0.127) | 0.020±0.010 (0.51±0.255)  | 0.020 (0.51) min |
| 1210 | 0.126±0.008 (3.2±0.2)   | 0.098±0.008 (2.49±0.2)  | 0.050±0.005 (1.27±0.127) | 0.025±0.015 (0.635±0.381) | 0.040 (1.02) min |

#### **HOW TO ORDER**



NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

#### **ELECTRICAL CHARACTERISTICS**

#### **Capacitance Values and Tolerances:**

Size 0402 - 0.2 pF to 30 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

#### **Temperature Coefficient of Capacitance (TC):**

0±30 ppm/°C (-55° to +125°C)

#### Insulation Resistance (IR):

 $10^{12}\,\Omega$  min. @ 25°C and rated WVDC  $10^{11}\,\Omega$  min. @ 125°C and rated WVDC

#### Working Voltage (WVDC):

Size Working Voltage 0402 - 100, 50, 25 WVDC 0603 - 200, 100, 50 WVDC

0805 - 200, 100 WVDC 1210 - 200, 100 WVDC

"R" significant figures.

#### Dielectric Working Voltage (DWV):

250% of rated WVDC

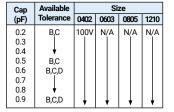
#### **Equivalent Series Resistance Typical (ESR):**

0402 - See Performance Curve, page 13
0603 - See Performance Curve, page 13
0805 - See Performance Curve, page 13
1210 - See Performance Curve, page 13

#### Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

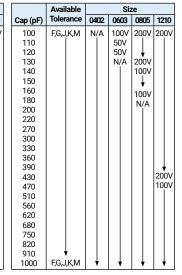
#### **Military Specifications**


Meets or exceeds the requirements of MIL-C-55681

# RF/Microwave C0G (NP0) Capacitors (RoHS)

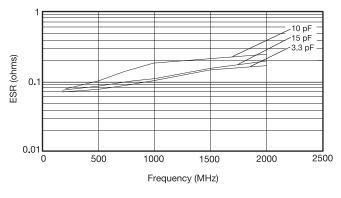




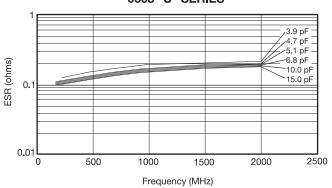

#### **CAPACITANCE RANGE**



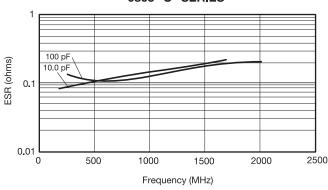
|          | Availa |     | Size     |    |      |    |    |    |    |    |  |  |
|----------|--------|-----|----------|----|------|----|----|----|----|----|--|--|
| Cap (pF) | Tolera | nce | 04       | 02 | 06   | 03 | 08 | 05 | 12 | 10 |  |  |
| 1.0      | B,C,   | D _ | 10       | 0V | 200V |    | 20 | 0V | 20 | 0V |  |  |
| 1.1      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.2      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.3      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.4      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.5      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.6      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.7      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.8      |        |     |          |    |      |    |    |    |    |    |  |  |
| 1.9      |        |     |          |    |      |    |    |    |    |    |  |  |
| 2.0      |        |     |          |    |      |    |    |    |    |    |  |  |
| 2.1      |        |     |          |    |      |    |    |    |    |    |  |  |
| 2.2      |        |     |          |    |      |    |    |    |    |    |  |  |
| 2.4      |        |     |          |    |      |    |    |    |    |    |  |  |
| 2.7      |        |     |          |    |      |    |    |    |    |    |  |  |
| 3.0      |        |     |          |    |      |    |    |    |    |    |  |  |
| 3.3      |        |     |          |    |      |    |    |    |    |    |  |  |
| 3.6      |        |     |          |    |      |    |    |    |    |    |  |  |
| 3.9      |        |     |          |    |      |    |    |    |    |    |  |  |
| 4.3      |        |     |          |    |      |    |    |    |    |    |  |  |
| 4.7      |        |     |          |    |      |    |    |    |    |    |  |  |
| 5.1      |        |     |          |    |      |    |    |    |    |    |  |  |
| 5.6      | ▼      |     |          |    |      |    |    |    |    |    |  |  |
| 6.2      | B,C,   |     |          |    |      |    |    |    |    |    |  |  |
| 6.8      | B,C,J, | K,M | <u>'</u> | ,  | 1    | 7  | ,  | 7  | ١. | ,  |  |  |


|          | Available |          | SIZ  |      |      |  |  |  |  |  |
|----------|-----------|----------|------|------|------|--|--|--|--|--|
| Cap (pF) | Tolerance | 0402     | 0603 | 0805 | 1210 |  |  |  |  |  |
| 7.5      | B,C,J,K,M | 100V     | 200V | 200V | 200V |  |  |  |  |  |
| 8.2      | ↓         |          |      |      |      |  |  |  |  |  |
| 9.1      | B,C,J,K,M | ↓        |      |      |      |  |  |  |  |  |
| 10       | F,G,J,K,M | 100V     |      |      |      |  |  |  |  |  |
| 11       |           | 50V      |      |      |      |  |  |  |  |  |
| 12       |           | l I      |      |      |      |  |  |  |  |  |
| 13       |           |          |      |      |      |  |  |  |  |  |
| 15       |           |          | ♦    |      |      |  |  |  |  |  |
| 18       |           |          | 200V |      |      |  |  |  |  |  |
| 20       |           |          | 100V |      |      |  |  |  |  |  |
| 22       |           |          |      |      |      |  |  |  |  |  |
| 24       |           |          |      |      |      |  |  |  |  |  |
| 27       |           | <b>.</b> |      |      |      |  |  |  |  |  |
| 30       |           | 50V      |      |      |      |  |  |  |  |  |
| 33       |           | N/A      |      |      |      |  |  |  |  |  |
| 36       |           |          |      |      |      |  |  |  |  |  |
| 39       |           |          |      |      |      |  |  |  |  |  |
| 43       |           |          |      |      |      |  |  |  |  |  |
| 47       |           |          |      |      |      |  |  |  |  |  |
| 51       |           |          |      |      |      |  |  |  |  |  |
| 56<br>68 |           |          |      |      |      |  |  |  |  |  |
| 75       |           |          |      |      |      |  |  |  |  |  |
| 75<br>82 |           |          |      |      |      |  |  |  |  |  |
| 91       | ↓         | ↓        | ↓    | l ↓  | ↓    |  |  |  |  |  |
| 71       |           | _ •      |      |      |      |  |  |  |  |  |

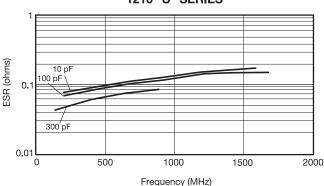
Avoilable




#### **ULTRA LOW ESR, "U" SERIES**

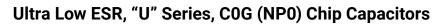

TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES




**TYPICAL ESR vs. FREQUENCY** 0603 "U" SERIES

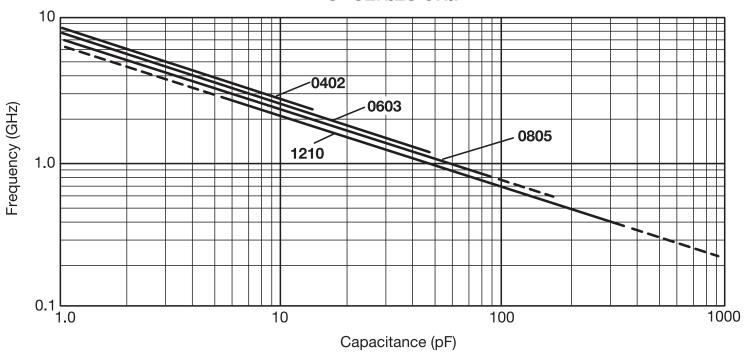


**TYPICAL ESR vs. FREQUENCY** 0805 "U" SERIES




TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES




**ESR Measured on the Boonton 34A** 

# RF/Microwave C0G (NP0) Capacitors



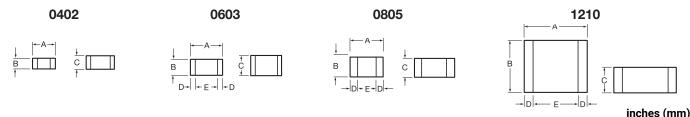


## TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP



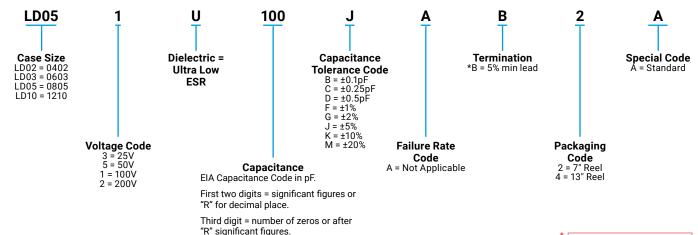
# RF/Microwave COG (NP0) Capacitors (Sn/Pb)

## Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors




**Not RoHS Compliant** 

#### GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

#### **DIMENSIONS: INCHES (MILLIMETERS)**



| Size | Α                       | В                       | С                        | D                         | E                |
|------|-------------------------|-------------------------|--------------------------|---------------------------|------------------|
| 0402 | 0.039±0.004 (1.00±0.1)  | 0.020±0.004 (0.50±0.1)  | 0.022 (0.55mm) max       | N/A                       | N/A              |
| 0603 | 0.060±0.010 (1.52±0.25) | 0.030±0.010 (0.76±0.25) | 0.036 (0.91mm) max       | 0.010±0.005 (0.25±0.13)   | 0.030 (0.76) min |
| 0805 | 0.079±0.008 (2.01±0.2)  | 0.049±0.008 (1.25±0.2)  | 0.040±0.005 (1.02±0.127) | 0.020±0.010 (0.51±0.254)  | 0.020 (0.51) min |
| 1210 | 0.126±0.008 (3.2±0.2)   | 0.098±0.008 (2.49±0.2)  | 0.050±0.005 (1.27±0.127) | 0.025±0.015 (0.635±0.381) | 0.040 (1.02) min |

#### **HOW TO ORDER**



#### **ELECTRICAL CHARACTERISTICS**

#### **Capacitance Values and Tolerances:**

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Size 0805 - 1.6 pF to 160 pF @ 1 MHz

Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

#### Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

#### Insulation Resistance (IR):

 $10^{12} \Omega$  min. @ 25°C and rated WVDC  $10^{11} \Omega$  min. @  $125^{\circ}$ C and rated WVDC

#### Working Voltage (WVDC):

Working Voltage Size 0402 - 50, 25 WVDC 0603 - 200, 100, 50 WVDC

0805 - 200, 100 WVDC 1210 - 200, 100 WVDC

#### **Dielectric Working Voltage (DWV):**

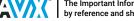
250% of rated WVDC

#### **Equivalent Series Resistance Typical (ESR):**

0402 - See Performance Curve, page 16

0603 - See Performance Curve, page 16

0805 - See Performance Curve, page 16


1210 - See Performance Curve, page 16

#### Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

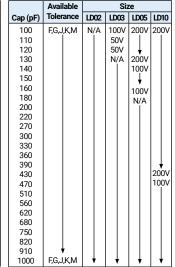
#### **Military Specifications**

Meets or exceeds the requirements of MIL-C-55681



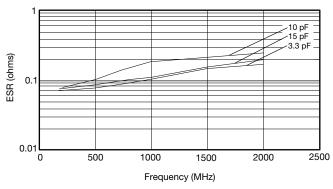
# RF/Microwave C0G (NP0) Capacitors (Sn/Pb)



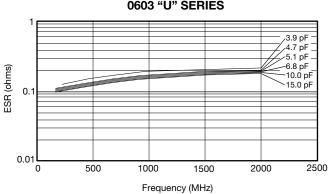



#### **CAPACITANCE RANGE**

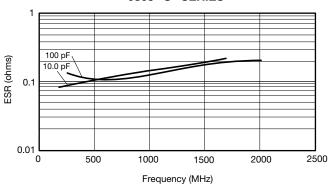
|          | Available | Size |      |      |      |  |  |  |
|----------|-----------|------|------|------|------|--|--|--|
| Cap (pF) | Tolerance | LD02 | LD03 | LD05 | LD10 |  |  |  |
| 0.2      | B,C       | 50V  | N/A  | N/A  | N/A  |  |  |  |
| 0.3      |           |      |      |      |      |  |  |  |
| 0.4      | +         |      |      |      |      |  |  |  |
| 0.5      | B,C       |      |      |      |      |  |  |  |
| 0.6      | B,C,D     |      |      |      |      |  |  |  |
| 0.7      |           |      |      |      |      |  |  |  |
| 8.0      | +         |      |      |      |      |  |  |  |
| 0.9      | B,C,D     | ↓    | ↓    | ↓    | ↓    |  |  |  |


|          | Available | Size |      |      |          |  |  |  |  |  |  |  |
|----------|-----------|------|------|------|----------|--|--|--|--|--|--|--|
| Cap (pF) | Tolerance | LD02 | LD03 | LD05 | LD10     |  |  |  |  |  |  |  |
| 1.0      | B,C,D     | 50V  | 200V | 200V | 200V     |  |  |  |  |  |  |  |
| 1.1      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.2      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.3      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.4      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.5      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.6      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.7      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.8      |           |      |      |      |          |  |  |  |  |  |  |  |
| 1.9      |           |      |      |      |          |  |  |  |  |  |  |  |
| 2.0      |           |      |      |      |          |  |  |  |  |  |  |  |
| 2.1      |           |      |      |      |          |  |  |  |  |  |  |  |
| 2.2      |           |      |      |      |          |  |  |  |  |  |  |  |
| 2.4      |           |      |      |      |          |  |  |  |  |  |  |  |
| 2.7      |           |      |      |      |          |  |  |  |  |  |  |  |
| 3.0      |           |      |      |      |          |  |  |  |  |  |  |  |
| 3.3      |           |      |      |      |          |  |  |  |  |  |  |  |
| 3.6      |           |      |      |      |          |  |  |  |  |  |  |  |
| 3.9      |           |      |      |      |          |  |  |  |  |  |  |  |
| 4.3      |           |      |      |      |          |  |  |  |  |  |  |  |
| 4.7      |           |      |      |      |          |  |  |  |  |  |  |  |
| 5.1      |           |      |      |      |          |  |  |  |  |  |  |  |
| 5.6      | <b>*</b>  |      |      |      |          |  |  |  |  |  |  |  |
| 6.2      | B,C,D     |      |      |      |          |  |  |  |  |  |  |  |
| 6.8      | B,C,J,K,M | _ *  | _ *  | *    | <b>*</b> |  |  |  |  |  |  |  |

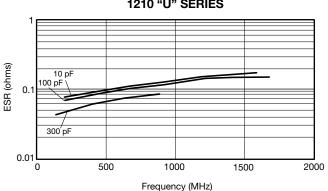
|          | Available | Size  |      |      |      |
|----------|-----------|-------|------|------|------|
| Cap (pF) | Tolerance | LD02  | LD03 | LD05 | LD10 |
| 7.5      | B,C,J,K,M | 50V   | 200V | 200V | 200V |
| 8.2      | ↓         |       |      |      |      |
| 9.1      | B,C,J,K,M |       |      |      |      |
| 10       | F,G,J,K,M |       |      |      |      |
| 11       |           |       |      |      |      |
| 12       |           |       |      |      |      |
| 13       |           |       |      |      |      |
| 15       |           |       | +    |      |      |
| 18       |           |       | 200V |      |      |
| 20       |           |       | 100V |      |      |
| 22       |           |       |      |      |      |
| 24       |           | ↓     |      |      |      |
| 27       |           | 50V   |      |      |      |
| 30       |           | N/A   |      |      |      |
| 33       |           | ''' ^ |      |      |      |
| 36       |           |       |      |      |      |
| 39<br>43 |           |       |      |      |      |
| 43<br>47 |           |       |      |      |      |
| 51       |           |       |      |      |      |
| 56       |           |       |      |      |      |
| 68       |           |       |      |      |      |
| 75       |           |       |      |      |      |
| 82       |           |       |      |      |      |
| 91       | ↓         | ↓     | ↓    | ↓    | ↓    |




#### **ULTRA LOW ESR, "U" SERIES**


#### TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES




# TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES



# TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

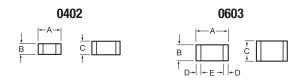


#### TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES



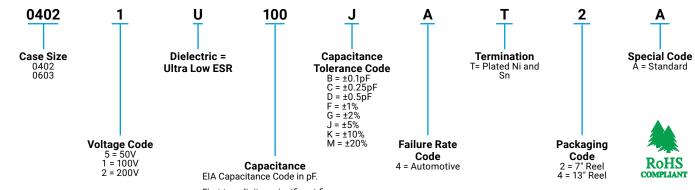
**ESR Measured on the Boonton 34A** 

# RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)




AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

#### **GENERAL INFORMATION**


Automotive "U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

#### **DIMENSIONS: INCHES (MILLIMETERS)**



| Size | Α                          | В                          | С                   | D                          | E                   |
|------|----------------------------|----------------------------|---------------------|----------------------------|---------------------|
| 0402 | 1.00±0.1<br>(0.039±0.004)  | 0.50±0.1<br>(0.020±0.004)  | 0.60 max<br>(0.024) | N/A                        | N/A                 |
| 0603 | 1.52±0.25<br>(0.060±0.010) | 0.76±0.25<br>(0.030±0.010) | 0.91 max<br>(0.036) | 0.25±0.13<br>(0.010±0.005) | 0.76 min<br>(0.030) |

#### **HOW TO ORDER**



First two digits = significant figures or "R" for decimal place.

Third digit = number of zeros or after "R" significant figures.

#### **ELECTRICAL CHARACTERISTICS**

## **Capacitance Values and Tolerances:**

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

## **Temperature Coefficient of Capacitance (TC):**

0±30 ppm/°C (-55° to +125°C)

#### Insulation Resistance (IR):

 $10^{12}\,\Omega$  min. @ 25°C and rated WVDC  $10^{11}\,\Omega$  min. @ 125°C and rated WVDC

#### Working Voltage (WVDC):

Size Working Voltage 0402 - 50, 25 WVDC 0603 - 200, 100, 50 WVDC

#### **Dielectric Working Voltage (DWV):**

250% of rated WVDC

#### **Equivalent Series Resistance Typical (ESR):**

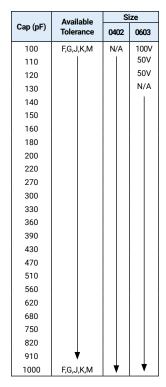
0402 - See Performance Curve 0603 - See Performance Curve

#### **Automotive Specifications**

Meets or exceeds the requirements of AEC Q200

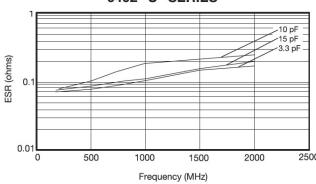
# RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)



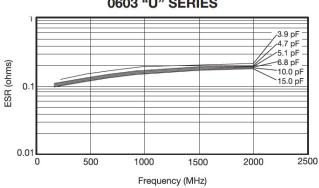

AEC Q200 Qualified, Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

#### **CAPACITANCE RANGE**

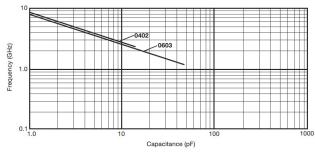
|          | Available | able Size |      |
|----------|-----------|-----------|------|
| Cap (pF) | Tolerance | 0402      | 0603 |
| 0.2      | B,C       | 100V      | N/A  |
| 0.3      |           |           |      |
| 0.4      | ♦         |           |      |
| 0.5      | B,C       |           |      |
| 0.6      | B,C,D     |           |      |
| 0.7      |           |           |      |
| 0.8      | ♦         |           |      |
| 0.9      | B,C,D     | <b></b>   | _ ▼  |


|          | Available | Si   | ze   |  |
|----------|-----------|------|------|--|
| Cap (pF) | Tolerance | 0402 | 0603 |  |
| 1.0      | B,C,D     | 100V | 200V |  |
| 1.1      |           |      |      |  |
| 1.2      |           |      |      |  |
| 1.3      |           |      |      |  |
| 1.4      |           |      |      |  |
| 1.5      |           |      |      |  |
| 1.6      |           |      |      |  |
| 1.7      |           |      |      |  |
| 1.8      |           |      |      |  |
| 1.9      |           |      |      |  |
| 2.0      |           |      |      |  |
| 2.1      |           |      |      |  |
| 2.2      |           |      |      |  |
| 2.4      |           |      |      |  |
| 2.7      |           |      |      |  |
| 3.0      |           |      |      |  |
| 3.3      |           |      |      |  |
| 3.6      |           |      |      |  |
| 3.9      |           |      |      |  |
| 4.3      |           |      |      |  |
| 4.7      |           |      |      |  |
| 5.1      |           |      |      |  |
| 5.6      | \         |      |      |  |
| 6.2      | B,C,D     |      |      |  |
| 6.8      | B,C,J,K,M | ♦    | \ \  |  |

|          | Available | Si   | ze   |
|----------|-----------|------|------|
| Cap (pF) | Tolerance | 0402 | 0603 |
| 7.5      | B,C,J,K,M | 100V | 200V |
| 8.2      | <b>*</b>  |      |      |
| 9.1      | B,C,J,K,M |      |      |
| 10       | F,G,J,K,M |      |      |
| 11       |           |      |      |
| 12       |           |      |      |
| 13       |           |      |      |
| 15       |           |      | ▼    |
| 18       |           |      | 200V |
| 20       |           |      | 100V |
| 22       |           |      |      |
| 24       |           |      |      |
| 27       |           | ♦    |      |
| 30       |           | 50V  |      |
| 33       |           | N/A  |      |
| 36       |           |      |      |
| 39       |           |      |      |
| 43       |           |      |      |
| 47       |           |      |      |
| 51       |           |      |      |
| 56       |           |      |      |
| 68       |           |      |      |
| 75       |           |      |      |
| 82       |           |      |      |
| 91       | ▼         | ▼    | \ \  |




## **ULTRA LOW ESR, "U" SERIES**


**TYPICAL ESR vs. FREQUENCY** 0402 "U" SERIES



#### **TYPICAL ESR vs. FREQUENCY** 0603 "U" SERIES



#### TYPICAL SERIES RESONANT FREQUENCY **"U" SERIES CHIP**





## **"U" SERIES KITS**

#### 0402

| Kit 5000 UZ         |            |                     |            |  |  |  |
|---------------------|------------|---------------------|------------|--|--|--|
| Cap.<br>Value<br>pF | Tolerance  | Cap.<br>Value<br>pF | Tolerance  |  |  |  |
| 0.5                 |            | 4.7                 |            |  |  |  |
| 1.0                 |            | 5.6                 | B (±0.1pF) |  |  |  |
| 1.5                 |            | 6.8                 | Б (±0.1рг) |  |  |  |
| 1.8                 | P (±0.1pF) | 8.2                 |            |  |  |  |
| 2.2                 | B (±0.1pF) | 10.0                |            |  |  |  |
| 2.4                 |            | 12.0                | (±5%)      |  |  |  |
| 3.0                 |            | 15.0                | (±3%)      |  |  |  |
| 3.6                 |            |                     |            |  |  |  |

<sup>\*\*\*25</sup> each of 15 values

#### 0603

| Kit 4000 UZ         |            |                     |            |  |  |  |
|---------------------|------------|---------------------|------------|--|--|--|
| Cap.<br>Value<br>pF | Tolerance  | Cap.<br>Value<br>pF | Tolerance  |  |  |  |
| 1.0                 |            | 6.8                 |            |  |  |  |
| 1.2                 |            | 7.5                 | B (±0.1pF) |  |  |  |
| 1.5                 |            | 8.2                 |            |  |  |  |
| 1.8                 |            | 10.0                |            |  |  |  |
| 2.0                 |            | 12.0                |            |  |  |  |
| 2.4                 | D (101-F)  | 15.0                |            |  |  |  |
| 2.7                 | B (±0.1pF) | 18.0                |            |  |  |  |
| 3.0                 |            | 22.0                | J (±5%)    |  |  |  |
| 3.3                 |            | 27.0                |            |  |  |  |
| 3.9                 |            | 33.0                |            |  |  |  |
| 4.7                 |            | 39.0                |            |  |  |  |
| 5.6                 | f 0 4l     | 47.0                |            |  |  |  |

<sup>\*\*\*25</sup> each of 24 values

#### 0805

|                     | Kit 3000 UZ |                     |           |  |  |  |  |
|---------------------|-------------|---------------------|-----------|--|--|--|--|
| Cap.<br>Value<br>pF | Tolerance   | Cap.<br>Value<br>pF | Tolerance |  |  |  |  |
| 1.0                 |             | 15.0                |           |  |  |  |  |
| 1.5                 |             | 18.0                |           |  |  |  |  |
| 2.2                 |             | 22.0                |           |  |  |  |  |
| 2.4                 |             | 24.0                |           |  |  |  |  |
| 2.7                 |             | 27.0                |           |  |  |  |  |
| 3.0                 |             | 33.0                |           |  |  |  |  |
| 3.3                 | B (±0.1pF)  | 36.0                |           |  |  |  |  |
| 3.9                 |             | 39.0                | J (±5%)   |  |  |  |  |
| 4.7                 |             | 47.0                |           |  |  |  |  |
| 5.6                 |             | 56.0                |           |  |  |  |  |
| 7.5                 |             | 68.0                |           |  |  |  |  |
| 8.2                 |             | 82.0                |           |  |  |  |  |
| 9.1                 |             | 100.0               |           |  |  |  |  |
| 10.0                | J (±5%)     | 130.0               |           |  |  |  |  |
| 12.0                | 3 (±3%)     | 160.0               |           |  |  |  |  |

<sup>\*\*\*25</sup> each of 30 values

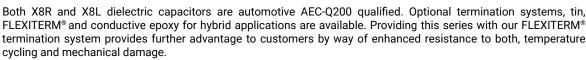
#### 1210

| Kit 3500 UZ         |            |                     |           |  |  |  |
|---------------------|------------|---------------------|-----------|--|--|--|
| Cap.<br>Value<br>pF | Tolerance  | Cap.<br>Value<br>pF | Tolerance |  |  |  |
| 2.2                 |            | 36.0                |           |  |  |  |
| 2.7                 |            | 39.0                |           |  |  |  |
| 4.7                 |            | 47.0                |           |  |  |  |
| 5.1                 | B (±0.1pF) | 51.0                |           |  |  |  |
| 6.8                 |            | 56.0                |           |  |  |  |
| 8.2                 |            | 68.0                |           |  |  |  |
| 9.1                 |            | 82.0                |           |  |  |  |
| 10.0                |            | 100.0               | J (±5%)   |  |  |  |
| 13.0                |            | 120.0               |           |  |  |  |
| 15.0                |            | 130.0               |           |  |  |  |
| 18.0                | J (±5%)    | 240.0               |           |  |  |  |
| 20.0                | 3 (±3%)    | 300.0               |           |  |  |  |
| 24.0                |            | 390.0               |           |  |  |  |
| 27.0                |            | 470.0               |           |  |  |  |
| 30.0                |            | 680.0               |           |  |  |  |

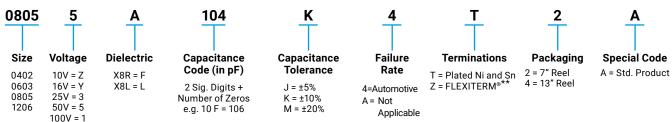
<sup>\*\*\*25</sup> each of 30 values

## X8R/X8L Dielectric

## **General Specifications**







AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to  $150^{\circ}$ C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of  $\pm 15\%$  between -55°C and +150°C. The X8L material has capacitance variation of  $\pm 15\%$  between -55°C to  $\pm 150\%$ C and +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.







NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

|     | Size     |       | 0603   |       | 0805 1206             |     | 06    |     |
|-----|----------|-------|--------|-------|-----------------------|-----|-------|-----|
|     | Solderin | ıg    | Reflow | /Wave | Reflow/Wave Reflow/Wa |     | /Wave |     |
|     |          | WVDC  | 25V    | 50V   | 25V                   | 50V | 25V   | 50V |
| 271 | Cap      | 270   | G      | G     |                       |     |       |     |
| 331 | (pF)     | 330   | G      | G     | J                     | J   |       |     |
| 471 |          | 470   | G      | G     | J                     | J   |       |     |
| 681 |          | 680   | G      | G     | J                     | 7   |       |     |
| 102 |          | 1000  | G      | G     | J                     | ٦   | J     | J   |
| 152 |          | 1500  | G      | G     | J                     | J   | J     | J   |
| 222 |          | 2200  | G      | G     | J                     | J   | J     | J   |
| 332 |          | 3300  | G      | G     | J                     | J   | J     | J   |
| 472 |          | 4700  | G      | G     | J                     | 7   | J     | J   |
| 682 |          | 6800  | G      | G     | J                     | J   | J     | J   |
| 103 | Сар      | 0.01  | G      | G     | J                     | J   | J     | J   |
| 153 | (µF)     | 0.015 | G      | G     | J                     | J   | J     | J   |
| 223 |          | 0.022 | G      | G     | J                     | J   | J     | J   |
| 333 |          | 0.033 | G      | G     | J                     | J   | J     | J   |
| 473 |          | 0.047 | G      | G     | J                     | J   | J     | J   |
| 683 |          | 0.068 | G      |       | N                     | N   | М     | М   |
| 104 |          | 0.1   |        |       | N                     | N   | М     | М   |
| 154 |          | 0.15  |        |       | N                     | N   | М     | М   |
| 224 |          | 0.22  |        |       | N                     |     | М     | М   |
| 334 |          | 0.33  |        |       |                       |     | М     | М   |
| 474 |          | 0.47  |        |       |                       |     | М     |     |
| 684 |          | 0.68  |        |       |                       |     |       |     |
| 105 |          | 1     | -      |       |                       |     |       |     |
| 155 | -        | 1.5   |        |       |                       |     |       |     |
| 225 |          | 2.2   |        |       |                       |     |       |     |
|     |          | WVDC  | 25V    | 50V   | 25V                   | 50V | 25V   | 50V |
|     | SIZE     |       | 06     | 03    | 08                    | 05  | 12    | 06  |

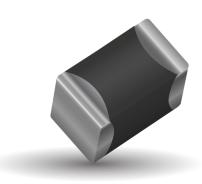
| Size           |                 | 0603            | 0805            | 1206            | 1210            |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Solderin       | g               | Reflow/Wave     | Reflow/Wave     | Reflow/Wave     | Reflow/Wave     |
| Packagir       | ng              | All Paper       | Paper//Embossed | Paper/Embossed  | Paper/Embossed  |
| (I) Length     | mm              | 1.60 ± 0.15     | 2.01 ± 0.20     | 3.20 ± 0.20     | 3.30 ± 0.4      |
|                | (in)            | (0.063 ± 0.006) | (0.079 ± 0.008) | (0.126 ± 0.008) | (0.130 ± 0.016) |
| 040 145 -141-  | mm              | 0.81 ± 0.15     | 1.25 ± 0.20     | 1.60 ± 0.20     | 2.50 ± 0.20     |
| (W) Width (in) | (0.032 ± 0.006) | (0.049 ± 0.008) | (0.063 ± 0.008) | (0.098 ± 0.008) |                 |
| (t) Terminal   | mm              | 0.35 ± 0.15     | 0.50 ± 0.25     | 0.50 ± 0.25     | 0.50 ± 0.25     |
|                | (in)            | (0.014 ± 0.006) | (0.020 ± 0.010) | (0.020 ± 0.010) | (0.020 ± 0.010) |

|            |              |       |         |                                                  |     |        | OL                                               |     |        |       |      |          |          |                                                  |
|------------|--------------|-------|---------|--------------------------------------------------|-----|--------|--------------------------------------------------|-----|--------|-------|------|----------|----------|--------------------------------------------------|
|            | Size         |       | 0603    |                                                  |     | 0805   |                                                  |     | 12     | 06    |      |          | 1210     |                                                  |
|            | Soldering    |       | eflow/W |                                                  |     | flow/W |                                                  |     | Reflow | /Wave |      | Re       | flow/W   | ave                                              |
|            | WVD          |       | 50V     | 100V                                             | 25V | 50V    | 100V                                             | 16V | 25V    | 50V   | 100V | 10V      | 50V      | 100V                                             |
| 271        | Cap 27       |       | G       |                                                  |     |        |                                                  |     |        |       |      |          |          |                                                  |
| 331        | (pF) 33      |       | G       | G                                                | J   | J      | J                                                |     |        |       |      |          |          |                                                  |
| 471        | 47           |       | G       | G                                                | J   | J      | J                                                |     |        |       |      |          |          |                                                  |
| 681        | 68           |       | G       | G                                                | J   | J      | J                                                |     |        |       |      |          |          |                                                  |
| 102        | 100          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     |      |          |          |                                                  |
| 152        | 150          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 182        | 180          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 222        | 220          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 272        | 270          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 332        | 330          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 392        | 390          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 472        | 470          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 562        | 560          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 682        | 680          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 822        | 820          |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 103        | Cap 0.0      |       | G       | G                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 123        | (μF) 0.01    |       | G       |                                                  | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 153        | 0.01         |       | G       | _                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 183        | 0.01         |       | G       |                                                  | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 223        | 0.02         |       | G       |                                                  | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 273        | 0.02         |       | G       | _                                                | J   | J      | J                                                |     | J      | J     | J    |          |          |                                                  |
| 333        | 0.03         |       | G       |                                                  | J   | J      | N                                                |     | J      | J     | J    |          |          |                                                  |
| 393        | 0.03         |       | G       |                                                  | J   | J      | N                                                |     | J      | J     | J    |          |          |                                                  |
| 473<br>563 | 0.04<br>0.05 |       | G       | -                                                | J   | J      | N<br>N                                           |     | J      | J     | J    |          |          | -                                                |
| 683        | 0.05         |       | G       |                                                  | J   | J      | N                                                |     | J      | J     | J    |          |          | -                                                |
| 823        | 0.08         |       | G       | _                                                | J   | J      | N                                                |     | J      | J     | J    |          |          | -                                                |
| 104        | 0.08         |       | G       |                                                  | J   | J      | N                                                |     | J      | J     | M    |          |          |                                                  |
| 124        | 0.1          |       | G       |                                                  | J   | N      | IN                                               |     | J      | J     | M    |          |          |                                                  |
| 154        | 0.1          |       | +       |                                                  | J   | N      | -                                                | J   | J      | J     | 0    |          |          | -                                                |
| 184        | 0.1          |       | +       | <del>                                     </del> | N   | N      |                                                  | J   | J      | J     | Q    |          |          | $\vdash$                                         |
| 224        | 0.1          |       | +       | 1                                                | N   | N      |                                                  | J   | J      | J     | Q    | <u> </u> | <u> </u> | <del>                                     </del> |
| 274        | 0.2          |       | +       | <u> </u>                                         | N   | 14     |                                                  | J   | M      | M     | Q    |          |          | $\vdash$                                         |
| 334        | 0.2          |       | +       |                                                  | N   |        | <del>                                     </del> | J   | M      | M     | Q    |          |          |                                                  |
| 394        | 0.3          |       | 1       |                                                  | N   |        |                                                  | M   | M      | P     | Q    |          |          |                                                  |
| 474        | 0.4          |       | +       | <u> </u>                                         | N   |        |                                                  | M   | M      | P     | Q    |          |          |                                                  |
| 684        | 0.6          |       | 1       | i –                                              | N   |        |                                                  | M   | M      | P     | Q    |          |          |                                                  |
| 824        | 0.8          |       | 1       | 1                                                | N   |        |                                                  | M   | M      | P     | Q    |          |          |                                                  |
| 105        |              | 1     | 1       | 1                                                | N   |        |                                                  | M   | M      | P     | Q    |          |          |                                                  |
| 155        | 1.           |       | 1       | i –                                              |     |        |                                                  | M   | M      |       |      |          |          |                                                  |
| 225        | 2.           |       | 1       |                                                  |     |        |                                                  | М   | М      |       |      |          | Z        | Z                                                |
| 475        |              |       | 1       |                                                  |     |        | 1                                                |     |        |       |      |          | Z        |                                                  |
| 106        |              | 1     |         | İ                                                |     |        |                                                  |     | İ      |       |      | Z        |          |                                                  |
|            | WVD          | C 25V | 50V     | 100V                                             | 25V | 50V    | 100V                                             | 16V | 25V    | 50V   | 100V | 10V      | 50V      | 100V                                             |
|            | SIZE         |       | 0603    |                                                  |     | 0805   |                                                  |     | 12     | 06    |      |          | 1210     |                                                  |
|            |              |       |         |                                                  |     |        |                                                  |     |        |       |      |          |          |                                                  |

| Letter    | Α        | С        | Е        | G        | J        | K       | М       | N        | Р       | Q       | Х       | Υ      | Z       |  |
|-----------|----------|----------|----------|----------|----------|---------|---------|----------|---------|---------|---------|--------|---------|--|
| Max.      | 0.33     | 0.56     | 0.71     | 0.9      | 0.94     | 1.02    | 1.27    | 1.4      | 1.52    | 1.78    | 2.29    | 2.54   | 2.79    |  |
| Thickness | (-0.013) | (-0.022) | (-0.028) | (-0.035) | (-0.037) | (-0.04) | (-0.05) | (-0.055) | (-0.06) | (-0.07) | (-0.09) | (-0.1) | (-0.11) |  |
|           |          |          | PAPER    |          |          |         |         |          | EMBO    | SSED    |         |        |         |  |



# X8R/X8L Dielectric


## **General Specifications**



#### APPLICATIONS FOR X8R AND X8L CAPACITORS

- All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- Hybrid automotive applications
  - Battery control
  - Inverter / converter circuits
  - Motor control applications
- Water pump
- Hybrid commercial applications
- Emergency circuits
- Sensors
- Temperature regulation






## **ADVANTAGES OF X8R AND X8L MLC CAPACITORS**

- · Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- Epoxy termination for hybrid available
- 100V range available

#### **ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS**

- · Samples
- **Technical Articles**
- · Application Engineering
- · Application Support

#### X8R/X8L Dielectric



# X8R/X8L Dielectric






| Parame                       | ter/Test                 | X8R/X8L Specification Limits                                                                    | Measuring (                                                                                              | Conditions                                                   |
|------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Operating Tem                | perature Range           | -55°C to +150°C                                                                                 | Temperature C                                                                                            | ycle Chamber                                                 |
| •                            | itance<br>on Factor      | Within specified tolerance<br>≤ 2.5% for ≥ 50V DC rating<br>≤ 3.5% for 25V DC and 16V DC rating | Freq.: 1.0 k<br>Voltage: 1.0                                                                             |                                                              |
| Insulation                   | Resistance               | 100,000MΩ or 1000MΩ - μF,<br>whichever is less                                                  | Charge device with rated<br>@ room tem                                                                   |                                                              |
| Dielectric                   | : Strength               | No breakdown or visual defects                                                                  | Charge device with 250<br>1-5 seconds, w/charge<br>limited to 50<br>Note: Charge device with<br>for 500V | and discharge current<br>mA (max)<br>n 150% of rated voltage |
|                              | Appearance               | No defects                                                                                      | Deflectio                                                                                                | n: 2mm                                                       |
| Resistance to Flexure        | Capacitance<br>Variation | ≤ ±12%                                                                                          | Test Time: 3                                                                                             | 0 seconds<br>7 1mm/sec                                       |
| Stresses                     | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                 |                                                                                                          |                                                              |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                                           | 90 r                                                                                                     | mm —                                                         |
| Solder                       |                          | ≥ 95% of each terminal should be covered with fresh solder                                      | Dip device in eutectic sol<br>± 0.5 se                                                                   |                                                              |
|                              | Appearance               | No defects, <25% leaching of either end terminal                                                |                                                                                                          |                                                              |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                         | Dip device in eutection                                                                                  | c solder at 260°C for                                        |
| Resistance to<br>Solder Heat | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                 | 60 seconds. Store at 24 ± 2 hours before r                                                               | room temperature for                                         |
| Solder Heat                  | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                 | properties.                                                                                              | neasuring electrical                                         |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                 |                                                                                                          |                                                              |
|                              | Appearance               | No visual defects                                                                               | Step 1: -55°C ± 2°                                                                                       | 30 ± 3 minutes                                               |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                         | Step 2: Room Temp                                                                                        | ≤ 3 minutes                                                  |
| Thermal Shock                | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                 | Step 3: +125°C ± 2°                                                                                      | 30 ± 3 minutes                                               |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                 | Step 4: Room Temp                                                                                        | ≤ 3 minutes                                                  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                 | Repeat for 5 cycles<br>24 ± 2 hours at ro                                                                |                                                              |
|                              | Appearance               | No visual defects                                                                               | _                                                                                                        |                                                              |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                        | Charge device with 1.5 r                                                                                 |                                                              |
| Load Life                    | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                               | for 1000 hou                                                                                             | /\                                                           |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                               | Remove from test chamb<br>temperature for 24 ± 2 h                                                       |                                                              |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                 |                                                                                                          |                                                              |
|                              | Appearance               | No visual defects                                                                               |                                                                                                          |                                                              |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                        | Store in a test chamber s<br>5% relative humidi                                                          |                                                              |
| Load<br>Humidity             | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                               | (+48, -0) with rated                                                                                     | l voltage applied.                                           |
| Humaity                      | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                               | Remove from chamber temperature and humidity                                                             | for 24 ± 2 hours before                                      |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                 | measu                                                                                                    | iring                                                        |

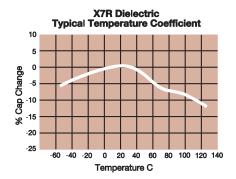
## **General Specifications**



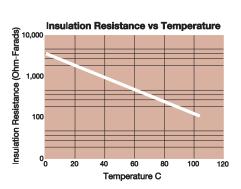


X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.

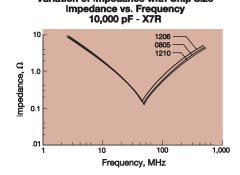
Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.


X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance

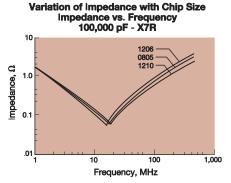
due to applied voltages are acceptable.


## PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

| 0805              | <u>5</u>                                                                                                      | <u>C</u>                     | 103 | <u>M</u>                                                                                              | <u>A</u> | <u> </u>                                                                                                | <u>2</u>                                                                        | <u>A</u>                               |
|-------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|-----|-------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| Size<br>(L" x W") | Voltage<br>4V = 4<br>6.3V = 6<br>10V = Z<br>16V = Y<br>25V = 3<br>50V = 5<br>100V = 1<br>200V = 2<br>500V = 7 | <b>Dielectric</b><br>X7R = C |     | Capacitance Tolerance J = ± 5%* K = ±10% M = ± 20%  *≤1µF only, contact factory for additional values |          | Terminations T = Plated Ni and Sn Z= FLEXITERM®**  *Optional termination  **See FLEXITERM®  X7R section | Packaging<br>2 = 7" Reel<br>4 = 13" Reel<br>Contact<br>Factory For<br>Multiples | Special<br>Code<br>A = Std.<br>Product |


Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.




△ Capacitance vs. Frequency ∆ Capacitance -30 1KHz 10 KHz 100 KHz 1 MHz 10 MHz Frequency



Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 10.00 1.000 pF 0.10 mbedance, 0 0.01 10 Frequency, MHz



Variation of Impedance with Chip Size



# **Specifications and Test Methods**



|                                         | ter/Test                 | X7R Specification Limits                                                                                                                                                 |                                                            | Conditions                                                                                                    |
|-----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                         | perature Range           | -55°C to +125°C                                                                                                                                                          | Temperature                                                | Cycle Chamber                                                                                                 |
|                                         | on Factor                | Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN | Voltage: 1.                                                | kHz ± 10%<br>0Vrms ± .2V<br>0.5Vrm @ 120Hz                                                                    |
| Insulation                              | Resistance               | 100,000ΜΩ or 1000ΜΩ - μF,<br>whichever is less                                                                                                                           |                                                            | th rated voltage for<br>om temp/humidity                                                                      |
| Dielectric                              | Strength                 | No breakdown or visual defects                                                                                                                                           | seconds, w/charge and<br>to 50 m<br>Note: Charge device wi | % of rated voltage for 1-5<br>discharge current limited<br>nA (max)<br>th 150% of rated voltage<br>/ devices. |
|                                         | Appearance               | No defects                                                                                                                                                               |                                                            |                                                                                                               |
| Resistance to                           | Capacitance<br>Variation | ≤ ±12%                                                                                                                                                                   | Deflecti                                                   | on: 2mm                                                                                                       |
| Flexure<br>Stresses                     | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                                                          | Test Time:                                                 | 30 seconds                                                                                                    |
|                                         | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                                                                                                                    |                                                            |                                                                                                               |
| Solde                                   | rability                 | ≥ 95% of each terminal should be covered with fresh solder                                                                                                               |                                                            | c solder at 230 ± 5°C<br>.5 seconds                                                                           |
|                                         | Appearance               | No defects, <25% leaching of either end terminal                                                                                                                         |                                                            |                                                                                                               |
|                                         | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                                                                  |                                                            |                                                                                                               |
| Resistance to                           | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                                                          |                                                            | solder at 260°C for 60<br>m temperature for 24 ±                                                              |
| Solder Heat                             | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                                                                          |                                                            | ng electrical properties.                                                                                     |
|                                         | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                                          |                                                            |                                                                                                               |
|                                         | Appearance               | No visual defects                                                                                                                                                        | Step 1: -55°C ± 2°                                         | 30 ± 3 minutes                                                                                                |
|                                         | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                                                                  | Step 2: Room Temp                                          | ≤ 3 minutes                                                                                                   |
| Thermal Shock                           | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                                                          | Step 3: +125°C ± 2°                                        | 30 ± 3 minutes                                                                                                |
|                                         | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                                                                          | Step 4: Room Temp                                          | ≤ 3 minutes                                                                                                   |
|                                         | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                                          |                                                            | nd measure after 24 ± 2<br>n temperature                                                                      |
|                                         | Appearance               | No visual defects                                                                                                                                                        |                                                            |                                                                                                               |
|                                         | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                                                                 | test chamber set at 125                                    | rated voltage (≤ 10V) in<br>5°C ± 2°C for 1000 hours                                                          |
|                                         | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                                                                        | · ·                                                        | 8, -0)<br>est voltage will be 2xRV                                                                            |
| Load Life                               | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                                                                        | but there are exceptions                                   | s (please contact AVX for on exceptions)                                                                      |
|                                         | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                                          | Remove from test cham                                      | ber and stabilize at room<br>hours before measuring.                                                          |
|                                         | Appearance               | No visual defects                                                                                                                                                        |                                                            |                                                                                                               |
|                                         | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                                                                 |                                                            | set at 85°C ± 2°C/ 85% ± 1000 hours (+48, -0) with                                                            |
| Load<br>Humidity                        | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                                                                        | rated volta                                                | ige applied.                                                                                                  |
| ······································· | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                                                                        | temperature and humidi                                     | er and stabilize at room<br>ty for 24 ± 2 hours before                                                        |
|                                         | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                                          | meas                                                       | suring.                                                                                                       |

# **Capacitance Range**



## **PREFERRED SIZES ARE SHADED**

| SIZE          | •     | 0101*            |     | (     | )20 <sup>-</sup> | 1     |    |     |      | 040    | 2     |    |     |    |    | 0     | 603    | 3    |     |     |     |    |    | 08     | 805   |      |     |     |     |    |    |      | 120   | )6    |     |     |     |
|---------------|-------|------------------|-----|-------|------------------|-------|----|-----|------|--------|-------|----|-----|----|----|-------|--------|------|-----|-----|-----|----|----|--------|-------|------|-----|-----|-----|----|----|------|-------|-------|-----|-----|-----|
| Solderi       | ing   | Reflow Only      |     | Ref   | low C            | nly   |    |     | Ref  | low/V  | Vave  |    |     |    |    | Reflo | ow/W   | ave  |     |     |     |    |    | Reflo  | w/Wa  | ve   |     |     |     |    |    | Re   | flow/ | Wave  | ;   |     |     |
| Packag        | ing   | Paper/Embossed   |     | Α     | II Pap           | er    |    |     | А    | II Pap | er    |    |     |    |    | All   | Pape   | er   |     |     |     |    | Pa | aper/E | mbo   | ssed |     |     |     |    |    | Pap  | er/Em | boss  | ed  |     |     |
| (1) 1         | mm    | 0.40 ± 0.02      |     | 0.6   | 0 ± 0            | .09   |    |     | 1.0  | 00 ± 0 | .10   |    |     |    |    | 1.6   | 0 ± 0. | 15   |     |     |     |    |    | 2.01   | ± 0.2 | 0    |     |     |     |    |    | 3    | .20 ± | 0.20  |     |     |     |
| (L) Length    | (in.) | (0.016 ± 0.0008) |     | (0.02 | 4 ± 0            | .004) |    |     | (0.0 | 40 ± 0 | .004) |    |     |    |    | (0.06 | 3 ± 0. | 006) |     |     |     |    | (  | 0.079  | ± 0.0 | 08)  |     |     |     |    |    | (0.  | 126 ± | 0.008 | 3)  |     |     |
| 14/) 14/: 444 | mm    | 0.20 ± 0.02      |     | 0.3   | 0 ± 0            | .09   |    |     | 0.   | 50 ± 0 | .10   |    |     |    |    | 0.8   | 1 ± 0. | 15   |     |     |     |    |    | 1.25   | ± 0.2 | 0    |     |     |     |    |    | 1    | .60 ± | 0.20  |     |     |     |
| W) Width      | (in.) | (0.008 ± 0.0008) |     | (0.01 | 1 ± 0            | .004) |    |     | (0.0 | 20 ± 0 | .004) |    |     |    |    | (0.03 | 2 ± 0. | 006) |     |     |     |    | (  | 0.049  | ± 0.0 | (80  |     |     |     |    |    | (0.0 | 063 ± | 0.008 | 3)  |     |     |
| (t) Terminal  | mm    | 0.10± 0.04       |     | 0.1   | 5 ± 0            | .05   |    |     | 0.2  | 25 ± 0 | .15   |    |     |    |    | 0.3   | 5 ± 0. | 15   |     |     |     |    |    | 0.50   | ± 0.2 | 5    |     |     |     |    |    | C    | .50 ± | 0.25  |     |     |     |
|               | (in.) | (0.004 ± 0.0016) |     | (0.00 | 6 ± 0            | .002) |    |     | (0.0 | 10 ± 0 | .006) |    |     |    |    | (0.01 | 4 ± 0. | 006) |     |     |     |    | (  | 0.020  | ± 0.0 | 10)  |     |     |     |    |    | (0.0 | 020 ± | 0.010 | J)  |     |     |
| WVDC          |       | 16               | 63  | 10    | 16               | 25    | 50 | 63  | 10   | 16     | 25    | 50 | 63  | 10 | 16 | 25    | 50     | 100  | 200 | 250 | 63  | 10 | 16 | 25     | 50    | 100  | 200 | 250 | 6.3 | 10 | 16 | 25   | 50    | 100   | 200 | 250 | 500 |
| Cap 100       | 0 101 | В                | Α   | Α     | Α                | Α     | Α  |     |      | С      | С     | С  |     |    |    |       | G      | G    | G   |     |     |    |    |        |       |      |     |     |     |    |    |      |       |       |     |     |     |
| (pF) 150      | 0 151 | В                | Α   | Α     | Α                | Α     | Α  |     |      | С      | С     | С  |     |    |    |       | G      | G    | G   |     |     |    |    |        |       |      |     |     |     |    |    |      |       |       |     |     |     |
| 220           | 0 221 | В                | Α   | Α     | Α                | Α     | Α  |     |      | С      | С     | С  |     |    |    |       | G      | G    | G   |     | Е   | Е  | Ε  | Ε      | Ε     | Е    | Е   |     |     |    |    |      |       |       |     |     |     |
| 330           | 0 331 | В                | Α   | Α     | Α                | Α     | Α  |     |      | С      | С     | С  |     |    |    |       | G      | G    | G   |     |     | J  | J  | J      | J     | J    | J   |     |     |    |    |      |       |       |     |     | K   |
| 470           | 0 471 | В                | Α   | Α     | Α                | Α     | Α  |     |      | С      | С     | С  |     |    |    |       | G      | G    | G   |     |     | J  | J  | J      | J     | J    | J   |     |     |    |    |      |       |       |     |     | K   |
| 680           | 0 681 | В                | Α   | Α     | Α                | Α     |    |     |      | С      | С     | С  |     |    |    |       | G      | G    | G   |     |     | J  | J  | J      | J     | J    | J   |     |     |    |    |      |       |       |     |     | K   |
| 1000          | 0 102 | В                | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    |       | G      | G    | G   | G   |     | J  | J  | J      | J     | J    | J   | J   |     |    |    |      |       |       |     | ۲   | K   |
| 1500          | 0 152 | В                | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    |       | G      | G    | J   | G   |     | J  | J  | J      | J     | J    | J   | J   |     | J  | J  | J    | J     | J     | J   | J   | М   |
| 2200          | 0 222 | В                | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    |       | G      | G    | J   | G   |     | J  | J  | J      | J     | J    | J   | J   |     | J  | J  | J    | J     | J     | J   | J   | М   |
| 3300          | 0 332 |                  | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    |       | G      | G    | J   | G   |     | J  | J  | J      | J     | J    | J   | J   |     | J  | J  | J    | J     | J     | J   | J   | М   |
| 4700          | 0 472 |                  | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    |       | G      | G    | J   | G   |     | J  | J  | J      | J     | J    | J   | J   |     | J  | J  | J    | J     | J     | J   | J   | М   |
| 6800          | 0 682 |                  | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    |       | G      | G    | J   | G   |     | J  | J  | J      | J     | J    | J   | J   |     | J  | J  | J    | J     | J     | J   | J   | Р   |
| Cap 0.0       | 1 103 |                  | Α   | Α     | Α                | Α     |    |     | С    | С      | С     | С  |     |    |    | G     | G      | G    | J   | G   |     | J  | J  | J      | J     | J    | J   | J   |     | J  | J  | J    | J     | J     | J   | J   | Р   |
| (μF) 0.015    | 5 153 |                  |     |       |                  |       |    |     | С    | С      | С     | С  |     |    |    | G     | G      | G    | J   |     |     | J  | J  | J      | J     | J    | J   | N   |     | J  | J  | J    | J     | J     | М   | J   | Q   |
| 0.022         | 2 223 |                  |     |       |                  |       |    |     | С    | С      | С     | С  |     |    |    | G     | G      | G    |     |     |     | J  | J  | J      | J     | J    | N   | N   |     | J  | J  | J    | J     | J     | М   | J   | Q   |
| 0.033         | 3 333 |                  |     |       |                  |       |    |     | С    | С      | С     | С  |     |    |    | G     | G      | J    |     |     |     | J  | J  | J      | J     | N    | N   | N   |     | J  | J  | J    | J     | J     | М   | J   | Q   |
| 0.047         | 7 473 |                  |     |       |                  |       |    |     | С    | С      | С     | С  |     |    | G  | G     | G      | J    |     |     |     | J  | J  | J      | J     | N    | N   | N   |     | J  | J  | J    | J     | J     | М   | М   |     |
| 0.068         | 8 683 |                  |     |       |                  |       |    |     | С    | С      | С     | С  |     |    | G  | G     | G      | J    |     |     |     | J  | J  | J      | J     | N    | N   |     |     | J  | J  | J    | J     | J     | Р   | М   |     |
| 0.1           | 1 104 |                  |     |       |                  |       |    |     | С    | С      | С     | С  |     | G  | G  | G     | G      | J    |     |     |     | J  | J  | J      | J     | N    | N   |     |     | J  | J  | J    | J     | Р     | Р   | Р   |     |
| 0.15          | 5 154 |                  |     |       |                  |       |    |     |      |        |       |    | G   | G  | G  | G     | J      |      |     |     |     | J  | J  | J      | N     | N    |     |     |     | J  | J  | J    | J     | Q     | Q   | Q   |     |
| 0.22          | 2 224 |                  |     |       |                  |       |    |     | С    | С      | С     |    | G   | G  | J  | J     | J      |      |     |     |     | J  | J  | N      | N     | N    |     |     |     | J  | J  | J    | J     | Q     | Q   | Q   |     |
| 0.33          | 3 334 |                  |     |       |                  |       |    |     |      |        |       |    | J   | J  | J  | J     | J      |      |     |     |     | N  | N  | N      | N     | N    |     |     |     | J  | J  | М    | Р     | Q     |     |     |     |
| 0.47          | 7 474 | _                |     |       |                  |       |    | С   | С    |        |       |    | J   | J  | J  | J     | J      |      |     |     |     | N  | N  | N      | N     | N    |     |     |     | М  | М  | М    | Р     | Q     |     |     |     |
| 0.68          | 8 684 |                  |     |       |                  |       |    |     |      |        |       |    | J   | J  | J  |       |        |      |     |     |     | N  | N  | N      |       |      |     |     |     | М  | М  |      |       |       |     |     |     |
| 1.0           | 0 105 |                  |     |       |                  |       |    | С   |      |        |       |    | J   | J  | J  | J     | J      |      |     |     |     | N  | N  | N      | N     |      |     |     |     | М  | М  |      |       |       |     |     |     |
| 2.2           | 2 225 |                  |     |       |                  |       |    |     |      |        |       |    | J   | J  | J  |       |        |      |     |     |     | Р  | Р  | Р      | P**   |      |     |     |     | Q  | Q  | Q    | Q     | Q**   |     |     |     |
| 4.7           | 7 475 |                  |     |       |                  |       |    |     |      |        |       |    | J   |    |    |       |        |      |     |     |     | Р  | Р  | Р      |       |      |     |     |     | Q  | Q  | Q    | Z     |       |     |     | П   |
| 10            | 0 106 |                  |     |       |                  |       |    |     |      |        |       |    |     |    |    |       |        |      |     |     | Р   | Р  | Р  |        |       |      |     |     |     | Q  | Q  | Х    |       |       |     | П   | П   |
| 22            | 2 226 |                  |     |       |                  |       |    |     |      |        |       |    |     |    |    |       |        |      |     |     |     |    |    |        |       |      |     |     | Х   | Q  | Q  |      |       |       |     |     |     |
| 47            | 7 476 |                  |     |       |                  |       |    |     |      |        |       |    |     |    |    |       |        |      |     |     |     |    |    |        |       |      |     |     |     |    |    |      |       |       |     |     |     |
| 100           | 0 107 |                  |     |       |                  |       |    |     |      |        |       |    |     |    | Ì  |       |        |      |     |     |     |    |    |        |       |      |     |     |     |    |    |      |       |       |     | П   | П   |
| WVDC          | ;     | 16               | 6.3 | 10    | 16               | 25    | 50 | 6.3 | 10   | 16     | 25    | 50 | 6.3 | 10 | 16 | 25    | 50     | 100  | 200 | 250 | 6.3 | 10 | 16 | 25     | 50    | 100  | 200 | 250 | 6.3 | 10 | 16 | 25   | 50    | 100   | 200 | 250 | 500 |
| SIZE          |       | 0101*            |     | (     | 20               | 1     |    |     |      | 040    | 2     |    |     |    |    | 0     | 603    | 3    |     |     |     |    |    | 0      | B05   |      |     |     |     |    |    |      | 120   | )6    |     |     |     |

| Letter            | А               | В               | С               | E               | G               | J               | K               | М               | N               | Р               | Q               | Х               | Y               | Z               |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Max.<br>Thickness | 0.33<br>(0.013) | 0.22<br>(0.009) | 0.56<br>(0.022) | 0.71<br>(0.028) | 0.90<br>(0.035) | 0.94<br>(0.037) | 1.02<br>(0.040) | 1.27<br>(0.050) | 1.40<br>(0.055) | 1.52<br>(0.060) | 1.78<br>(0.070) | 2.29<br>(0.090) | 2.54<br>(0.100) | 2.79<br>(0.110) |
|                   |                 |                 | PAF             | PER             |                 |                 |                 |                 |                 | EMBO            | SSED            |                 |                 |                 |

NOTE: Contact factory for non-specified capacitance values

<sup>\*</sup>EIA 01005

<sup>\*\*</sup>Contact Factory for Specifications

# **Capacitance Range**



## **PREFERRED SIZES ARE SHADED**

| Cap 100 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | SIZE     |       |    |     |      | 1210     | )                                                |         |     |          |    | 18                                                 | 312    |          |     |          | 1825     |      |     |       | 2220     |      |     |       | 2225     |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------|----|-----|------|----------|--------------------------------------------------|---------|-----|----------|----|----------------------------------------------------|--------|----------|-----|----------|----------|------|-----|-------|----------|------|-----|-------|----------|--------|
| (L) Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s         | oldering |       |    |     | Re   | flow (   | Only                                             |         |     |          |    | Reflo                                              | w Only | ,        |     | Re       | flow 0   | nly  |     | Re    | flow C   | nly  |     | Re    | flow O   | nly    |
| (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle (c) Leggle  | P         | ackaging |       |    |     | Pape | r/Emb    | ossec                                            | <u></u> |     |          |    | All Em                                             | bosse  | d        |     | All E    | Embos    | sed  |     | All I | Embos    | ssed |     | All E | mbos     | sed    |
| (i)   (ii)   (iii)     | (1) 1     |          | mm    |    |     | . 3  | 3.30 ± 0 | ).4                                              |         |     |          |    | 4.50                                               | ± 0.30 |          |     | 4.       | 50 ± 0.  | 30   |     | 5.    | .70 ± 0. | 50   |     | 5.    | 72 ± 0.2 | 25     |
| (b) Terminal (c) T | (L) Leng  | rtn      | (in.) |    |     |      |          |                                                  |         |     |          |    | `                                                  |        | 2)       |     | (0.1     | 77 ± 0.  | 012) |     | (0.2  | 24 ± 0.  | 020) |     | (0.2  | 25 ± 0.0 | )10)   |
| (θ) Terminal (σ) 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W) Widtl  | h        | mm    |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     | 1        |          |      |     |       |          |      |     |       |          |        |
| (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) Terminal (9) T |           |          | _ ` _ |    |     |      |          |                                                  |         |     |          |    | <u>`                                    </u>       |        | 3)       |     | <u> </u> |          |      |     |       |          |      |     |       |          | ,      |
| Cap   100   101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (t) Termi | inal     |       |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     | ł        |          |      |     |       |          |      |     |       |          |        |
| Cep 100 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          | ` ′   | 10 | 1.0 |      | _        | <del>,                                    </del> | 000     | F00 | 1.0      |    | <del>`                                      </del> |        | <u> </u> | F00 | ,        | 1        |      | 0.5 |       |          |      | F00 | ,     |          | ,      |
| OF   150   151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Con       |          |       | 10 | 16  | 25   | 50       | 100                                              | 200     | 500 | 16       | 25 | 50                                                 | 100    | 200      | 500 | 50       | 100      | 200  | 25  | 50    | 100      | 200  | 500 | 50    | 100      | 200    |
| 1000   102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |          |       |    |     |      |          | -                                                |         |     |          |    |                                                    |        |          |     |          |          |      |     | _     |          |      | -   | ~     | _W_      | _      |
| 330 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (pi )     |          | _     |    |     |      |          | <del>                                     </del> |         |     |          |    |                                                    |        |          |     |          | <u> </u> |      |     | _     | *        | كا-  | _   |       | ₩.       | <-     |
| 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |          | _     |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     |          |          |      |     |       | 1        |      |     |       |          | Ţ⊤ -   |
| 680   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681    |           |          |       |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     |          |          |      |     |       | (        | _    |     | _     |          |        |
| 1500   152   J   J   J   J   J   J   J   J   J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          | _     |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          | -      |
| 2200   222   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1000     | 102   |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     |          |          |      |     |       |          |      | t   |       |          |        |
| State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat   |           | 1500     | 152   | J  | J   | J    | J        | J                                                | J       | М   |          |    |                                                    |        |          |     |          |          |      |     |       | ſ        | 1    | i 1 | l     |          | 1 7    |
| Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart   Hart      |           | 2200     | 222   | J  | J   | J    | J        | J                                                | J       | М   |          |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          |        |
| 6800   682   J   J   J   J   J   J   J   J   M   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 3300     | 332   | J  | J   | J    | J        | J                                                | J       | М   |          |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          |        |
| Cap         0.01         103         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 4700     | 472   | J  | J   | J    | J        | J                                                | J       | М   |          |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          |        |
| (µF) 0.015 153 J J J J J J J J J J J J J J J J J J J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 6800     | 682   | J  | J   | J    | J        | J                                                | J       | М   |          |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          |        |
| No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.    | _         |          |       |    |     | _    | _        | J                                                | _       |     |          |    | _                                                  | _      |          |     |          | _        | _    |     |       | _        |      |     |       |          | Р      |
| No.033   333   J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (μF)      |          |       |    |     | _    | -        | _                                                | _       |     |          | _  | _                                                  | _      |          |     |          | _        | _    |     | _     | _        |      |     |       |          | Р      |
| 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |          |       |    | _   | _    | _        | _                                                | _       |     |          | _  | _                                                  | _      | _        | -   |          | _        |      |     |       | _        | _    |     | _     |          | P      |
| 0.058 683 J J J J J J J J J M Q K K K K K K K K K X M M M M M M X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |       |    |     |      | _        | _                                                | _       |     |          | _  | _                                                  | _      |          |     |          | _        |      |     |       |          |      | _   |       |          | Р      |
| No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |          |       |    |     | _    | -        | _                                                | _       | _   |          | _  | _                                                  | _      | _        |     |          | _        |      |     | _     | _        |      |     | _     |          | Р      |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |          |       |    |     | _    | _        | _                                                | _       | _   |          | -  | _                                                  | _      | _        | _   |          | _        | _    |     | _     | _        |      | _   | _     |          | P<br>P |
| 0.22 224 J J J J J J P Z N K K K P Z M M M M M X X X X X X M P N N M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          |       |    |     | _    | _        | _                                                | _       | ۸   |          | _  | _                                                  | _      |          |     |          | _        |      |     |       | _        |      |     |       |          | X      |
| 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          | _     |    | _   |      | _        |                                                  | _       |     |          |    |                                                    |        |          |     |          | _        |      |     | _     |          |      |     | _     |          | X      |
| 0.47 474 M M M M M M Q S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |       |    |     | _    | _        | -                                                |         |     |          |    | _                                                  | _      | -        |     |          | _        | 101  |     |       | _        |      |     |       |          | Х      |
| 0.68 684 M M P X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |       |    |     | -    | -        | -                                                |         |     |          |    | _                                                  | _      |          |     | -        |          |      |     | _     | _        |      |     |       |          | X      |
| 1.0 105 N N P X Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |       |    |     | _    | _        | _                                                |         |     |          | _  | _                                                  | _      |          | _   | _        | _        |      |     | _     | _        |      |     |       |          | X      |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |          |       |    |     | _    | _        | _                                                |         |     | t        |    | _                                                  | _      | Z        |     |          | Р        |      |     | _     | _        |      |     |       |          | Х      |
| 3.3 335 X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          |       |    | _   | Z    | _        | _                                                |         |     |          |    | _                                                  | _      |          |     | _        |          |      |     |       | _        |      |     | М     | Х        | Z      |
| 4.7 475 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 2.2      | 225   | Х  | Х   | Z    | Z        | Z                                                |         |     |          | Z  | Z                                                  | Z      |          |     |          |          |      |     | Х     | Х        |      |     | М     | Х        | Z      |
| 10 106 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 3.3      | 335   | Х  | Х   | Z    | Z        | Z                                                |         |     |          | Z  | Z                                                  | Z      |          |     |          |          |      |     | Х     | Z        |      |     |       |          |        |
| 22 226 <b>Z Z Z</b> S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 4.7      | 475   | Z  | Z   | Z    | Z        | Z                                                |         |     |          | Z  | Z                                                  |        |          |     |          |          |      |     | Z     | Z        |      |     |       |          |        |
| 47 476 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |          | 106   |    |     |      | Z        |                                                  |         |     | Z        |    |                                                    |        |          |     |          |          |      |     | Z     | Z        |      |     |       |          |        |
| 100 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |       |    | Z   | Z    |          | _                                                |         |     |          |    |                                                    |        |          |     |          | <u> </u> |      | Z   |       |          |      |     |       |          |        |
| WVDC 10 16 25 50 100 200 500 16 25 50 100 200 500 50 100 200 500 50 100 200 25 50 100 200 500 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |       | Z  |     |      |          |                                                  |         |     | <u> </u> |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 107   |    |     |      |          | 4                                                |         |     |          | -  |                                                    | 400    | 967      |     |          | 4        |      |     |       | 2        |      |     |       |          | -      |
| SIZE   1210   1812   1825   2220   2225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |       | 10 | 16  | 25   |          |                                                  | 200     | 500 | 16       | 25 |                                                    |        | 200      | 500 | 50       |          | 200  | 25  | 50    |          |      | 500 | 50    | 100      | 200    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | SIZE     |       |    |     |      | 1210     | )                                                |         |     |          |    | 18                                                 | 312    |          |     |          | 1825     |      |     |       | 2220     |      |     |       | 2225     |        |
| Letter A B C E G J K M N P O X Y Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          |       |    |     |      |          |                                                  |         |     |          |    |                                                    |        |          |     |          |          |      |     |       |          |      |     |       |          |        |

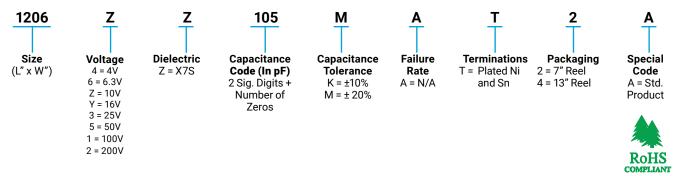
| Letter            | Α               | В               | С               | E               | G               | J               | K               | М               | N               | Р               | Q               | Х               | Υ               | Z               |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Max.<br>Thickness | 0.33<br>(0.013) | 0.22<br>(0.009) | 0.56<br>(0.022) | 0.71<br>(0.028) | 0.90<br>(0.035) | 0.94<br>(0.037) | 1.02<br>(0.040) | 1.27<br>(0.050) | 1.40<br>(0.055) | 1.52<br>(0.060) | 1.78<br>(0.070) | 2.29<br>(0.090) | 2.54<br>(0.100) | 2.79<br>(0.110) |
|                   |                 |                 | PA              | PER             |                 |                 |                 |                 |                 | EMBO            | SSED            |                 |                 |                 |

NOTE: Contact factory for non-specified capacitance values

## **General Specifications**

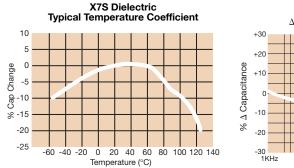


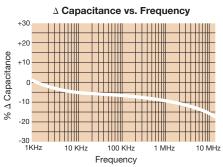


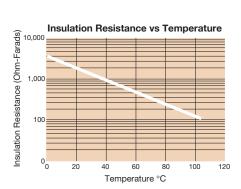

#### **GENERAL DESCRIPTION**

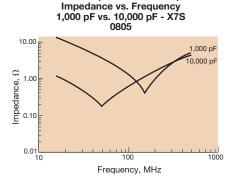
X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitance s within  $\pm 22\%$  from  $-55^{\circ}$ C to  $\pm 125^{\circ}$ C. This capacitance change is non-linear.

Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.

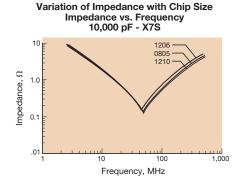

X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

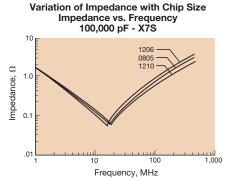

#### PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)





NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

#### TYPICAL ELECTRICAL CHARACTERISTICS








Variation of Impedance with Cap Value





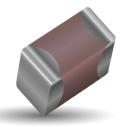




| Parame                       | ter/Test                 | X7S Specification Limits                                                                                                | Measuring                                                        | Conditions               |
|------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|
|                              | perature Range           | -55°C to +125°C                                                                                                         | Temperature C                                                    | ycle Chamber             |
| Capac                        | itance                   | Within specified tolerance                                                                                              | _                                                                |                          |
| Dissipati                    | on Factor                | ≤ 5.0% for ≥ 100V DC rating<br>≤ 5.0% for ≥ 25V DC rating<br>≤ 10.0% for ≥ 10V DC rating<br>≤ 10.0% for ≤ 10V DC rating | Freq.: 1.0 k<br>Voltage: 1.0<br>For Cap > 10 μF, 0               | Vrms ± .2V               |
| Insulation                   | Resistance               | 100,000MΩ or 1000MΩ - μF,<br>whichever is less                                                                          | Charge device with<br>120 ± 5 secs @ roo                         |                          |
| Dielectric                   | Strength                 | No breakdown or visual defects                                                                                          | Charge device with 250<br>1-5 seconds, w/charge<br>limited to 50 | and discharge current    |
|                              | Appearance               | No defects                                                                                                              | Deflection                                                       |                          |
| Resistance to                | Capacitance<br>Variation | ≤ ±12%                                                                                                                  | Test Time: 3                                                     | 30 seconds<br>7 1mm/sec  |
| Flexure<br>Stresses          | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                         |                                                                  |                          |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                                                                   | 90 1                                                             | mm —                     |
| Solder                       | rability                 | ≥ 95% of each terminal should be covered with fresh solder                                                              | Dip device in eutection for 5.0 ± 0.                             |                          |
|                              | Appearance               | No defects, <25% leaching of either end terminal                                                                        |                                                                  |                          |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                 |                                                                  |                          |
| Resistance to<br>Solder Heat | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                         | Dip device in eutectic s<br>seconds. Store at room               | temperature for 24 ± 2   |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                         | hours before measuring                                           | g electrical properties. |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                         |                                                                  |                          |
|                              | Appearance               | No visual defects                                                                                                       | Step 1: -55°C ± 2°                                               | 30 ± 3 minutes           |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                 | Step 2: Room Temp                                                | ≤ 3 minutes              |
| Thermal Shock                | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                         | Step 3: +125°C ± 2°                                              | 30 ± 3 minutes           |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                         | Step 4: Room Temp                                                | ≤ 3 minutes              |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                         | Repeat for 5 cycles<br>24 ± 2 hours at ro                        |                          |
|                              | Appearance               | No visual defects                                                                                                       |                                                                  |                          |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                | Charge device with 1.5 i                                         |                          |
| Load Life                    | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                       | for 1000 hou                                                     |                          |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                       | Remove from test chamb<br>temperature for 24 ± 2 h               |                          |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                         |                                                                  |                          |
|                              | Appearance               | No visual defects                                                                                                       |                                                                  |                          |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                | Store in a test chamber s<br>5% relative humidi                  |                          |
| Load<br>Humidity             | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                       | (+48, -0) with rated                                             |                          |
| numany                       | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                       | Remove from chamber<br>temperature an                            | d humidity for           |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                         | 24 ± 2 hours bef                                                 | ore measuring.           |

# **Capacitance Range**

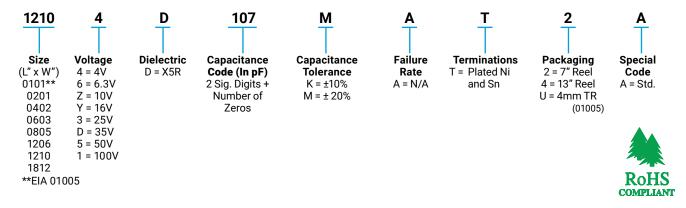



## **PREFERRED SIZES ARE SHADED**

| SIZE       |              | 0402                  |         | 0603                        |         | 0805                       |         | 1206      |               | 121                | 0       |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|------------|--------------|-----------------------|---------|-----------------------------|---------|----------------------------|---------|-----------|---------------|--------------------|---------|---|---------|-----|-----|-----|--------------------------------------------------|-------|-------|-------|--------------------------------------------------|-------|-------|-------|
| Solder     | ing          | Reflow/Wav            | е       | Reflow/Wav                  | e Re    | eflow/Wave                 | Re      | flow/Wa   | ave           | Reflow             | Only    |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| Packag     | jing         | All Paper             |         | All Paper                   |         | er/Embossed                |         | er/Embo   |               | Paper/Em           |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| (L) Length | mm<br>(in)   | 1.00 ±                |         | 1.60 ± 0.15                 |         | 2.01 ± 0.20                |         | .20 ± 0.2 |               | 3.20 ±             |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | (in.)<br>mm  | (0.040 ± 0.<br>0.50 ± |         | 0.063 ± 0.00<br>0.81 ± 0.15 |         | 079 ± 0.008)<br>.25 ± 0.20 |         | 26 ± 0.0  |               | (0.126 ±<br>2.50 ± |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| W) Width   | (in.)        | (0.020 ± 0.           |         | $(0.032 \pm 0.00$           |         | 049 ± 0.008)               |         | 0.0 ± 0.0 |               | (0.098 ±           |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| (t)        | mm           | 0.25 ±                |         | 0.35 ± 0.15                 |         | 0.50 ± 0.25                |         | .50 ± 0.2 |               | 0.50 ±             |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| Terminal   | (in.)        | (0.010 ± 0.           | .006)   | (0.014 ± 0.00               | 6) (0.  | 020 ± 0.010)               |         | 20 ± 0.0  |               | (0.020 ±           |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| Сар        | WVDC<br>100  | 6.3                   |         | 6.3                         |         | 4                          | 10      | 50        | 100           | 6.3                |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| (pF)       | 150          |                       |         |                             |         |                            |         | l         | _             | · 💉                |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| ( )        | 220          |                       |         |                             |         |                            |         | _L        |               | $\sim$             | >       |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 330          |                       |         |                             |         |                            | ~       |           | _             | , )                | ÎT      |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 470<br>680   |                       |         |                             |         |                            |         |           |               | 1                  | •       |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 1000         |                       |         |                             |         |                            | +       |           | $\overline{}$ |                    | _       |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 1500         |                       |         |                             |         |                            |         |           | a t           | *                  |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 2200         |                       |         |                             |         |                            |         |           | , ,           |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 3300         |                       |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 4700<br>6800 |                       |         |                             |         |                            |         |           |               |                    |         | ı |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| Сар        | 0.010        |                       |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| (μF)       | 0.015        |                       |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.022        |                       |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.033        | С                     |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.047        | С                     |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.068        | C<br>C                |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.15         | U                     |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.22         |                       |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.33         |                       |         | G                           |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 0.47<br>0.68 |                       |         | G<br>G                      |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 1.0          |                       |         | G                           |         |                            | +       |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 1.5          |                       |         | J                           |         | N                          |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 2.2          |                       |         |                             |         | N                          |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 3.3          |                       |         |                             |         | N                          |         |           | 04            |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 4.7<br>10    |                       |         |                             |         | N                          | Q       |           | Q*            |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 22           |                       |         |                             |         |                            | +       |           |               | Z                  |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 47           |                       |         |                             |         |                            |         |           |               | _                  |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | 100          |                       |         |                             |         |                            |         |           |               |                    |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | WVDC         | 6.3                   |         | 6.3                         |         | 4                          | 10      | 50        | 100           | 6.3                |         |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            | SIZE         | 0402                  |         | 0603                        |         | 0805                       |         | 1206      |               | 121                | 0       |   |         |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
| Letter     | Α            | С                     | Е       | G                           | J       | К                          | М       |           | N             | Р                  | Q       |   | Х       | X Y | Х У | Х У | XY                                               | X Y Z | X Y Z | X Y Z | X Y Z                                            | X Y Z | X Y Z | X Y Z |
| Max.       | 0.33         | 0.56                  | 0.71    | 0.90                        | 0.94    | 1.02                       | 1.27    |           | .40           | 1.52               | 1.90    |   | 2.29    |     |     |     | <del>                                     </del> |       |       |       | <del>                                     </del> |       |       |       |
| Thickness  | (0.013)      | (0.022)               | (0.028) | (0.035)                     | (0.037) | (0.040)                    | (0.050) |           | 055)          | (0.060)            | (0.075) |   | (0.090) |     |     |     |                                                  |       |       |       |                                                  |       |       |       |
|            |              |                       | PAPER   |                             |         |                            |         |           |               | EMBC               | SSED    |   |         |     |     |     |                                                  |       |       |       |                                                  | -     |       |       |

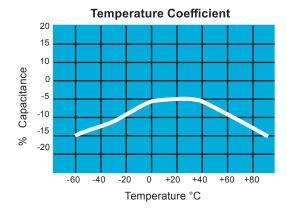
<sup>\*</sup>Contact Factory for Specifications

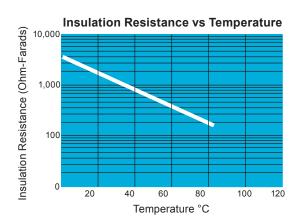
# **General Specifications**






#### **GENERAL DESCRIPTION**


- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)


## PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)



NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

#### TYPICAL ELECTRICAL CHARACTERISTICS





# **Specifications and Test Methods**



| Parame                       | ter/Test                 | X5R Specification Limits                                                                                                                 | Measuring C                                                         | conditions               |
|------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|
| Operating Tem                | perature Range           | -55°C to +85°C                                                                                                                           | Temperature Cy                                                      | cle Chamber              |
| Capac                        | itance                   | Within specified tolerance                                                                                                               |                                                                     |                          |
| Dissipatio                   | on Factor                | ≤ 2.5% for ≥ 50V DC rating<br>≤ 12.5% for 25V, 35V DC rating<br>≤ 12.5% Max. for 16V DC rating and lower<br>Contact Factory for DF by PN | Freq.: 1.0 kł<br>Voltage: 1.0\<br>For Cap > 10 μF, 0.9              | /rms ± .2V               |
| Insulation I                 | Resistance               | 10,000MΩ or 500MΩ - μF,<br>whichever is less                                                                                             | Charge device with rate secs @ room te                              |                          |
| Dielectric                   | Strength                 | No breakdown or visual defects                                                                                                           | Charge device with 250°<br>1-5 seconds, w/charge a<br>limited to 50 | and discharge current    |
|                              | Appearance               | No defects                                                                                                                               | Deflection                                                          | n: 2mm                   |
| Resistance to                | Capacitance<br>Variation | ≤ ±12%                                                                                                                                   | Test Time: 30                                                       |                          |
| Flexure<br>Stresses          | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                          | V                                                                   |                          |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                                                                                    | 90 m                                                                | ım ————                  |
| Solder                       | ability                  | ≥ 95% of each terminal should be covered with fresh solder                                                                               | Dip device in eutectic solo<br>± 0.5 sec                            |                          |
|                              | Appearance               | No defects, <25% leaching of either end terminal                                                                                         |                                                                     |                          |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                                  |                                                                     |                          |
| Resistance to<br>Solder Heat | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                          | Dip device in eutectic<br>60seconds. Store at roon                  | n temperature for 24 ±   |
| Coluct Float                 | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                                          | 2hours before measuring                                             | g electrical properties. |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                          |                                                                     |                          |
|                              | Appearance               | No visual defects                                                                                                                        | Step 1: -55°C ± 2°                                                  | 30 ± 3 minutes           |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                                  | Step 2: Room Temp                                                   | ≤ 3 minutes              |
| Thermal Shock                | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                          | Step 3: +85°C ± 2°                                                  | 30 ± 3 minutes           |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                                          | Step 4: Room Temp                                                   | ≤ 3 minutes              |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                          | Repeat for 5 cycles and hours at room                               |                          |
|                              | Appearance               | No visual defects                                                                                                                        | Charge device with 1.5X                                             | rated voltage in test    |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                                 | chamber set at 85°C ± (+48,                                         | 2°C for 1000 hours       |
| Load Life                    | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                                        | Note: Contact factory for                                           |                          |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                                        | part numbers that are to voltage                                    |                          |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                          | Remove from test char room temperature                              |                          |
|                              | Appearance               | No visual defects                                                                                                                        |                                                                     |                          |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                                 | Store in a test chamber s<br>± 5% relative humidity fo              |                          |
| Load                         | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                                        | with rated volta                                                    |                          |
| Humidity                     | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                                        | Remove from chamber temperature and                                 | d humidity for           |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                          | 24 ± 2 hours befo                                                   | ne measumg.              |

# **Capacitance Range**



## **PREFERRED SIZES ARE SHADED**

| Case Size              |            | 01       | 01*     |   |       | 0201    |       |                                 |   |    | 04      | 02     |          |    |   |    |       | 0603    |        |        |        |   |    |       | 0805   |          |    |           |
|------------------------|------------|----------|---------|---|-------|---------|-------|---------------------------------|---|----|---------|--------|----------|----|---|----|-------|---------|--------|--------|--------|---|----|-------|--------|----------|----|-----------|
| Soldering              |            | Reflo    | v Onlv  |   | Re    | flow C  | nlv   |                                 |   |    | Reflow  | //Wav  | ———<br>е |    |   |    | Refl  | ow/W    | feve   |        |        |   |    | Ref   | low/W  | feve     |    |           |
| Packaging              |            | Paper/Er |         |   |       | II Pap  |       |                                 |   |    |         | aper   | -        |    |   |    |       | II Pap  |        |        |        |   |    | Pape  | r/Emb  | ossed    |    |           |
| /1 \ 1                 | mm         | 0.40     | ± 0.02  |   | 0.0   | 60 ± 0. | .09   |                                 |   |    | 1.00 :  | ± 0.15 |          |    |   |    | 1.6   | 50 ± 0. | .15    |        |        |   |    | 2.    | 01 ± 0 | .20      |    |           |
| (L) Length             | (in.)      | (0.016 ± | (8000.0 |   | (0.0  | 24 ± 0. | .004) |                                 |   | (( | 0.040 : | ± 0.00 | 6)       |    |   |    | (0.06 | 53 ± 0. | .006)  |        |        |   |    | (0.0) | 79 ± 0 | .008)    |    |           |
| \A/\ \A/: - + -        | mm         | 0.20 :   | ± 0.02  |   | 0.3   | 30 ± 0. | .09   |                                 |   |    | 0.50 :  | ± 0.15 |          |    |   |    | 0.0   | 31 ± 0. | .15    |        |        |   |    | 1.:   | 25 ± 0 | .20      |    |           |
| W) Width               | (in.)      | (0.008 ± | (8000.0 |   |       | 11 ± 0  |       |                                 |   |    | 0.020 : |        |          |    |   |    | (0.03 | 32 ± 0. | .006)  |        |        |   |    |       | 49 ± 0 |          |    |           |
| (t) Terminal           | mm         |          | ± 0.04  |   | 0.    | 15 ± 0  | .05   | $0.25 \pm 0.15$ $0.35 \pm 0.15$ |   |    |         |        |          |    |   |    |       |         | 0.     | 50 ± 0 | .25    |   |    |       |        |          |    |           |
| (t) Terminal           | (in.)      | (0.004 ± | 0.0016) |   | (0.0) | 06 ± 0  | .002) |                                 |   | (( | 0.010 : | ± 0.00 | 6)       |    |   |    | (0.0) | 14 ± 0. | .006)  |        |        |   |    | (0.0) | 20 ± 0 | .010)    |    |           |
| Voltage:               |            | 63       | 16      | 4 | 63    | 10      | 16    | 25                              | 4 | 63 | 10      | 16     | 25       | 50 | 4 | 63 | 10    | 16      | 25     | 35     | 50     | 4 | 63 | 10    | 16     | 25       | 35 | 50        |
| Cap (pF) 100           | 101        |          | В       |   |       |         |       | Α                               |   |    |         |        |          |    |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 150                    | 151        |          | В       |   |       |         |       | Α                               |   |    |         |        |          |    |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 220                    | 221        |          | В       |   |       |         |       | Α                               |   |    |         |        |          | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 330                    | 331        |          | В       |   |       |         |       | Α                               |   |    |         |        |          | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 470                    | 471        |          | В       |   |       |         |       | Α                               |   |    |         |        |          | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 680                    | 681        |          | В       |   |       |         |       | Α                               |   |    |         |        |          | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 1000                   | 102        |          | В       |   |       |         | Α     | Α                               |   |    |         |        |          | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 1500                   | 152        | В        | В       |   | -     |         | Α     | Α                               |   |    |         |        | ļ        | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 2200                   | 222        | В        | В       |   | -     | Α       | Α     | Α                               |   |    |         |        | -        | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 3300                   | 332        | В        | В       |   | -     | Α       | Α     | Α                               |   |    |         |        |          | С  |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 4700                   | 472        | В        | В       |   | -     | Α       | A     | A                               |   |    |         |        | С        |    |   |    |       |         |        |        | G      |   |    |       |        |          |    | <b></b> - |
| 6800                   | 682        | B<br>B   | B<br>B  |   | -     | Α       | A     | A                               |   | -  |         |        | C        |    |   |    |       |         | _      | _      | G      |   |    |       |        |          |    | -         |
| Cap (μF) 0.01<br>0.015 | 103<br>150 | В        | В       |   | -     | Α       | Α     | Α                               |   |    |         |        | C        |    |   |    |       |         | G<br>G | G<br>G | G<br>G |   |    |       |        |          |    | $\vdash$  |
| 0.013                  | 223        | В        |         | _ | Α     | Α       | Α     | Α                               |   | -  |         | С      | C        |    |   | _  |       |         | G      | G      | G      |   |    |       |        |          |    | N         |
| 0.022                  | 333        | В        |         |   | А     | A       | A     | А                               |   | -  |         | C      | U        |    |   |    |       |         | G      | G      | G      |   |    |       |        |          |    | N         |
| 0.033                  | 473        | В        |         |   | Α     | Α       | Α     | Α                               |   |    |         | C      | С        |    |   |    |       |         | G      | G      | G      |   |    |       |        |          |    | N         |
| 0.068                  | 689        | В        |         |   |       |         |       |                                 |   |    |         | C      |          |    |   |    |       |         | G      | -      | G      |   |    |       |        |          |    | N         |
| 0.000                  | 104        | В        |         |   | Α     | Α       | Α     | Α                               |   |    | С       | C      | С        | С  |   |    |       |         | G      | G      | G      |   |    |       |        | N        | N  | N         |
| 0.15                   | 154        |          |         |   | -/-   | - / (   | - / ( | - / (                           |   |    |         |        |          |    |   |    |       |         | G      |        |        |   |    |       |        | N        | N  |           |
| 0.22                   | 224        | В        |         | Α | Α     | Α       |       |                                 |   | С  | С       | С      | С        | С  |   |    |       | G       | G      |        |        |   |    |       |        | N        | N  | N         |
| 0.33                   | 334        |          |         |   |       |         |       |                                 |   |    |         |        |          |    |   |    |       | G       | G      |        |        |   |    |       |        | N        |    |           |
| 0.47                   | 474        | В        |         | Α | Α     |         |       |                                 | С | С  | С       | С      | С        | Е  |   |    |       | G       | J      |        |        |   |    |       |        | N        | Р  | Р         |
| 0.68                   | 684        |          |         |   |       |         |       |                                 |   |    |         |        |          |    |   |    |       | G       |        |        |        |   |    |       |        | N        |    |           |
| 1.0                    | 105        |          |         | Α | Α     | С       | С     |                                 | С | С  | С       | С      | С        | Е  | G | G  | G     | G       | J      | G      | G      |   |    |       | N      | N        | Р  | Р         |
| 1.5                    | 155        |          |         |   |       |         |       |                                 |   |    |         |        |          |    |   |    |       |         |        |        |        |   |    |       |        |          |    |           |
| 2.2                    | 225        |          |         | С | С     | С       |       |                                 | С | С  | С       | С      | С        |    | G | G  | J     | J       | J      | K      | K      |   |    | N     | N      | Р        | Р  | Р         |
| 3.3                    | 335        |          |         |   |       |         |       |                                 |   |    |         |        |          |    | J | J  | J     |         |        |        |        |   | N  | N     |        |          |    |           |
| 4.7                    | 475        |          |         |   |       |         |       |                                 | Е | Е  | Е       | Е      |          |    | J | J  | J     | G       | G      |        |        | N | Р  | J     | N      | N        | Р  | Р         |
| 10                     | 106        |          |         |   |       |         |       |                                 | Е | Е  | Е       |        |          |    | K | J  | J     | J       |        |        |        | Р | Р  | Р     | Р      | Р        |    |           |
| 22                     | 226        |          |         |   |       |         |       |                                 | Е | Е  |         |        |          |    | K | K  | K     |         |        |        |        | Р | Р  | Р     | Р      | Р        |    | <u> </u>  |
| 47                     | 476        |          |         |   |       |         |       |                                 |   |    |         |        |          |    | K | K  |       |         |        |        |        | Р | Р  | Р     |        |          |    | Ļ         |
| 100                    | 107        |          |         |   |       |         |       |                                 |   |    |         |        |          |    |   |    |       |         |        |        |        |   |    |       |        | <u> </u> |    |           |
| Voltage:               |            | 63       | 16      | 4 | 63    | 10      | 16    | 25                              | 4 | 63 | 10      | 16     | 25       | 50 | 4 | 63 | 10    | 16      | 25     | 35     | 50     |   |    |       |        | 50       |    |           |
| Case Size              |            | 01       | 01*     |   |       | 0201    |       |                                 |   |    | 04      | 02     | 2 0603   |    |   |    |       |         | 0805   |        |        |   |    |       |        |          |    |           |

| Letter    | Α       | В       | С       | Е       | G       |         | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.22    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.009) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAF     | PER     |         |         |         |         |         | EMBC    | SSED    |         |         |         |

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values \*EIA 01005





#### PREFERRED SIZES ARE SHADED

| Cas      | e Size       |             |   |     | 1      | 206         |       |    |    |        |        |        | 1210              |       |      |     |   |      |       | 1812              |      |    |      |
|----------|--------------|-------------|---|-----|--------|-------------|-------|----|----|--------|--------|--------|-------------------|-------|------|-----|---|------|-------|-------------------|------|----|------|
| Sol      | dering       |             |   |     | Reflo  | w/W         | ave   |    |    |        |        | Re     | flow C            | nly   |      |     |   |      | Re    | flow C            | nly  |    |      |
| Pac      | kaging       |             |   |     | Paper/ | Emb         | ossec | i  |    |        |        | Pape   | r/Emb             | ossec | l    |     |   |      | All I | Embos             | ssed |    |      |
| (L) Len  | ath          | mm          |   |     |        | ) ± 0.      |       |    |    |        |        |        | 20 ± 0.           |       |      |     |   |      |       | 50 ± 0            |      |    |      |
| (=) ==:  |              | (in.)       |   |     | (0.126 |             |       |    |    |        |        |        | 26 ± 0.           |       |      |     |   |      |       | 77 ± 0            |      |    |      |
| W) Wid   | ith          | mm<br>(in.) |   |     | (0.06  | $0 \pm 0$ . |       |    |    |        |        |        | 50 ± 0.<br>98 ± 0 |       |      |     |   |      |       | 20 ± 0<br>26 ± 0. |      |    |      |
|          |              | mm          |   |     |        | ) ± 0.      |       |    |    |        |        |        | 50 ± 0.           |       |      |     |   |      |       | 61 ± 0.           |      |    |      |
| (t) Term | inal         | (in.)       |   |     | (0.020 |             |       |    |    |        |        |        | 20 ± 0.           |       |      |     |   |      |       | 24 ± 0            |      |    |      |
| Vo       | ltage:       | ` '         | 4 | 6.3 | 10     | 16          | 25    | 35 | 50 | 4      | 6.3    | 10     | 16                | 25    | 35   | 50  | 4 | 6.3  | 10    | 16                | 25   | 35 | 50   |
| Cap (pF) | 100          | 101         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
| , ,,     | 150          | 151         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 220          | 221         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 330          | 331         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 470          | 471         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 680          | 681         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 1000         | 102         |   |     |        |             |       |    |    | 1      |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 1500         | 152         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 2200         | 222         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 3300         | 332         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 4700         | 472         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
| Can (uE) | 6800<br>0.01 | 682<br>103  |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
| Cap (µF) | 0.015        | 150         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     | _ |      |       |                   |      |    |      |
|          | 0.013        | 223         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     | - |      |       |                   |      |    |      |
|          | 0.022        | 333         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.047        | 473         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.068        | 689         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.1          | 104         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.15         | 154         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.22         | 224         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.33         | 334         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 0.47         | 474         |   |     |        |             | Q     | Q  |    |        |        |        |                   |       | Х    | Χ   |   |      |       |                   |      |    |      |
|          | 0.68         | 684         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 1.0          | 105         |   |     |        |             | Q     | Q  | Q  |        |        |        |                   | Χ     | Х    | Χ   |   |      |       |                   |      |    |      |
|          | 1.5          | 155         |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
|          | 2.2          | 225         |   |     | Q      | Q           | Q     | Q  | Q  |        |        |        |                   | Χ     | Z    | Z   |   |      |       |                   |      |    |      |
|          | 3.3          | 335         | V | Q   | Q      | V           |       |    |    |        |        | -      | -                 | -     | _    | -   |   |      |       |                   |      |    |      |
|          | 4.7          | 475         | X | X   | X      | X           | X     | X  | X  |        | V      | Z      | Z                 | Z     | Z    | Z   |   |      |       |                   | 7    |    |      |
|          | 10<br>22     | 106         |   | X   | X      | X           | X     | Х  | Х  | 7      | X<br>Z | X<br>Z | Z                 | Z     |      | Z   | 7 | 7    | 7     | 7                 | Z    |    |      |
|          | <u> </u>     | 226<br>476  | X | X   | X      | X           | Χ     |    |    | Z<br>Z | Z      | Z      | Z                 | Z     |      |     | Z | Z    | Z     | Z                 |      |    |      |
|          | 100          | 107         | X | X   | ^      | ^           |       |    |    | Z      | Z      |        |                   |       |      |     |   |      |       |                   |      |    |      |
| Vo       | Itage:       | 107         | 4 | 6.3 | 10     | 16          | 25    | 35 | 50 | 4      | 6.3    | 10     | 16                | 25    | 35   | 50  | 4 | 6.3  | 10    | 16                | 25   | 35 | 50   |
|          | e Size       |             | • | J.J |        | 206         |       |    |    | •      | 0.0    |        | 1210              |       | ,    | ,   | • |      |       | 1812              |      |    |      |
|          |              |             |   |     |        |             |       |    |    |        |        |        |                   |       |      |     |   |      |       |                   |      |    |      |
| Lette    | ar .         | А           |   | В   | С      |             | Е     |    | 3  | J      | l      | (      | М                 |       | N    | Р   |   | Q    |       | х                 | Υ    |    | Z    |
| Max      |              | 0.33        |   | .22 |        |             |       |    | -  |        | 1.0    | -      |                   |       |      | 1.5 | - | 1.78 | -     | 29                | 2.54 |    | 2.79 |
| IVIAX    | •            | 0.33        | 0 | .ZZ | 0.56   |             | 0.71  | U. | 90 | 0.94   | 1.0    | UZ     | 1.27              |       | 1.40 | 1.5 | 2 | 1./8 | 2.    | .29               | 2.54 | 2  | /9   |

**PAPER** PAPER and EMBOSSED available for 01005

(0.028)

(0.035)

(0.037)

(0.040)

(0.050)

(0.055)

(0.060)

**EMBOSSED** 

(0.070)

(0.090)

(0.100)

(0.110)

(0.022)

NOTE: Contact factory for non-specified capacitance values \*EIA 01005

(0.013)

**Thickness** 

(0.009)

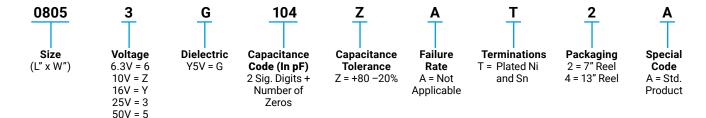


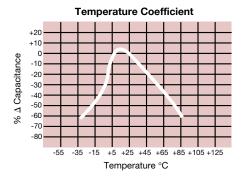
# **Y5V Dielectric**

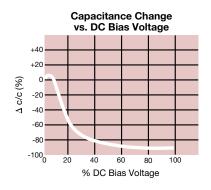
# **General Specifications**

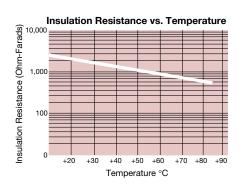


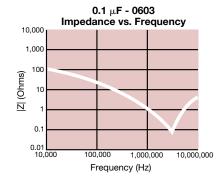


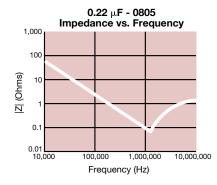

#### **GENERAL DESCRIPTION**

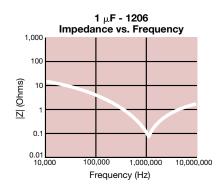

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C.


These characteristics make Y5V ideal for decoupling applications within limited temperature range.





## PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)














# **Y5V Dielectric**

# **Specifications and Test Methods**



| Parame                       | ter/Test                 | Y5V Specification Limits                                                                                          | Measuring                                                                   | Conditions                   |
|------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|
| Operating Tem                | perature Range           | -30°C to +85°C                                                                                                    | Temperature C                                                               | ycle Chamber                 |
| Capac                        | itance                   | Within specified tolerance                                                                                        |                                                                             |                              |
| Dissipati                    | on Factor                | ≤ 5.0% for ≥ 50V DC rating<br>≤ 7.0% for 25V DC rating<br>≤ 9.0% for 16V DC rating<br>≤ 12.5% for ≤ 10V DC rating | Freq.: 1.0 k<br>Voltage: 1.0<br>For Cap > 10 μF, 0                          | Vrms ± .2V<br>.5Vrms @ 120Hz |
| Insulation                   | Resistance               | 10,000MΩ or 500MΩ - μF,<br>whichever is less                                                                      | Charge device with rated<br>@ room tem                                      |                              |
| Dielectric                   | Strength                 | No breakdown or visual defects                                                                                    | Charge device with 250<br>1-5 seconds, w/charge<br>limited to 50            | and discharge current        |
|                              | Appearance               | No defects                                                                                                        | Deflection                                                                  |                              |
| Resistance to                | Capacitance<br>Variation | ≤ ±30%                                                                                                            | Test Time: 3                                                                | 30 seconds<br>7 1mm/sec      |
| Flexure<br>Stresses          | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                   |                                                                             |                              |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.1                                                                                             | 90 1                                                                        | mm —                         |
| Solder                       | ability                  | ≥ 95% of each terminal should be covered with fresh solder                                                        | Dip device in eutection for 5.0 ± 0.                                        |                              |
|                              | Appearance               | No defects, <25% leaching of either end terminal                                                                  |                                                                             |                              |
|                              | Capacitance<br>Variation | ≤ ±20%                                                                                                            |                                                                             |                              |
| Resistance to<br>Solder Heat | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                   | Dip device in eutectic s<br>seconds. Store at room<br>hours before measurin | temperature for 24 ± 2       |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                   | Hours before measurin                                                       | g electrical properties.     |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                   |                                                                             |                              |
|                              | Appearance               | No visual defects                                                                                                 | Step 1: -30°C ± 2°                                                          | 30 ± 3 minutes               |
|                              | Capacitance<br>Variation | ≤ ±20%                                                                                                            | Step 2: Room Temp                                                           | ≤ 3 minutes                  |
| Thermal Shock                | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                   | Step 3: +85°C ± 2°                                                          | 30 ± 3 minutes               |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                   | Step 4: Room Temp                                                           | ≤ 3 minutes                  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                   | Repeat for 5 cycles<br>24 ±2 hours at ro                                    |                              |
|                              | Appearance               | No visual defects                                                                                                 | _                                                                           |                              |
|                              | Capacitance<br>Variation | ≤ ±30%                                                                                                            | Charge device with twice chamber set a                                      |                              |
| Load Life                    | Dissipation<br>Factor    | ≤ Initial Value x 1.5 (See Above)                                                                                 | for 1000 hou                                                                | /\                           |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.1 (See Above)                                                                                 | Remove from test chamb<br>temperature for 24 ± 2 h                          |                              |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                   |                                                                             |                              |
|                              | Appearance               | No visual defects                                                                                                 |                                                                             |                              |
|                              | Capacitance<br>Variation | ≤ ±30%                                                                                                            | Store in a test chamber s<br>5% relative humidi                             |                              |
| Load<br>Humidity             | Dissipation<br>Factor    | ≤ Initial Value x 1.5 (See above)                                                                                 | (+48, -0) with rate                                                         | d voltage applied.           |
| riumuity                     | Insulation<br>Resistance | ≥ Initial Value x 0.1 (See Above)                                                                                 | Remove from chamber temperature ar                                          | nd humidity for              |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                   | 24 ± 2 hours bef                                                            | ore measuring.               |

# **Y5V Dielectric**

# **Capacitance Range**



## **PREFERRED SIZES ARE SHADED**

| SIZE          |             | 02              | 01       |   |     | 0402    |       |    |    | 06      | 03     |      |    | 08     | 05     |      |      | 12      | 06       |      |               | 12     | 10     |      |
|---------------|-------------|-----------------|----------|---|-----|---------|-------|----|----|---------|--------|------|----|--------|--------|------|------|---------|----------|------|---------------|--------|--------|------|
| Solderii      | ng          | Reflov          | v Only   |   | Ref | low/W   | 'ave  |    | F  | Reflow  | /Wav   | е    |    | Reflow | //Wav  | е    | F    | Reflow  | Mfeve    | е    | F             | Reflow | //Wave | e    |
| Packagi       | ng          | All P           | aper     |   | Α   | II Pape | er    |    |    | All P   | aper   |      | Pa | per/E  | mboss  | sed  | Pa   | per/Er  | nboss    | sed  | Pa            | per/E  | mboss  | sed  |
| (L) Length    | mm          | 0.60 ±          | £ 0.09   |   | 1.0 | 00 ± 0. | 10    |    |    | 1.60 :  | ± 0.15 |      |    | 2.01 : | ± 0.20 |      |      | 3.20 ±  | ± 0.20   |      |               | 3.20 : | ± 0.20 |      |
| (L) Length    | (in.)       | (0.024 ±        |          |   |     | 10 ± 0. |       |    | (0 | 0.063 : | ± 0.00 | 6)   | (0 |        | ± 0.00 |      | (0   | ).126 ± | ± 0.00   | 8)   |               |        | ± 0.00 |      |
| W) Width      | mm          | 0.30 ±          |          |   |     | 50 ± 0. |       |    |    |         | 0.15   |      |    |        | ± 0.20 |      |      | 1.60    |          |      |               |        | ± 0.20 |      |
| vv) vvidili   | (in.)       | (               | £ 0.004) |   |     | 20 ± 0. |       |    | (0 | 0.032 : |        | 6)   | (0 |        | ± 0.00 | -,   | ( -  |         | ± 0.00   | -,   | (0            |        | ± 0.00 | 8)   |
| (t) Terminal  | mm          | 0.15 ±          |          |   |     | 25 ± 0. |       |    |    |         | ± 0.15 |      |    |        | ± 0.25 |      |      | 0.50 ±  |          |      | 4-            |        | 0.25   |      |
| (t) Terrimian | (in.)       | (0.006 ±        | ,        |   |     | 0 ± 0.  | ,     |    | ,  | 0.014 : |        |      |    |        | ± 0.01 | -,   | ( -  |         | ± 0.01   | -,   | (-            |        | ± 0.01 | - /  |
| Сар           | WVDC<br>820 | 63              | 10       | 6 | 10  | 16      | 25    | 50 | 10 | 16      | 25     | 50   | 10 | 16     | 25     | 50   | 10   | 16      | 25       | 50   | 10            | 16     | 25     | 50   |
| (pF)          | 1000        |                 |          |   |     |         |       |    |    |         |        |      |    |        |        |      |      |         |          |      | ~             | '<br>  | ₹w.    |      |
| (pr)          | 2200        |                 | A        |   |     |         |       |    |    |         |        |      |    |        |        |      |      |         | ١.       | اسم  |               |        | 7      | *    |
|               | 4700        |                 | A        |   |     |         |       |    |    |         |        |      |    |        |        |      |      |         | <u> </u> | (    | 5             |        | $\Box$ | ŢT   |
| Сар           | 0.010       | Α               | A        |   |     |         |       |    |    |         |        |      |    |        |        |      |      |         |          | _    | $\overline{}$ |        |        |      |
| (μF)          | 0.022       | A               | _ ^      |   |     |         |       |    |    |         |        |      |    |        |        |      |      |         |          |      | 4             | -      |        |      |
| (μι )         | 0.022       | A               |          |   |     | С       |       |    |    |         |        |      |    |        |        |      |      |         | _        | 1    | . '           |        | 1 1    | , 1  |
|               | 0.10        | ,,              |          |   | С   | C       |       |    |    |         | G      | G    |    |        |        | К    |      |         |          | İ    |               |        |        | i l  |
|               | 0.22        |                 |          |   |     |         |       |    |    | G       |        |      |    |        |        |      |      |         |          | İ    |               |        |        | i    |
|               | 0.33        |                 |          |   |     |         |       |    |    | G       |        |      |    |        |        |      |      |         |          |      |               |        |        |      |
|               | 0.47        |                 |          |   |     | С       |       |    |    | G       | G      |      | İ  |        | İ      |      | İ    |         |          | İ    |               |        |        | i i  |
|               | 1.0         |                 |          | С | С   |         |       |    | G  | G       | J      |      |    | N      | N      | N    |      | М       | М        | М    |               |        |        | N    |
|               | 2.2         |                 |          |   | С   |         |       |    | J  |         |        |      |    | N      | N      |      |      |         | K        | Q    |               |        |        |      |
|               | 4.7         |                 |          |   |     |         |       |    |    |         |        |      | N  | N      | N      |      |      | Р       | Q        |      |               | N      | N      |      |
|               | 10.0        |                 |          |   |     |         |       |    |    |         |        |      | N  | Р      |        |      | Q    | Q       | Х        |      | Х             | Q      | Q      | Х    |
|               | 22.0        |                 |          |   |     |         |       |    |    |         |        |      |    |        |        |      | Q    |         |          |      | Х             | Z      |        |      |
|               | 47.0        | 63              | 10       |   | 10  | 16      | 25    | 50 | 10 | 16      | 25     | 50   | 10 | 10     | 25     | - 50 | 10   | 16      | 25       | 50   | 10            | 10     | 25     | 50   |
| SIZE          | WVDC        | 63<br><b>02</b> |          | 6 | 10  | 0402    | _ 25_ | 50 | 10 | 06      |        | _50_ | 10 | 16     | 05     | 50   | 10   |         |          | 1 20 | 10            | 16     | 25 ]   | _ 50 |
| SIZE          |             | 02              | UI       |   |     | 0402    |       |    |    | - 00    | UJ     |      |    | Uð     | UJ     |      | 1206 |         |          | 12   | 10            |        |        |      |

| Letter    | Α       | С       | Е       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | SSED    |         |         |         |

# **MLCC Gold Termination — AU Series**







AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

#### **PART NUMBER**

| AU03                                                                                                                                        | <u>Y</u>                                                                                                       | G                                                 | 104                                                                  | <u>K</u>                                                                                                                                                                                                                                                         | <u>A</u>                                 | 7                                                    | 2                                                                                                         | <u>A</u>                               |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|
| Size<br>AU02 - 0402<br>AU03 - 0603<br>AU05 - 0805<br>AU06 - 1206<br>AU10 - 1210<br>AU12 - 1812<br>AU13 - 1825<br>AU14 - 2225<br>AU16 - 0306 | Voltage<br>6.3V = 6<br>10V = Z<br>16V = Y<br>25V = 3<br>35V = D<br>50V = 5<br>100V = 1<br>200V = 2<br>500V = 7 | Dielectric<br>COG (NPO) = A<br>X7R = C<br>X5R = D | Capacitance<br>Code (In pF)<br>2 Sig. Digits +<br>Number of<br>Zeros | Capacitance Tolerance B = $\pm .10 \text{ pF} (<10 \text{pF})$ C = $\pm .25 \text{ pF} (<10 \text{pF})$ D = $\pm .50 \text{ pF} (<10 \text{pF})$ F = $\pm 1\% (\ge 10 \text{ pF})$ G = $\pm 2\% (\ge 10 \text{ pF})$ J = $\pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$ | Failure<br>Rate<br>A = Not<br>Applicable | Terminations G*=1.9 μ" to 7.87 μ" 7 = 100 μ" minimum | Packaging<br>2 = 7" Reel<br>4 = 13" Reel<br>U = 4mm TR<br>(01005)<br>Contact<br>Factory For<br>Multiples* | Special<br>Code<br>A = Std.<br>Product |
| AU06 - 1206<br>AU10 - 1210<br>AU12 - 1812<br>AU13 - 1825                                                                                    | 25V = 3<br>35V = D<br>50V = 5<br>100V = 1<br>200V = 2                                                          | X5R = D                                           |                                                                      | D = $\pm .50 \text{ pF} (<10 \text{pF})$<br>F = $\pm 1\% (\ge 10 \text{ pF})$<br>G = $\pm 2\% (\ge 10 \text{ pF})$<br>J = $\pm 5\%$                                                                                                                              | Applicable                               | P                                                    | (01005)  Contact Factory For                                                                              | Prod                                   |

<sup>\*</sup> Contact factory for availability.

# **MLCC Gold Termination - AU Series**

# **Capacitance Range (NP0 Dielectric)**



## **PREFERRED SIZES ARE SHADED**

| SIZE         | 312               |         | AU02                   |         |         | AU       | 103                  |          |         |         | AU05                 |          |          |         |         | AL      | 106                |          |          |
|--------------|-------------------|---------|------------------------|---------|---------|----------|----------------------|----------|---------|---------|----------------------|----------|----------|---------|---------|---------|--------------------|----------|----------|
| Solderii     |                   |         | flow/Epo               |         |         | Reflow   | /Epoxy/              |          |         |         | flow/Epo             |          |          |         |         | Reflow  | /Epoxy/            |          |          |
|              |                   |         | Vire Bono              |         |         | Wire f   |                      |          |         |         | Vire Bond            |          |          |         |         |         | Bond*              |          |          |
| Packagi      | i <b>ng</b><br>mm |         | All Paper<br>.00 ± 0.1 |         |         | All P    |                      |          |         |         | er/Embo<br>.01 ± 0.2 |          |          |         |         | Paper/E | t 0.20             | <u> </u> |          |
| (L) Length   | (in.)             |         | 040 ± 0.0              |         |         | (0.063 ± |                      |          |         |         | 0.2 ± 0.2            |          |          |         |         |         | ± 0.20<br>± 0.008) |          |          |
| W) Width     | mm                | C       | 0.50 ± 0.1             | 0       |         | 0.81 ±   |                      |          |         | 1       | .25 ± 0.2            | 20       |          |         |         |         | ± 0.20             |          |          |
| vv) vvidtn   | (in.)             | •       | 020 ± 0.0              |         |         | (0.032 ± |                      |          |         | •       | 0.0 ± 0.0            |          |          |         |         | ,       | ± 0.008)           |          |          |
| (t) Terminal | mm                |         | .25 ± 0.1              |         |         | 0.35 ±   |                      |          |         |         | .50 ± 0.2            |          |          |         |         |         | ± 0.25             |          |          |
| (4)          | (in.)             | •       | 010 ± 0.0              | ,       | 16      | (0.014 ± |                      | 100      | 16      |         | 020 ± 0.0            |          |          | 16      | 05      | •       | ± 0.010)           | 000      | I 1700   |
| Cap          | 0.5               | 16<br>C | 25<br>C                | 50<br>C | 16<br>G | 25<br>G  | 50<br>G              | 100<br>G | 16<br>J | 25<br>J | 50<br>J              | 100<br>J | 200<br>J | 16<br>J | 25<br>J | 50<br>J | 100<br>J           | 200<br>J | 500<br>J |
| (pF)         | 1.0               | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | Ĵ       | J                  | J        | J        |
|              | 1.2<br>1.5        | C       | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 1.8               | C       | C                      | C       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 2.2               | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 2.7<br>3.3        | C       | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 3.9               | C       | С                      | C       | G       | G        | G                    | G        | Ĵ       | Ĵ       | Ĵ                    | Ĵ        | Ĵ        | Ĵ       | Ĵ       | Ĵ       | Ĵ                  | Ĵ        | J        |
|              | 4.7               | C<br>C  | С                      | C       | G<br>G  | G<br>G   | G<br>G               | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 5.6<br>6.8        | C       | C                      | C       | G       | G        | G                    | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 8.2               | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 10<br>12          | C       | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 15                | C       | C                      | C       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | 5 7      | Ĵ        |
|              | 18                | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J -                | J -      | J        |
|              | 22<br>27          | C<br>C  | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 33                | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 39<br>47          | C<br>C  | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J<br>J   | J       | J       | J<br>J  | J                  | J        | J        |
|              | 56                | C       | C                      | C       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 68                | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 82<br>100         | C       | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 120               | С       | С                      | С       | G       | G        | G                    | G        | Ĵ       | Ĵ       | Ĵ                    | J        | Ĵ        | Ĵ       | J       | Ĵ       | Ĵ                  | J        | Ĵ        |
|              | 150<br>180        | C<br>C  | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G<br>G   | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | J        |
|              | 220               | C       | C                      | C       | G       | G        | G                    | G        | J       | J       | J                    | J        | J        | J       | J       | J       | J                  | J        | M        |
|              | 270               | С       | С                      | С       | G       | G        | G                    | G        | J       | J       | J                    | J        | М        | J       | J       | J       | J                  | J        | М        |
|              | 330<br>390        | C       | C                      | C       | G<br>G  | G<br>G   | G<br>G               | G        | J       | J       | J                    | J        | M<br>M   | J       | J       | J       | J                  | J        | M        |
|              | 470               | Č       | Č                      | Č       | G       | G        | G                    |          | J       | J       | J                    | J        | М        | J       | J       | Ĵ       | J                  | J        | М        |
|              | 560               |         |                        |         | G       | G        | G<br>G               |          | J       | J       | J                    | J        | M        | J       | J       | J       | J                  | J        | M<br>P   |
|              | 680<br>820        |         |                        |         | G<br>G  | G<br>G   | G                    |          | J       | J       | J                    | J        | M<br>M   | J       | J       | J       | J                  | J<br>M   | P        |
|              | 1000              |         |                        |         | G       | G        | G                    |          | J       | J       | J                    | J        | М        | J       | J       | J       | J                  | Q        |          |
|              | 1200<br>1500      |         |                        |         |         |          |                      |          | J       | J       | J                    |          |          | J       | J       | J       | J<br>M             | Q<br>Q   |          |
|              | 1800              |         |                        |         |         |          |                      |          | J       | J       | J                    |          |          | J       | J       | М       | М                  | ~        |          |
|              | 2200<br>2700      |         |                        |         |         |          |                      |          | J       | J       | N<br>N               |          |          | J       | J       | M<br>M  | P<br>P             |          |          |
|              | 3300              |         |                        |         |         |          |                      |          | J       | J       | IN                   |          |          | J       | J       | M       | P                  |          |          |
|              | 3900              |         |                        |         |         |          |                      |          | J       | J       |                      |          |          | J       | J       | М       | Р                  |          |          |
|              | 4700<br>5600      |         |                        |         |         |          |                      |          | J       | J       |                      |          |          | J       | J       | M<br>M  | Р                  |          | -        |
|              | 6800              |         |                        |         |         |          |                      |          |         |         |                      |          |          | М       | М       |         |                    |          |          |
|              | 8200<br>0.010     |         |                        | 2002    |         |          |                      |          |         |         |                      |          |          | M<br>M  | M<br>M  |         |                    |          |          |
|              | 0.012             |         |                        |         |         |          | -W,                  |          |         |         |                      |          |          | 141     | 141     |         |                    |          |          |
|              | 0.015             |         |                        |         |         |          | $\mathcal{I}_{\leq}$ | <u> </u> |         |         |                      |          |          |         |         |         |                    |          | <u> </u> |
|              | 0.018<br>0.022    |         |                        | _       |         |          | リノ                   | ŢΤ       |         |         |                      |          |          |         |         |         |                    |          |          |
|              | 0.027             |         | (                      | _       | ) ]_    | /        |                      |          |         |         |                      |          |          |         |         |         |                    |          |          |
|              | 0.033             | _       |                        |         |         |          |                      |          |         |         |                      |          |          |         |         |         |                    |          |          |
|              | 0.039             |         |                        |         | ₹ T     |          |                      |          |         |         |                      |          |          |         |         |         |                    |          |          |
|              | 0.068             | _       | ı                      | ı       |         | I        | I                    | _        |         |         |                      |          |          |         |         |         |                    |          |          |
|              | 0.082             |         |                        |         |         |          |                      |          |         |         |                      |          |          |         |         |         |                    |          |          |
|              | WVDC              | 16      | 25                     | 50      | 16      | 25       | 50                   | 100      | 16      | 25      | 50                   | 100      | 200      | 16      | 25      | 50      | 100                | 200      | 500      |
|              | SIZE              |         | AU02                   |         |         | AU       | 103                  |          |         |         | AU05                 |          |          |         |         | AL      | 106                |          |          |

\* Contact Factory

| Letter    | Α       | С       | E       | G       | J       | K       | M       | N       | P       | Q       | X       | Y       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         | EMB     | OSSED   |         |         |         |         |

# **Capacitance Range (NPO Dielectric)**



### PREFERRED SIZES ARE SHADED

| SIZE                                   |                |        |      | AU10                  |             |        |        |        | AU12                |             |        |        | AU13           |         |        | AU14                    |         |
|----------------------------------------|----------------|--------|------|-----------------------|-------------|--------|--------|--------|---------------------|-------------|--------|--------|----------------|---------|--------|-------------------------|---------|
| Solderii                               | ng             |        |      | low/Epo               |             |        |        |        | low/Epo             |             |        |        | Reflow/Epoxy   | /       |        | Reflow/Epoxy            | /       |
| Packagi                                |                |        |      | /ire Bond<br>er/Embos |             |        |        |        | /ire Bond<br>Emboss |             |        |        | Wire Bond*     |         |        | Wire Bond* All Embossed |         |
|                                        | mm             |        |      | .20 ± 0.2             |             |        |        |        | .50 ± 0.3           |             |        |        | 4.50 ± 0.30    |         |        | 5.72 ± 0.25             |         |
| (L) Length                             | (in.)          |        | (0.1 | 126 ± 0.0             | 08)         |        |        | (0.1   | 77 ± 0.0            | 112)        |        |        | (0.177 ± 0.012 | 2)      |        | (0.225 ± 0.010          | ))      |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | mm             |        |      | .50 ± 0.2             |             |        |        | 3      | .20 ± 0.2           | 20          |        |        | 6.40 ± 0.40    |         |        | 6.35 ± 0.25             |         |
| W) Width                               | (in.)          |        |      | 0.0 ± 0.0             |             |        |        |        | 26 ± 0.0            |             |        |        | (0.252 ± 0.016 | )       | (      | (0.250 ± 0.010          | ))      |
| (t) Terminal                           | mm             |        |      | .50 ± 0.2             |             |        |        |        | .61 ± 0.3           |             |        |        | 0.61 ± 0.36    |         |        | 0.64 ± 0.39             |         |
| (t) Terminal                           | (in.)          |        | · `  | 020 ± 0.0             | <del></del> |        |        |        | 24 ± 0.0            | <del></del> |        |        | (0.024 ± 0.014 | <u></u> |        | 0.025 ± 0.015           | <u></u> |
|                                        | WVDC           | 25     | 50   | 100                   | 200         | 500    | 25     | 50     | 100                 | 200         | 500    | 50     | 100            | 200     | 50     | 100                     | 200     |
| Cap<br>(pF)                            | 0.5<br>1.0     |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
| (pi )                                  | 1.2            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 1.5            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 1.8            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         | -W-     |
|                                        | 2.2<br>2.7     |        |      |                       |             |        |        |        |                     |             |        |        |                |         | <      |                         |         |
|                                        | 3.3            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 3.9            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 4.7<br>5.6     |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 6.8            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        | Tt I                    |         |
|                                        | 8.2            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 10             |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 12<br>15       |        |      |                       |             | J<br>J |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 18             |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 22             |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 27<br>33       |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 39             |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 47             |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 56             |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 68<br>82       |        |      |                       |             | J<br>J |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 100            |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 120            |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 150<br>180     |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 220            |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 270            |        |      |                       |             | J      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 330<br>390     |        |      |                       |             | J<br>M |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 470            |        |      |                       |             | M      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 560            | J      | J    | J                     | J           | М      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 680            | J      | J    | J                     | J           | M      |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 820<br>1000    | J      | J    | J                     | J           | M<br>M | K      | K      | K                   | K           | М      | М      | M              | М       | М      | М                       | Р       |
|                                        | 1200           | J      | J    | J                     | М           | М      | K      | K      | K                   | K           | М      | М      | M              | M       | М      | M                       | P       |
|                                        | 1500           | J      | J    | J                     | M           | М      | K      | K      | K                   | K           | M      | M      | M              | M       | M      | M                       | P       |
|                                        | 1800<br>2200   | J      | J    | J                     | M<br>Q      |        | K<br>K | K<br>K | K<br>K              | K<br>K      | M<br>P | M<br>M | M<br>M         | M<br>M  | M<br>M | M<br>M                  | P<br>P  |
|                                        | 2700           | J      | J    | J                     | Q           |        | K      | K      | K                   | Р           | Q      | М      | М              | М       | М      | М                       | Р       |
|                                        | 3300           | J      | J    | J                     |             |        | K      | K      | K                   | Р           | Q      | М      | М              | М       | М      | M                       | P       |
|                                        | 3900<br>4700   | J      | J    | M<br>M                |             |        | K<br>K | K<br>K | K<br>K              | P<br>P      | Q      | M<br>M | M<br>M         | M<br>M  | M<br>M | M<br>M                  | P<br>P  |
|                                        | 5600           | J      | J    | IVI                   |             |        | K      | K      | M                   | P           | X      | M      | M              | M       | M      | M                       | P       |
|                                        | 6800           | J      | J    |                       |             |        | K      | K      | М                   | Х           |        | М      | М              | М       | М      | М                       | Р       |
|                                        | 8200<br>0.010  | J<br>J | J    |                       |             |        | K<br>K | M      | M<br>M              |             |        | M<br>M | M<br>M         |         | M<br>M | M<br>M                  | P<br>P  |
|                                        | 0.010          | J      | J    |                       |             |        | K      | M      | 141                 |             |        | M      | M              |         | M      | M                       | P       |
|                                        | 0.015          |        |      |                       |             |        | М      | М      |                     |             |        | М      | М              |         | М      | М                       | Υ       |
|                                        | 0.018          |        |      |                       |             |        | M      | M      |                     |             |        | Р      | M              |         | M      | M                       | Y       |
|                                        | 0.022<br>0.027 |        |      |                       |             |        | M<br>M | M<br>M |                     |             |        | P<br>P |                |         | M<br>P | Y                       | Y       |
|                                        | 0.033          |        |      |                       |             |        | M      | M      |                     |             |        | Р      |                |         | Р      |                         |         |
|                                        | 0.039          |        |      |                       |             |        | М      | М      |                     |             |        | Р      |                |         | Р      |                         |         |
| -                                      | 0.047<br>0.068 |        |      |                       |             |        | M<br>M | M<br>M |                     |             |        | Р      |                |         | P<br>P |                         |         |
|                                        | 0.088          |        |      |                       |             |        | M      | M      |                     |             |        |        |                |         | Q      |                         |         |
|                                        |                |        | I    | I                     | 1           |        |        |        | 1                   | l           |        |        | l              |         | Q      | I                       | l       |
|                                        | 0.1            |        |      |                       |             |        |        |        |                     |             |        |        |                |         |        |                         |         |
|                                        | 0.1<br>WVDC    | 25     | 50   | 100<br><b>AU10</b>    | 200         | 500    | 25     | 50     | 100<br>AU12         | 200         | 500    | 50     | 100<br>AU13    | 200     | 50     | 100<br>AU14             | 200     |

\* Contact Factory

| Letter    | Α       | С       | Е       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           | PAPER   |         |         |         |         |         |         |         | EMB     | DSSED   |         |         |         |





### PREFERRED SIZES ARE SHADED

| SIZE         |            |    | AU      | 102             |    |      |    |      | AU03    | 3     |     |       |      |    |                                                     | AU0  | 5     |     |       |      |    |    | Αl            | J06      |                                                  |      |     |
|--------------|------------|----|---------|-----------------|----|------|----|------|---------|-------|-----|-------|------|----|-----------------------------------------------------|------|-------|-----|-------|------|----|----|---------------|----------|--------------------------------------------------|------|-----|
| Solderin     | ng         | F  |         | /Epoxy<br>Bond* | 1/ |      |    |      | ow/E    |       | '   |       |      |    |                                                     | ow/E | poxy  | '/  |       |      |    |    | eflow<br>Wire |          |                                                  |      |     |
| Packagi      | ng         |    | All P   | aper            |    |      |    | Α    | All Par | er    |     |       |      | F  | ape                                                 | r/Em | boss  | ed  |       |      |    | Pa | per/E         | mbos     | sed                                              |      |     |
| (I ) Ith-    | mm         |    | 1.00 :  | ± 0.10          |    |      |    | 1.   | 60 ± 0  | ).15  |     |       |      |    | 2.                                                  | 01 ± | 0.20  |     |       |      |    |    | 3.20          | ± 0.20   | )                                                |      |     |
| (L) Length   | (in.)      | (( | 0.040 : | ± 0.004         | 4) |      |    | (0.0 | 63 ± 0  | 0.006 | )   |       |      |    | (0.0)                                               | 79 ± | 0.008 | 3)  |       |      |    | (0 | .126          | ± 0.00   | 08)                                              |      |     |
| W) Width     | mm         |    |         | ± 0.10          |    |      |    |      | 81 ± 0  |       |     |       |      |    |                                                     | 25 ± |       |     |       |      |    |    | 1.60          |          |                                                  |      |     |
| vv) vvidur   | (in.)      | (( |         | ± 0.004         | 4) |      |    |      | 32 ± 0  |       | )   |       |      |    | <u> </u>                                            |      | 0.008 | 3)  |       |      |    | (0 | .063          |          |                                                  |      |     |
| (t) Terminal | mm         | ,  |         | ± 0.15          | ٠. |      |    |      | 35 ± 0  |       |     |       |      |    |                                                     | 50 ± |       |     |       |      |    | ,_ | 0.50          |          |                                                  |      |     |
|              | (in.)      |    |         | ± 0.006         |    | - 60 | 10 |      | 14 ± 0  |       |     | 1 000 | - 60 |    | <del>, `                                     </del> |      | 0.010 | ·—  | 1 000 | - 60 | 10 |    | .020          |          | <del>,                                    </del> | 1000 |     |
| WVDC         |            | 10 | 16      | 25              | 50 | 63   | 10 | 16   | 25      | 50    | 100 | 200   | 63   | 10 | 16                                                  | 25   | 50    | 100 | 200   | 63   | 10 | 16 | 25            | 50       | 100                                              | 200  | 500 |
| Cap          | 100        |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      |    |    |               |          |                                                  |      |     |
| (pF)         | 150        |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      |    |    |               |          |                                                  |      |     |
|              | 220<br>330 |    |         |                 | С  |      |    |      | G       |       |     |       |      |    |                                                     |      |       |     |       |      |    |    |               |          |                                                  |      | 1.6 |
|              | I          |    |         |                 | С  |      |    |      |         | G     | G   | G     |      | J  | J                                                   | J    | J     | J   | J     |      |    |    |               |          |                                                  |      | K   |
|              | 470        |    |         |                 | С  |      |    |      |         | G     | G   | G     |      | J  | J                                                   | J    | J     | J   | J     |      |    |    |               |          |                                                  |      | K   |
|              | 680        |    |         |                 | С  |      |    |      |         | G     | G   | G     |      | J  | J                                                   | J    | J     | J   | J     |      |    | _  | -             | <u> </u> | 1                                                | -    | K   |
|              | 1000       |    |         |                 | С  |      |    |      |         | G     | G   | G     |      | J  | J                                                   | J    | J     | J   | J     |      |    |    |               |          |                                                  |      | K   |
|              | 1500       |    |         |                 | С  |      |    |      |         | G     | G   |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | J    | M   |
|              | 2200       |    |         |                 | С  |      |    |      |         | G     | G   |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | J    | М   |
|              | 3300       |    |         | С               | С  |      |    |      |         | G     | G   |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | J    | М   |
|              | 4700       |    |         | С               | С  |      |    |      |         | G     | G   |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | J    | M   |
|              | 6800       |    | С       | С               |    |      |    |      |         | G     | G   |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | J    | Р   |
| Сар          | 0.010      |    | С       |                 |    |      |    | G    |         | G     | G   |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | J    | Р   |
| (μF)         | 0.015      |    | С       |                 |    |      |    |      | G       | G     |     |       |      | J  | J                                                   | J    | J     | J   | J     |      | J  | J  | J             | J        | J                                                | M    |     |
| (F- )        | 0.022      | С  | С       |                 |    |      |    |      | G       | G     |     |       |      | J  | J                                                   | J    | J     | J   | N     |      | J  | J  | J             | J        | J                                                | М    |     |
|              | 0.033      | С  |         |                 |    |      |    |      | G       | G     |     |       |      | J  | J                                                   | J    | J     | N   |       |      | J  | J  | J             | J        | J                                                | M    |     |
|              | 0.047      |    |         |                 |    |      |    | G    | G       | G     |     |       |      | J  | J                                                   | J    | J     | N   |       |      | J  | J  | J             | J        | J                                                | M    |     |
|              | 0.068      |    |         |                 |    |      |    | G    | G       | G     |     |       |      | J  | J                                                   | J    | J     | N   |       |      | J  | J  | J             | J        | J                                                | Р    |     |
|              | 0.10       |    |         |                 |    |      | G  | G    | G       | G     |     |       |      | J  | J                                                   | J    | J     |     |       |      | J  | J  | J             | J        | М                                                | Р    |     |
|              | 0.15       |    |         |                 |    | G    | G  |      |         |       |     |       |      | J  | J                                                   | J    | N     | N   |       |      | J  | J  | J             | J        | Q                                                |      |     |
|              | 0.22       |    |         |                 |    | G    | G  |      |         |       |     |       |      | J  | J                                                   | N    | N     | N   |       |      | J  | J  | J             | J        | Q                                                |      |     |
|              | 0.33       |    |         |                 |    |      |    |      |         |       |     |       |      | N  | N                                                   | N    | N     | N   |       |      | J  | J  | М             | Р        | Q                                                |      |     |
|              | 0.47       |    |         |                 |    |      |    |      |         |       |     |       |      | N  | N                                                   | N    | N     | N   |       |      | М  | М  | М             | Р        | Q                                                |      |     |
|              | 0.68       |    |         |                 |    |      |    |      |         |       |     |       |      | N  | N                                                   | N    |       |     |       |      | М  | М  | Q             | Q        | Q                                                |      |     |
|              | 1.0        |    |         |                 |    |      |    |      |         |       |     |       |      | N  | N                                                   | N    |       |     |       |      | М  | М  |               | Q        | Q                                                |      |     |
|              | 1.5        |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      | Р  | Q  | Q             |          |                                                  |      |     |
|              | 2.2        |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     | P*   |       |     |       |      | Q  | Q  | Q             |          |                                                  |      |     |
|              | 3.3        |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      |    |    |               |          |                                                  |      |     |
|              | 4.7        |    |         |                 |    |      |    |      |         |       |     |       |      | P* |                                                     |      |       |     |       |      | Q  | Q  |               |          |                                                  |      |     |
|              | 10         |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      | Q* |    |               |          |                                                  |      |     |
|              | 22         |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       | Q*   |    |    |               |          |                                                  |      |     |
|              | 47         |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      |    |    |               |          |                                                  |      |     |
|              | 100        |    |         |                 |    |      |    |      |         |       |     |       |      |    |                                                     |      |       |     |       |      |    |    |               |          |                                                  |      |     |
|              | WVDC       | 10 | 16      | 25              | 50 | 6.3  | 10 | 16   | 25      | 50    | 100 | 200   | 63   | 10 | 16                                                  | 25   |       | 100 | 200   | 63   | 10 | 16 | 25            | 50       | 100                                              | 200  | 500 |
|              | SIZE       |    |         | AU02            | 2  |      |    |      | AU03    | 3     |     |       |      |    |                                                     | AU0  | 5     |     |       |      |    |    | AL            | J06      |                                                  |      |     |

<sup>\*</sup> Contact Factory

| Letter    | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | DSSED   |         |         |         |





### **PREFERRED SIZES ARE SHADED**

| mm $0.50 \pm 0.25$ $0.61 \pm 0.36$ $0.61 \pm 0.36$ $0.64 \pm 0.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SIZE         |                                    |    |     |    | AU10     |       |     |     |     | AU     | J12   |     | Δ.   | \U13    |          | AU14             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|----|-----|----|----------|-------|-----|-----|-----|--------|-------|-----|------|---------|----------|------------------|
| Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  Packaging  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embossed  All Embos  | Caldarina    |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| (L) Length (n) (0.126 ± 0.008) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.225 ± 0.016) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) (0.177 ± 0.012) | Soldering    | J                                  |    |     |    | Wire Bor | nd*   |     |     |     | Wire I | Bond* |     | Wire | e Bond* | Wi       | re Bond*         |
| (L) Length (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Packaging    | g                                  |    |     |    |          |       |     |     |     |        |       |     | l    |         |          |                  |
| Width   mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (L) Length   |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         | 1        |                  |
| (t) Terminal (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (L) Length   |                                    |    |     | •  |          | ,     |     |     |     | •      | ,     |     | ١ ،  | ,       | ,        | •                |
| (t) Terminal (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W) Width     |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| (1) Terminal (In)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | . ,                                |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| Cap (pF) 150 (pF) 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (t) Terminal | (in.)                              |    |     | (0 | .020 ± 0 | .010) |     |     |     |        |       |     |      |         |          |                  |
| Cap (pF) 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WVDC         |                                    | 10 | 16  | 25 | 50       | 100   | 200 | 500 | 50  | 100    | 200   | 500 | 50   | 100     | 50       | 100              |
| (pF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 100                                |    |     |    |          |       |     |     |     |        |       |     | _    |         | <i>-</i> | -                |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    |    |     |    |          |       |     |     |     |        |       |     | _    |         |          |                  |
| 470 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (βι )        |                                    |    |     |    |          |       |     |     |     |        |       | _<  | <    |         |          | ) <del>1</del> — |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         | ر ا      | ) <del> </del>   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    |    |     |    |          |       |     |     |     |        |       | 1   |      |         |          |                  |
| 1500 J J J J J J J M M M M M P Cap 0.010 J J J J J J M M M M M P Cap 0.033 J J J J J J J J J J M M M M M P Cap 0.068 J J J J J J J J M M K K K K K Z M M M M P Cap 0.010 J J J J J J M K K K K K K Z M M M M P Cap 0.033 J J J J J J M K K K K K K Z M M M M P Cap 0.068 J J J J J J M K K K K K K Z M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M P Cap 0.068 J J J J J J J M K K K K K Z M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M P Cap 0.068 J J J J J J J M K K K K K Z M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M M P Cap 0.068 J J J J J J J M K K K K K Z M M M M M P Cap 0.068 J J J J J J M K K K K K Z M M M M M P Cap 0.068 J J J J J J M K K K K Z M M M M M P Cap 0.068 J J J J J J M K K K K Z M M M M M P Cap 0.068 J J J J J J M K K K K Z M M M M M P Cap 0.068 M M M P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    |    |     |    |          |       |     |     |     |        |       | _   |      |         |          |                  |
| 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    | .l | .1  | .l | .1       | .l    | .I  | M   |     |        |       |     |      | 4       |          |                  |
| 3300 J J J J J J J J M M M M M P M M M M P M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                    |    |     |    |          | -     |     |     |     |        |       |     | ı    | ' '     | I        | ı                |
| Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 3300                               |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| Cap (µF)  0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 4700                               | J  | J   | J  | J        | J     | J   | М   |     |        |       |     |      |         |          |                  |
| Cap (μF)         0.015 (μF)         J         J         J         J         J         J         J         J         J         M         M         M         M         P           0.022 J         J         J         J         J         J         J         J         J         J         M         M         M         M         M         M         P           0.033 OUT         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         M         M         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                    | J  | J   | J  | J        | J     | J   | М   |     |        |       |     |      |         |          |                  |
| (μF) 0.022 J J J J J J J Q K K K P M M M M P  0.033 J J J J J J J J G K K K K P M M M M P  0.047 J J J J J J J K K K K Z M M M M P  0.068 J J J J J J M K K K K Z M M M M P  0.10 J J J J J M K K K K Z M M M P  0.11 J J J J M Z K K K F P M M M M P  0.12 J J J J M Z K K K P M M M M P  0.15 J J J J J M Z K K K P M M M M P  0.22 J J J J J P Z K K K P M M M M P  0.33 J J J J J J P Z K K K P M M M M P  0.47 M M M M M Q K P M M M M M P  0.68 M M P X X Z M M M P M P  1.0 N N X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Can          |                                    |    | -   | -  | -        | -     | -   |     |     |        |       |     |      |         |          |                  |
| 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,            |                                    |    | _   |    |          |       |     | -   |     |        |       |     |      |         |          |                  |
| 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                    | -  | -   | -  | -        | -     | -   | Q   |     |        |       |     |      |         |          |                  |
| 0.10 J J J J J J M Z K K P M M M P 0.15 J J J J J P Z K K P M M M P 0.22 J J J J J Q K K P M M M P 0.33 J J J J J Q K M X M M M P 0.47 M M M M M Q K P 0.68 M M P X X Z M M P M P 1.0 N N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    |    | _   |    | -        |       |     |     |     |        |       |     |      |         |          |                  |
| 0.22         J         J         J         P         Z         K         K         P         M         M         M         P           0.33         J         J         J         J         Q         K         M         X         M         M         M         M         P           0.47         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         N         X         Z         Z         Z         Z         Z         Z         M         X         X         M         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                    |    | -   |    |          |       |     |     |     |        |       | _   |      |         |          |                  |
| 0.47         M         M         M         M         Q         K         P         M         M         P         M         P           0.68         M         M         P         X         X         X         X         M         P         M         P         M         P           1.0         N         N         X         Z         Z         Z         Z         M         P         M         P         M         P           1.5         N         N         Z         Z         Z         Z         Z         M         M         Y         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         N         X         Z         Z         Z         Z         Z         Z         Z         M         X         X         X         X         X         X         X         X         Z         Z         Z         Z         Z         Z         X         X         X         X         X         X         X         X         X         X         X         X <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Р</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                    |    |     |    |          |       |     |     |     |        | Р     |     |      |         |          |                  |
| 0.68         M         M         P         X         X         M         Q         M         P         M         P           1.0         N         N         X         Z         X         Z         M         X         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         P         M         N         X         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z <td></td> <td>0.33</td> <td>J</td> <td>J</td> <td>J</td> <td>J</td> <td>Q</td> <td></td> <td></td> <td>K</td> <td>М</td> <td>Х</td> <td></td> <td>М</td> <td>М</td> <td>М</td> <td>Р</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 0.33                               | J  | J   | J  | J        | Q     |     |     | K   | М      | Х     |     | М    | М       | М        | Р                |
| 1.0 N N N Z Z Z Z Z M M X M P M P M P M X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                    |    | М   |    |          | -     |     |     |     |        |       |     | М    |         | М        |                  |
| 1.5 N N Z Z Z Z Z M M M X<br>2.2 X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                    |    |     | Р  |          |       |     |     |     |        |       |     |      | -       |          | •                |
| 2.2     X     X     Z     Z     Z     W       3.3     X     X     Z     Z     Z     Z       4.7     X     X     Z     Z     Z     Z       10     Z     Z     Z     Z     Z       47     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      | Р       |          |                  |
| 3.3 X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                    |    |     |    |          |       |     |     |     |        |       |     | M    |         |          | X                |
| 4.7 X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                    |    |     |    |          | Z     |     |     |     | Z      |       |     |      |         | IVI      |                  |
| 10 Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| 22<br>47<br>100<br>WVDC 10 16 25 50 100 200 500 50 100 200 500 50 100 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                    |    |     |    | _        |       |     |     |     |        |       |     |      |         |          |                  |
| 47 100 WVDC 10 16 25 50 100 200 500 50 100 200 500 50 100 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| WVDC 10 16 25 50 100 200 500 50 100 200 500 50 100 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                    |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 100                                |    |     |    |          |       |     |     |     |        |       |     |      |         |          |                  |
| SIZE AU10 AU12 AU13 AU14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | WVDC 10   16   25   50   100   200 |    | 500 | 50 | 100      | 200   | 500 | 50  | 100 | 50     | 100   |     |      |         |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | SIZE                               |    |     |    | AU10     |       |     |     |     | AU     | 112   |     | Δ    | .U13    |          | AU14             |

<sup>\*</sup> Contact Factory

| Letter    | Α       | С       | Е       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | DSSED   |         |         |         |





### PREFERRED SIZES ARE SHADED

| SIZE     | E              |    |     | Αl             | 102   |      |    |          |    | 4             | U0       | 3           |    |    |    |          | Αl           | 105   |     |        |                         |     | ΑU             | 06    |     |    |    |     | -    | \U1   | 0           |     |          |          | AU    | 12           |     |
|----------|----------------|----|-----|----------------|-------|------|----|----------|----|---------------|----------|-------------|----|----|----|----------|--------------|-------|-----|--------|-------------------------|-----|----------------|-------|-----|----|----|-----|------|-------|-------------|-----|----------|----------|-------|--------------|-----|
| Solder   | ring           |    |     | flow<br>/ire l |       |      |    |          | F  | Reflo<br>Wire |          | pox<br>ond* |    |    |    |          | flow<br>Vire |       |     |        |                         |     | flow<br>/ire l |       |     |    |    |     |      |       | pox<br>ond* |     |          |          |       | Epox<br>Bond |     |
| Packag   | ging           |    | /   | All P          | аре   | er   |    |          |    | All           | Pa       | per         |    |    | F  | аре      | er/E         | mbo   | sse | d      | Р                       | аре | er/Er          | nbo   | sse | d  |    | Pa  | per/ | Em    | bos         | sed |          | All      | Eml   | oss          | ed  |
| (L)      | mm             |    | 1   | : 00.          | ± 0.1 | 0    |    |          |    | 1.6           | 0 ± 0    | ).15        |    |    |    | 2        | 2.01         | ± 0.2 | 0   |        |                         | 3   | .20 :          | ± 0.2 | 0   |    |    |     | 3.2  | 0 ± 0 | 0.20        |     |          | 4        | .50 ± | 0.30         | )   |
| Length   | (in.)          |    | (0. | 040 :          | ± 0.0 | 04)  |    |          | (  | 0.06          | 3 ± (    | 0.006       | 5) |    |    | (0.      | 079          | ± 0.0 | (80 |        |                         | (0. | 126 :          | ± 0.0 | (80 |    |    | (   | 0.12 | 6 ± ( | 0.008       | 3)  |          | (0.      | 177 ± | £ 0.01       | 2)  |
| W)       | mm             |    | C   | .50 :          | ± 0.1 | 0    |    |          |    | 0.8           | 1 ± (    | ).15        |    |    |    | 1        | 1.25         | ± 0.2 | 0   |        |                         | 1   | .60 :          | ± 0.2 | 0   |    |    |     | 2.5  | 0 ± 0 | 0.20        |     |          | 3        | .20 ± | 0.20         | )   |
| Width    | (in.)          |    | (0. | 020 :          | ± 0.0 | 04)  |    |          | (  | 0.03          | 2 ± (    | 0.006       | 5) |    |    | (0.      | 049          | ± 0.0 | 08) |        |                         | (0. | 063 :          | ± 0.0 | 08) |    |    | (   | 0.09 | 8 ± ( | 0.008       | 3)  |          | (0.      | 126 ± | £ 0.00       | )8) |
|          | mm             | -  |     |                |       |      |    |          |    |               |          |             |    |    |    | <u>`</u> |              |       |     |        | _                       | `   |                |       |     |    |    |     |      |       |             |     |          | <u> </u> |       |              |     |
| (t)      | (in.)          |    |     | ).25           |       |      |    |          |    |               | 5 ± (    |             |    |    |    |          | 0.50         |       |     |        |                         |     | .50 :          |       |     |    |    |     |      | 0 ± 0 |             |     |          |          |       | 0.36         |     |
| Terminal | (111.)         |    | (0. | 010 :          | ± 0.0 | 106) |    |          | (  | 0.01          | 4 ± (    | 0.006       | 5) |    |    | (0.      | 020          | ± 0.0 | 10) |        |                         | (0. | 020 :          | ± 0.0 | 10) |    |    | (   | 0.02 | 0 ± 0 | 0.010       | ))  |          | (0.      | 024 ± | £ 0.01       | 4)  |
| WVD      | С              | 4  | 63  | 10             | 16    | 25   | 50 | 4        | 63 | 10            | 16       | 25          | 35 | 50 | 63 | 10       | 16           | 25    | 35  | 50     | 6.3                     | 10  | 16             | 25    | 35  | 50 | 4  | 6.3 | 10   | 16    | 25          | 35  | 50       | 6.3      | 10    | 25           | 50  |
| Cap      | 100            |    |     |                |       |      |    |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              | П   |
| (pF)     | 150            |    |     |                |       |      |    |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 220            |    |     |                |       | L    |    |          | L  |               |          | L           |    |    |    |          |              |       |     |        | $\lfloor \lfloor \vert$ |     |                |       |     |    |    |     | L    |       |             |     | L        |          |       |              |     |
|          | 330            |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              | П   |
|          | 470            |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 680            |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              | Ш   |
|          | 1000           |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 1500           |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 2200           |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              | Ш   |
|          | 3300           |    |     |                |       |      | С  |          |    |               |          |             |    |    |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 4700           |    |     |                |       | С    |    |          |    |               |          |             |    | G  |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 6800           |    |     |                |       | С    |    |          |    |               |          |             |    | G  |    |          |              |       |     |        | Ш                       |     |                |       |     |    |    |     |      |       |             |     | <u> </u> |          |       | igsqcut      | Н   |
| Сар      | 0.010          |    |     |                |       | С    |    |          |    |               |          | _           | _  | G  |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
| (µF)     | 0.015<br>0.022 |    |     |                |       | С    |    |          |    |               |          | G           | G  | G  |    |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 0.022          | Н  |     |                | С     | С    |    |          |    |               |          | G           | G  | G  |    |          |              |       |     | N      |                         |     |                |       |     |    |    |     |      |       |             |     | H        |          |       | H            | Н   |
|          | 0.033          |    |     |                | C     |      | l  |          |    |               |          | G           | G  | G  |    |          |              |       |     | N      |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 0.047          |    |     |                | C     | С    | 1  |          |    |               |          | G           | G  | G  |    |          |              |       |     | N<br>N |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 0.008          | Н  | С   |                | С     | С    |    | $\vdash$ |    | _             | $\vdash$ | G           |    | G  |    |          |              | N     |     | N      | $\vdash$                |     |                |       |     |    |    |     |      |       | $\vdash$    |     | ┢        |          |       | $\vdash$     | Н   |
|          | 0.15           |    | U   |                | C     |      |    |          |    |               |          | G           |    | G  |    |          |              | N     | N   | IN     |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 0.13           |    | C*  |                |       |      |    |          |    |               | G        | G           |    |    |    |          |              | N     | N   |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 0.22           | H  | U   |                |       |      |    |          |    |               | G        | G           |    |    |    |          |              | N     |     |        | $\vdash$                |     |                |       |     | Q  |    |     |      |       |             |     | $\vdash$ |          |       | $\vdash$     | Н   |
|          | 0.47           | C* |     |                |       |      |    |          |    |               | G        |             |    |    |    |          |              | N     |     |        |                         |     |                | Q     | Q   | ~  |    |     |      |       |             |     |          |          |       |              |     |
|          | 0.68           |    |     |                |       |      |    |          |    |               | G        |             |    |    |    |          |              | N     |     |        |                         |     |                |       |     |    |    |     |      |       |             |     | Х        |          |       |              |     |
|          | 1.0            | П  |     |                |       |      |    |          | G  | G             | G        | J*          |    |    | N  |          | N            | N     |     | P*     | H                       |     |                | Q     | Q   |    |    | П   |      |       | Х           | Х   | Х        |          |       | М            | П   |
|          | 1.5            |    |     |                |       |      |    |          |    |               |          |             |    |    | N  |          |              |       |     |        |                         |     |                |       |     |    |    |     |      |       |             |     |          |          |       |              |     |
|          | 2.2            | C* |     |                |       |      |    | G*       | G* | J*            | J*       |             |    |    | N  | N        | N            | N     |     |        |                         |     | Q              | Q     |     |    |    |     |      |       | Z           | Х   |          |          |       |              |     |
|          | 3.3            |    |     |                |       |      |    | J*       | J* | J*            | J*       |             |    |    | N  | N        |              |       |     |        | Q                       | Q   |                |       |     |    |    |     |      |       |             |     |          |          |       |              | П   |
|          | 4.7            |    |     |                |       |      |    | J*       | J* | J*            |          |             |    |    |    | N        | N*           | N*    |     |        | Q                       | Q   | Q              | Q     |     |    |    |     | L    | Q     | Z           |     |          |          |       | L            |     |
|          | 10             | Ш  |     |                |       |      |    | K*       |    |               |          |             |    |    | P* | P*       | P*           |       |     |        | Q                       | Q   | Q              | Q*    |     |    |    |     | Х    | Z     | Z           |     | L        |          |       | Z            | Ш   |
|          | 22             |    |     |                |       |      |    |          |    |               |          |             |    |    | P* |          |              |       |     |        | Q*                      | Q*  | Q*             |       |     |    |    | Z   | Z    | Z     | Z           |     |          |          |       |              |     |
|          | 47             |    |     |                |       |      |    |          |    |               |          |             |    |    |    |          |              |       |     |        | Q*                      |     |                |       |     |    | _  | Z*  |      |       |             |     |          |          |       |              |     |
|          | 100            | Щ  |     | _              |       | _    |    |          | -  |               |          |             |    |    | -  |          |              |       | -   |        |                         |     |                |       |     |    | Z* | Z*  |      |       |             |     |          |          |       |              |     |
|          | WVDC           | 4  | 63  | _              |       | 25   | 50 | 4        | 63 |               |          |             | 35 | 50 | 63 | 10       |              | 25    | 35  | 50     | 6.3                     | 10  |                |       | 35  | 50 | 4  | 6.3 |      |       | _           | 35  | 50       | 6.3      |       | 25           | 50  |
|          | SIZE           |    |     | ΑL             | 102   |      |    |          |    |               | \U0      | 3           |    |    |    |          | Αl           | 105   |     |        |                         |     | AU             | υ6    |     |    |    |     | _ /  | \U1   | U           |     |          |          | AU    | 12           |     |

<sup>\*</sup> Contact Factory

| Letter    | Α       | С       | Е       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBC    | SSED    |         |         |         |

= \*Optional Specifications - Contact Factory

NOTE: Contact factory for non-specified capacitance values

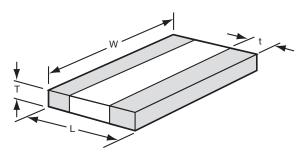
### AU16/AU17/AU18



|          | ZE          |   | (   | AU1<br>030       | 6) |    |     | (0            | U17<br>508       | 3) |    |          | (  | AU1<br>061:     | 2)             |    |
|----------|-------------|---|-----|------------------|----|----|-----|---------------|------------------|----|----|----------|----|-----------------|----------------|----|
| Pack     | aging       |   |     | nbos             |    |    |     |               | boss             |    |    |          |    | nboss           |                |    |
| Length   | mm          |   |     | 31 ± 0           |    |    |     |               | 7 ± 0.           |    |    |          |    | 0 ± 0           |                |    |
| 20119411 | (in.)       |   |     | 32 ± 0           |    | )  | (   | 0.05          | 0 ± 0.<br>0 ± 0. |    |    | <u> </u> |    | 3 ± 0<br>20 ± 0 | .010)          |    |
| Width    | mm<br>(in.) |   |     | 50 ± 0<br>53 ± 0 |    | ١  |     | ان.2<br>(0.08 |                  |    |    |          |    |                 | i.25<br>i.010) |    |
| Cap Code | WVDC        | 4 | 6.3 | 10               | 16 | 25 | 6.3 | 10            | 16               | 25 | 50 | 6.3      | 10 | 16              | 25             | 50 |
| 102      | Cap 0.001   |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | ٧  |
| 222      | (μF) .0022  |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | ٧  |
| 332      | 0.0033      |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | ٧  |
| 472      | 0.0047      |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | ٧  |
| 682      | 0.0068      |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | ٧  |
| 103      | 0.01        |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | ٧  |
| 153      | 0.015       |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | W  |
| 223      | 0.022       |   | Α   | Α                | Α  | Α  | S   | S             | S                | S  | ٧  | S        | S  | S               | S              | W  |
| 333      | 0.033       |   | Α   | Α                | Α  |    | S   | S             | S                | ٧  | ٧  | S        | S  | S               | S              | W  |
| 473      | 0.047       |   | Α   | Α                | Α  |    | S   | S             | S                | ٧  | Α  | S        | S  | S               | S              | W  |
| 683      | 0.068       |   | Α   | Α                | Α  |    | S   | S             | S                | Α  | Α  | S        | S  | S               | ٧              | W  |
| 104      | 0.1         |   | Α   | Α                | M  |    | S   | S             | ٧                | Α  | Α  | S        | S  | S               | ٧              | W  |
| 154      | 0.15        |   | Α   | Α                |    |    | S   | S             | ٧                |    |    | S        | S  | S               | W              | W  |
| 224      | 0.22        |   | Α   | Α                |    |    | S   | S             | Α                |    |    | S        | S  | ٧               | W              |    |
| 334      | 0.33        |   |     |                  |    |    | ٧   | ٧             | Α                |    |    | S        | S  | ٧               |                |    |
| 474      | 0.47        |   |     |                  |    |    | ٧   | ٧             | <b>M</b>         |    |    | S        | S  | ٧               |                |    |
| 684      | 0.68        |   |     |                  |    |    | Α   | Α             |                  |    |    | ٧        | ٧  | W               |                |    |
| 105      | 1           | Α |     |                  |    |    | Α   | Α             |                  |    |    | ٧        | ٧  | Α               |                |    |
| 155      | 1.5         |   |     |                  |    |    | //  |               |                  |    |    | W        | W  |                 |                |    |
| 225      | 2.2         |   |     |                  |    |    |     |               |                  |    |    | Α        | Α  |                 |                |    |
| 335      | 3.3         |   |     |                  |    |    |     |               |                  |    |    | <b>/</b> |    |                 |                |    |
| 475      | 4.7         |   |     |                  |    |    |     |               |                  |    |    |          |    |                 |                |    |
| 685      | 6.8         |   |     |                  |    |    |     |               |                  |    |    |          |    |                 |                |    |
| 106      | 10          |   |     |                  |    |    |     |               |                  |    |    |          |    |                 |                |    |

Solid = X7R





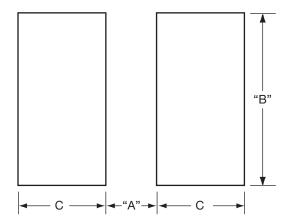

mm (in.) AU16 (0306)Code Thickness A 0.56 (0.022)

|      | mm (in.)     |
|------|--------------|
|      | AU16         |
| -    | (0508)       |
| Code | Thickness    |
| S    | 0.56 (0.022) |
| V    | 0.76 (0.030) |
| Α    | 1.02 (0.040) |

|      | mm (in.)     |
|------|--------------|
|      | AU16         |
| -    | (0612)       |
| Code | Thickness    |
| S    | 0.56 (0.022) |
| V    | 0.76 (0.030) |
| W    | 1.02 (0.040) |
| Α    | 1.27 (0.050) |

### **PHYSICAL DIMENSIONS AND PAD LAYOUT**




#### MM (IN.) **PHYSICAL DIMENSIONS**

|        | L                   | W               | t            |
|--------|---------------------|-----------------|--------------|
| AU16   | 0.81 ± 0.15         | 1.60 ± 0.15     | 0.13 min.    |
| (0306) | (0.032 ± 0.006)     | (0.063 ± 0.006) | (0.005 min.) |
| AU17   | 1.27 ± 0.25         | 2.00 ± 0.25     | 0.13 min.    |
| (0508) | $(0.050 \pm 0.010)$ | (0.080 ± 0.010) | (0.005 min.) |
| AU18   | 1.60 ± 0.25         | 3.20 ± 0.25     | 0.13 min.    |
| (0612) | (0.063 ± 0.010)     | (0.126 ± 0.010) | (0.005 min.) |

T - See Range Chart for Thickness and Codes

#### PAD LAYOUT DIMENSIONS MM (IN.)

|                | Α            | В            | С             |
|----------------|--------------|--------------|---------------|
| AU16<br>(0306) | 0.31 (0.012) | 1.52 (0.060) | 0.51 (0.020)  |
| AU17<br>(0508) | 0.51 (0.020) | 2.03 (0.080) | 0.51 (0.020)  |
| AU18<br>(0612) | 0.76 (0.030) | 3.05 (0.120) | 0.635 (0.025) |



# **MLCC Tin/Lead Termination "B" (LD Series)**

# COG (NPO) - General Specifications

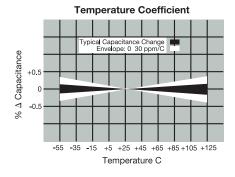


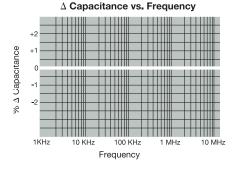


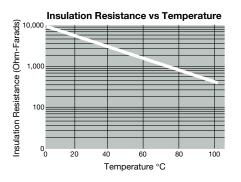
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

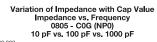
**Not RoHS Compliant** 

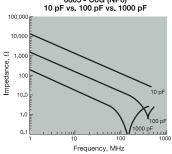
### PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

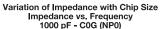

| LD05                                                                                                                                                        | 5                                                                                                              | <b>A</b>                                                     | 101                                                                  | <u>1</u>                                                                                                                                        | <b>A</b>                                 | <u>B</u>                                                                   | 2                                                                                | <u>A</u>                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|
| Size<br>LD02 - 0402<br>LD03 - 0603<br>LD04 - 0504*<br>LD05 - 0805<br>LD06 - 1206<br>LD10 - 1210<br>LD12 - 1812<br>LD13 - 1825<br>LD14 - 2225<br>LD14 - 2225 | Voltage<br>6.3V = 6<br>10V = Z<br>16V = Y<br>25V = 3<br>35V = D<br>50V = 5<br>100V = 1<br>200V = 2<br>500V = 7 | Dielectric<br>COG (NPO) = A<br>X7R = C<br>X5R = D<br>X8R = F | Capacitance<br>Code (In pF)<br>2 Sig. Digits +<br>Number of<br>Zeros | Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20% | Failure<br>Rate<br>A = Not<br>Applicable | Terminations B = 5% min lead X = FLEXITERM® with 5% min lead**  **X7R only | Packaging<br>2 = 7" Reel<br>4 = 13" Reel<br>Contact Factory<br>For<br>Multiples* | Special<br>Code<br>A = Std.<br>Product |

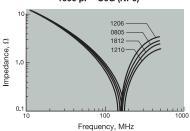

 $M = \pm 20\%$ 


\*LD04 has the same CV ranges as LD03.

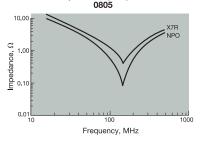

See FLEXITERM® section for CV options


NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.












Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R



The Important Information/Disclaimer is incorporated in these specifications by reference and should be reviewed in full before placing any order.





| Parame                       | ter/Test                                                            | NP0 Specification Limits                                               | Measuring Conditions                                                                                                                                                                         |
|------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating Tem                | perature Range                                                      | -55°C to +125°C                                                        | Temperature Cycle Chamber                                                                                                                                                                    |
| Capac                        | itance                                                              | Within specified tolerance                                             | Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF                                                                                                                                                       |
| (                            | 2                                                                   | <30 pF: Q≥ 400+20 x Cap Value<br>≥30 pF: Q≥ 1000                       | 1.0 kHz ± 10% for cap > 1000 pF<br>Voltage: 1.0Vrms ± .2V                                                                                                                                    |
| Insulation                   | Resistance                                                          | 100,000ΜΩ or 1000ΜΩ - μF,<br>whichever is less                         | Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity                                                                                                                        |
| Dielectric                   | : Strength                                                          | No breakdown or visual defects                                         | Charge device with 250% of rated voltage for<br>1-5 seconds, w/charge and discharge current<br>limited to 50 mA (max)<br>Note: Charge device with 150% of rated voltage<br>for 500V devices. |
|                              | Appearance                                                          | No defects                                                             | Deflection: 2mm                                                                                                                                                                              |
| Resistance to Flexure        | Capacitance<br>Variation                                            | ±5% or ±.5 pF, whichever is greater                                    | Test Time: 30 seconds  7 1mm/sec                                                                                                                                                             |
| Stresses                     | Q                                                                   | Meets Initial Values (As Above)                                        |                                                                                                                                                                                              |
|                              | Insulation<br>Resistance                                            | ≥ Initial Value x 0.3                                                  | 90 mm —                                                                                                                                                                                      |
| Solder                       | Resistance  Solderability  Appearance Capacitance Variation  e to Q | ≥ 95% of each terminal should be covered with fresh solder             | Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds                                                                                                                             |
|                              |                                                                     | No defects, <25% leaching of either end terminal                       |                                                                                                                                                                                              |
|                              |                                                                     | ≤ ±2.5% or ±.25 pF, whichever is greater                               | Dia during in contrasting allows a 00000 for 00                                                                                                                                              |
| Resistance to<br>Solder Heat | Q                                                                   | Meets Initial Values (As Above)                                        | Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2                                                                                                  |
| Solder Fleat                 |                                                                     | Meets Initial Values (As Above)                                        | hours before measuring electrical properties.                                                                                                                                                |
|                              |                                                                     | Meets Initial Values (As Above)                                        |                                                                                                                                                                                              |
|                              | Appearance                                                          | No visual defects                                                      | Step 1: -55°C ± 2° 30 ± 3 minutes                                                                                                                                                            |
|                              | Capacitance<br>Variation                                            | ≤ ±2.5% or ±.25 pF, whichever is greater                               | Step 2: Room Temp ≤ 3 minutes                                                                                                                                                                |
| Thermal Shock                | Q                                                                   | Meets Initial Values (As Above)                                        | Step 3: +125°C ± 2° 30 ± 3 minutes                                                                                                                                                           |
|                              | Insulation<br>Resistance                                            | Meets Initial Values (As Above)                                        | Step 4: Room Temp ≤ 3 minutes                                                                                                                                                                |
|                              | Dielectric<br>Strength                                              | Meets Initial Values (As Above)                                        | Repeat for 5 cycles and measure after 24 hours at room temperature                                                                                                                           |
|                              | Appearance                                                          | No visual defects                                                      |                                                                                                                                                                                              |
|                              | Capacitance<br>Variation                                            | ≤ ±3.0% or ± .3 pF, whichever is greater                               | Charge device with twice rated voltage in test<br>chamber set at 125°C ± 2°C                                                                                                                 |
| Load Life                    | Q                                                                   | ≥ 30 pF: Q≥ 350<br>≥10 pF, <30 pF: Q≥ 275 +5C/2<br><10 pF: Q≥ 200 +10C | for 1000 hours (+48, -0).  Remove from test chamber and stabilize at room                                                                                                                    |
|                              | Insulation<br>Resistance                                            | ≥ Initial Value x 0.3 (See Above)                                      | temperature for 24 hours  before measuring.                                                                                                                                                  |
|                              | Dielectric<br>Strength                                              | Meets Initial Values (As Above)                                        |                                                                                                                                                                                              |
|                              | Appearance                                                          | No visual defects                                                      |                                                                                                                                                                                              |
|                              | Capacitance<br>Variation                                            | ≤ ±5.0% or ± .5 pF, whichever is greater                               | Store in a test chamber set at 85°C ± 2°C/ 85% ±                                                                                                                                             |
| Load<br>Humidity             | Q                                                                   | ≥ 30 pF: Q≥ 350<br>≥10 pF, <30 pF: Q≥ 275 +5C/2<br><10 pF: Q≥ 200 +10C | 5% relative humidity for 1000 hours<br>(+48, -0) with rated voltage applied.                                                                                                                 |
|                              | Insulation<br>Resistance                                            | ≥ Initial Value x 0.3 (See Above)                                      | Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.                                                                                                     |
|                              | Dielectric<br>Strength                                              | Meets Initial Values (As Above)                                        |                                                                                                                                                                                              |
|                              |                                                                     |                                                                        |                                                                                                                                                                                              |

# C0G (NP0) - Capacitance Range



### **PREFERRED SIZES ARE SHADED**

|              |                | LD02 LD03 |                        |           |         | <u> </u>          |                    |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|--------------|----------------|-----------|------------------------|-----------|---------|-------------------|--------------------|--------|--------|--------------------------------------------|------------------------|------|--------|-------------------------------|--------|-----------------------|--------|--------|--------|
| SIZE         |                |           | LD02                   |           |         | LD                | 03                 |        |        |                                            | LD05                   |      |        |                               |        | LD0                   | 6      |        |        |
| Solderi      | ing            | Re        | eflow/Wa               | ive       |         | Reflow            | v/Wave             |        |        | Re                                         | flow/Wa                | ve   |        |                               |        | Reflow/\              | Wave   |        |        |
| Packag       |                |           | All Paper              |           |         |                   | aper               |        |        |                                            | er/Embos               |      |        |                               | Pa     | aper/Eml              |        |        |        |
| (L) Length   | mm<br>(in.)    |           | .00 ± 0.1<br>040 ± 0.0 |           |         |                   | ± 0.15<br>± 0.006) |        |        |                                            | .01 ± 0.2<br>)79 ± 0.0 |      |        |                               | (      | 3.20 ± (<br>0.126 ± ( |        |        |        |
| W) Width     | mm<br>(in.)    |           | .50 ± 0.1<br>020 ± 0.0 |           |         |                   | ± 0.15<br>± 0.006) |        |        |                                            | .25 ± 0.2<br>049 ± 0.0 |      |        |                               | (      | 1.60 ± (<br>0.063 ± ( |        |        |        |
| (t) Terminal | mm             | 0         | .25 ± 0.1              | 5         |         | 0.35 :            | ± 0.15             |        |        | 0                                          | .50 ± 0.2              | 5    |        |                               |        | 0.50 ± 0              | 0.25   |        |        |
| (7           | (in.)<br>WVDC  | 16        | 010 ± 0.0<br>25        | 50        | 16      | 25                | ± 0.006)<br>50     | 100    | 16     | 25                                         | 020 ± 0.0<br>50        | 100  | 200    | 16                            | 25     | 0.020 ± 0             | 100    | 200    | 500    |
| Cap<br>(pF)  | 0.5<br>1.0     | C         | C                      | C         | G       | G<br>G            | G<br>G             | G<br>G | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
| (P.)         | 1.2            | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 1.5<br>1.8     | C         | C                      | C         | G       | G<br>G            | G                  | G      | J      | J                                          | J                      | J    | J<br>J | J                             | J      | J                     | J      | J      | J      |
|              | 2.2<br>2.7     | C         | C<br>C                 | C         | G<br>G  | G<br>G            | G<br>G             | G<br>G | J<br>J | J<br>J                                     | J<br>J                 | J    | J      | J                             | J      | J                     | J      | J<br>J | J<br>J |
|              | 3.3            | C         | C                      | C         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 3.9<br>4.7     | C<br>C    | C                      | C         | G       | G<br>G            | G<br>G             | G<br>G | J<br>J | J                                          | J<br>J                 | J    | J<br>J | J                             | J      | J                     | J      | J      | J<br>J |
|              | 5.6            | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 6.8<br>8.2     | C<br>C    | C                      | C         | G<br>G  | G<br>G            | G<br>G             | G<br>G | J<br>J | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 10<br>12       | C         | C                      | C         | G<br>G  | G<br>G            | G<br>G             | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 15             | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 18<br>22       | C<br>C    | C                      | C         | G       | G<br>G            | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J<br>J |
|              | 27             | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 33<br>39       | C<br>C    | C                      | C         | G       | G<br>G            | G<br>G             | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 47<br>56       | C<br>C    | C                      | C         | G<br>G  | G<br>G            | G<br>G             | G      | J<br>J | J                                          | J                      | J    | J<br>J | J                             | J      | J                     | J      | J      | J      |
|              | 68             | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 82<br>100      | C<br>C    | C                      | C         | G       | G<br>G            | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 120            | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 150<br>180     | C<br>C    | C                      | C         | G<br>G  | G<br>G            | G<br>G             | G      | J      | J                                          | J                      | J    | J      | J                             | J      | J                     | J      | J      | J      |
|              | 220<br>270     | C         | C                      | C         | G<br>G  | G<br>G            | G<br>G             | G<br>G | J<br>J | J                                          | J                      | J    | J<br>M | J                             | J      | J                     | J      | J      | M<br>M |
|              | 330            | С         | С                      | С         | G       | G                 | G                  | G      | J      | J                                          | J                      | J    | М      | J                             | J      | J                     | J      | J      | М      |
|              | 390<br>470     | C<br>C    | C                      | C         | G       | G<br>G            | G<br>G             | G      | J      | J                                          | J                      | J    | M<br>M | J                             | J      | J                     | J      | J      | M<br>M |
|              | 560<br>680     |           |                        |           | G<br>G  | G<br>G            | G<br>G             |        | J      | J                                          | J                      | ٦٦   | М      | J                             | J      | J                     | J      | J      | M<br>P |
|              | 820            |           |                        |           | G       | G                 | G                  |        | J      | J                                          | J                      | J    |        | J                             | J      | J                     | J      | М      | ·      |
|              | 1000<br>1200   |           |                        |           | G       | G<br>G            | G                  |        | J      | J                                          | J                      | J    |        | J                             | J      | J                     | J      | Q<br>Q |        |
|              | 1500<br>1800   |           |                        |           |         |                   |                    |        | J      | J                                          | J                      |      |        | J                             | J      | J<br>M                | M<br>M | Q      |        |
|              | 2200           |           |                        |           |         |                   |                    |        | J      | J                                          | N                      |      |        | J                             | J      | М                     | Р      |        |        |
|              | 2700<br>3300   |           |                        |           |         |                   |                    |        | J      | J                                          | N                      |      |        | J                             | J      | M<br>M                | P<br>P |        |        |
|              | 3900<br>4700   |           |                        |           |         |                   |                    |        | J      | J<br>J                                     |                        |      |        | J                             | J      | М                     | P<br>P |        |        |
|              | 5600           |           |                        |           |         |                   |                    |        | J      | J                                          |                        |      |        | J                             | J      | M                     | F      |        |        |
|              | 6800<br>8200   |           |                        |           |         |                   |                    |        |        |                                            |                        |      |        | M<br>M                        | M<br>M |                       |        |        |        |
| Cap<br>(pE)  | 0.010          |           |                        |           |         |                   |                    |        |        |                                            |                        |      |        | M                             | M      |                       |        |        |        |
| (pF)         | 0.012<br>0.015 |           |                        |           |         |                   | <br>               |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|              | 0.018<br>0.022 |           |                        | -1->      |         | W-                | · _                |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|              | 0.027          |           | ~                      | $\langle$ |         | ) ) `             | <b>T</b> _         |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|              | 0.033          |           | '                      |           |         |                   |                    |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|              | 0.047          |           | L                      |           | 4       |                   | _                  |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|              | 0.082          |           |                        |           | '  <br> |                   | ı                  |        |        |                                            |                        |      |        |                               |        |                       |        |        |        |
|              | 0.1<br>WVDC    | 16        | 25                     | 50        | 16      | 25                | 50                 | 100    | 16     | 25                                         | 50                     | 100  | 200    | 16                            | 25     | 50                    | 100    | 200    | 500    |
|              | SIZE           | .5        | LD02                   |           |         |                   | 003                | .00    | .5     |                                            | LD05                   |      |        |                               |        | LD0                   |        |        |        |
| Letter       | Α              | C E G J   |                        |           | K       | K M N P           |                    |        |        |                                            | Q X Y Z                |      |        |                               |        |                       |        |        |        |
| Max.         | 0.33           | 0.5       |                        | 0.71      | 0.90    |                   | 1.94               | 1.02   | 1.27   |                                            | 1.40                   | 1.52 | 1.7    | 78                            | 2.29   | 2.54                  | F      | 2.79   |        |
| Thickness    | (0.013)        | (0.0      | (0.022) (0.028) PAPER  |           |         | , , , , , , , , , |                    |        |        | ) (0.050) (0.055) (0.060) (0.0<br>EMBOSSEI |                        |      |        | .070) (0.090) (0.100) (0.110) |        |                       |        |        |        |

# C0G (NP0) - Capacitance Range



### **PREFERRED SIZES ARE SHADED**

| SIZ               | 7E             |        |           | LD10                    |                 |        |        |                 | LD12                    |        |             |         | LD13                          |             |         | LD14                         |              |
|-------------------|----------------|--------|-----------|-------------------------|-----------------|--------|--------|-----------------|-------------------------|--------|-------------|---------|-------------------------------|-------------|---------|------------------------------|--------------|
| Solde             |                |        | F         | Reflow On               | ıly             |        |        | R               | Reflow Or               | nly    |             |         | Reflow Only                   |             |         | Reflow Only                  |              |
| Packa             | ging           |        | Pap       | er/Embo                 | ssed            |        |        | Al              | l Emboss                | sed    |             |         | All Embosse                   | d .         |         | All Embossed                 |              |
| (L) Length        | mm<br>(in.)    |        |           | 3.20 + 0.2<br>126 ± 0.0 |                 |        |        |                 | 1.50 ± 0.3<br>177 ± 0.0 |        |             |         | 4.50 ± 0.30<br>(0.177 ± 0.01) | <b>)</b> )  |         | 5.72 ± 0.25<br>0.225 ± 0.010 | )            |
| W) Width          | mm             |        | - 2       | 2.50 ± 0.2<br>098 ± 0.0 | .0              |        |        | 3               | 3.20 ± 0.2<br>126 ± 0.0 | 20     |             |         | 6.40 ± 0.40                   |             |         | 6.35 ± 0.25<br>0.250 ± 0.010 | ,            |
| (t) Terminal      | (in.)<br>mm    |        |           | 0.50 ± 0.2              | :5              |        |        |                 | 0.61 ± 0.3              | 36     |             |         | 0.252 ± 0.010<br>0.61 ± 0.36  |             |         | 0.64 ± 0.39                  |              |
| (4)               | (in.)<br>WVDC  | 25     | (0.<br>50 | 020 ± 0.0<br>100        | 200             | 500    | 25     | 50              | 024 ± 0.0<br>100        | 200    | 500         | 50      | (0.024 ± 0.014<br>100         | 200         | 50      | 0.025 ± 0.015<br>100         | 200          |
| Cap               | 0.5<br>1.0     |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         |                              |              |
| (pF)              | 1.2            |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 1.5<br>1.8     |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 2.2            |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         |                              | ₩ →          |
|                   | 2.7<br>3.3     |        |           |                         |                 |        |        |                 |                         |        |             |         | +                             |             |         |                              | ) <u>T</u> T |
|                   | 3.9<br>4.7     |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         |                              | 1            |
|                   | 5.6            |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         | a-t                          |              |
|                   | 6.8<br>8.2     |        |           |                         |                 |        |        |                 |                         |        |             |         |                               |             |         |                              | I            |
|                   | 10<br>12       |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 15             |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 18<br>22       |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 27             |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 33<br>39       |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 47<br>56       |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 68             |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 82<br>100      |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 120<br>150     |        |           |                         |                 | J<br>J |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 180            |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 220<br>270     |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 330<br>390     |        |           |                         |                 | J      |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 470            |        |           |                         |                 | M<br>M |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 560<br>680     | J      | J         | J                       | J               | M<br>M |        |                 |                         |        |             |         |                               |             |         |                              |              |
|                   | 820            | J      | J         | J                       | J               | М      | 17     | 1/              | 1/                      | I/     |             |         |                               |             |         |                              | D            |
|                   | 1000<br>1200   | J      | J         | J                       | J<br>M          | M<br>M | K<br>K | K               | K<br>K                  | K<br>K | M<br>M      | M<br>M  | M<br>M                        | M<br>M      | M<br>M  | M<br>M                       | P<br>P       |
|                   | 1500<br>1800   | J      | J         | J                       | M<br>M          | М      | K<br>K | K               | K<br>K                  | K<br>K | M<br>M      | M<br>M  | M<br>M                        | M<br>M      | M<br>M  | M<br>M                       | P<br>P       |
|                   | 2200           | J      | J         | J                       | Q               |        | K      | K               | K                       | K      | Р           | М       | М                             | М           | M       | М                            | P            |
|                   | 2700<br>3300   | J      | J         | J                       | Q               |        | K      | K               | K<br>K                  | P<br>P | Q<br>Q      | M<br>M  | M<br>M                        | M           | M<br>M  | M<br>M                       | P<br>P       |
|                   | 3900<br>4700   | J      | J         | M<br>M                  |                 |        | K<br>K | K<br>K          | K<br>K                  | P<br>P | Q           | M<br>M  | M<br>M                        | M<br>M      | M<br>M  | M<br>M                       | P<br>P       |
|                   | 5600           | J      | J         | IVI                     |                 |        | K      | K               | М                       | Р      | X           | М       | М                             | М           | М       | М                            | Р            |
|                   | 6800<br>8200   | J<br>J | J         |                         |                 |        | K<br>K | K<br>M          | M<br>M                  | Χ      |             | M<br>M  | M<br>M                        | М           | M<br>M  | M<br>M                       | P<br>P       |
| Cap<br>(pF)       | 0.010          | J<br>J | J         |                         |                 |        | K      | М               | М                       |        |             | M       | M<br>M                        |             | M       | М                            | P<br>P       |
| (pi )             | 0.012<br>0.015 | J      | J         |                         |                 |        | K<br>M | M<br>M          |                         |        |             | M<br>M  | M                             |             | M<br>M  | M<br>M                       | Υ            |
|                   | 0.018<br>0.022 |        |           |                         |                 |        | M<br>M | M<br>M          |                         |        |             | P<br>P  | М                             |             | M<br>M  | M<br>Y                       | Y<br>Y       |
|                   | 0.027          |        |           |                         |                 |        | М      | М               |                         |        |             | Р       |                               |             | Р       | Ý                            | Ϋ́           |
|                   | 0.033<br>0.039 |        |           |                         |                 |        | M<br>M | M<br>M          |                         |        |             | P<br>P  |                               |             | P<br>P  |                              |              |
|                   | 0.047<br>0.068 |        |           |                         | $\vdash$        |        | M<br>M | M               |                         |        |             | Р       |                               |             | P<br>P  |                              |              |
|                   | 0.082          |        |           |                         |                 |        | M      | M               |                         |        |             |         |                               |             | Q       |                              |              |
|                   | 0.1<br>WVDC    | 25     | 50        | 100                     | 200             | 500    | 25     | 50              | 100                     | 200    | 500         | 50      | 100                           | 200         | Q<br>50 | 100                          | 200          |
| SIZ               |                |        |           | LD10                    |                 |        |        |                 | LD12                    |        |             |         | LD13                          |             |         | LD14                         |              |
| Letter            | А              | С      |           | Е                       | G               | J      |        | K               | М                       |        | N           | Р       |                               | Х У         | Z       | _                            |              |
| Max.<br>Thickness | 0.33 (0.013)   | (0.02  |           | 0.71                    | 0.90<br>(0.035) | 0.9    |        | 1.02<br>(0.040) | 1.27                    |        | .40<br>055) | 1.52    |                               | .29 2.54    |         |                              |              |
|                   |                |        |           |                         |                 |        |        |                 |                         |        |             | (0.060) |                               | 090) (0.100 |         |                              |              |

### X8R - General Specifications





AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

**Not RoHS Compliant** 

### PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

| LD05                                                                                                                                                        | <u>5</u>                                                                                                       | F                     | 101                                                                  | <u>J</u>                                                                                                                                                                                                                       | <u>A</u>                                 | <u>B</u>                                                                   | 2                                                                                | <u>A</u>                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|
| Size<br>LD02 - 0402<br>LD03 - 0603<br>LD04 - 0504*<br>LD05 - 0805<br>LD06 - 1206<br>LD10 - 1210<br>LD12 - 1812<br>LD13 - 1825<br>LD14 - 2225<br>LD20 - 2220 | Voltage<br>6.3V = 6<br>10V = Z<br>16V = Y<br>25V = 3<br>35V = D<br>50V = 5<br>100V = 1<br>200V = 2<br>500V = 7 | Dielectric<br>X8R = F | Capacitance<br>Code (In pF)<br>2 Sig. Digits +<br>Number of<br>Zeros | Capacitance<br>Tolerance<br>B = $\pm$ .10 pF (<10pF)<br>C = $\pm$ .25 pF (<10pF)<br>D = $\pm$ .50 pF (<10pF)<br>F = $\pm$ 1% ( $\geq$ 10 pF)<br>G = $\pm$ 2% ( $\geq$ 10 pF)<br>J = $\pm$ 5%<br>K = $\pm$ 10%<br>M = $\pm$ 20% | Failure<br>Rate<br>A = Not<br>Applicable | Terminations B = 5% min lead X = FLEXITERM® with 5% min lead**  **X7R only | Packaging<br>2 = 7" Reel<br>4 = 13" Reel<br>Contact Factory<br>For<br>Multiples* | Special<br>Code<br>A = Std.<br>Product |

LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

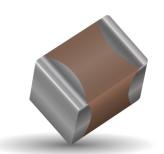
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.





| Parame                       | ter/Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X8R Specification Limits                                          | Measuring                                                                                                | Conditions                                                   |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Operating Tem                | perature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -55°C to +150°C                                                   | Temperature C                                                                                            | ycle Chamber                                                 |
| Capac                        | itance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Within specified tolerance                                        | <br>                                                                                                     | ·⊔¬ ± 10%                                                    |
| Dissipati                    | resses  Dissipation Factor Insulation Resistance  Solderability  Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Dissipation Dissipation Dissipation Dissipation Dissipation Dissipation Dissipation Dissipation | ≤ 2.5% for ≥ 50V DC rating<br>≤ 3.5% for 25V DC and 16V DC rating | Voltage: 1.0                                                                                             |                                                              |
| Insulation                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000MΩ or 1000MΩ - μF,<br>whichever is less                    | Charge device with<br>120 ± 5 secs @ roo                                                                 |                                                              |
| Dielectric                   | : Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No breakdown or visual defects                                    | Charge device with 250<br>1-5 seconds, w/charge<br>limited to 50<br>Note: Charge device with<br>for 500V | and discharge current<br>mA (max)<br>n 150% of rated voltage |
|                              | Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No defects                                                        | Deflectio                                                                                                | n: 2mm                                                       |
| Resistance to                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ ±12%                                                            | Test Time: 3                                                                                             | 80 seconds<br>7 1mm/sec                                      |
| Flexure<br>Stresses          | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meets Initial Values (As Above)                                   |                                                                                                          |                                                              |
|                              | Factor Insulation Resistance  Solderability  Appearance Capacitance Variation Dissipation Factor Insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≥ Initial Value x 0.3                                             | 90 r                                                                                                     | mm                                                           |
| Solder                       | rability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≥ 95% of each terminal should be covered with fresh solder        | Dip device in eutection for 5.0 ± 0.                                                                     | solder at 230 ± 5°C<br>5 seconds                             |
|                              | Insulation Resistance  Solderability  Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No defects, <25% leaching of either end terminal                  |                                                                                                          |                                                              |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ ±7.5%                                                           |                                                                                                          |                                                              |
| Resistance to<br>Solder Heat |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   | Dip device in eutectic s<br>seconds. Store at room                                                       | temperature for 24 ± 2                                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   | hours before measuring                                                                                   | g electrical properties.                                     |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   |                                                                                                          |                                                              |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No visual defects                                                 | Step 1: -55°C ± 2°                                                                                       | 30 ± 3 minutes                                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ ±7.5%                                                           | Step 2: Room Temp                                                                                        | ≤ 3 minutes                                                  |
| Thermal Shock                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   | Step 3: +125°C ± 2°                                                                                      | 30 ± 3 minutes                                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   | Step 4: Room Temp                                                                                        | ≤ 3 minutes                                                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   | Repeat for 5 cycles<br>24 ± 2 hours at ro                                                                | and measure after<br>om temperature                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No visual defects                                                 |                                                                                                          |                                                              |
|                              | Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ ±12.5%                                                          | Charge device with 1.5 r                                                                                 |                                                              |
| Load Life                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ Initial Value x 2.0 (See Above)                                 | for 1000 hou                                                                                             |                                                              |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥ Initial Value x 0.3 (See Above)                                 | Remove from test chamb<br>temperature for 24 ± 2 h                                                       |                                                              |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meets Initial Values (As Above)                                   |                                                                                                          |                                                              |
|                              | Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No visual defects                                                 |                                                                                                          |                                                              |
|                              | Strength Appearance Capacitance Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ ±12.5%                                                          | Store in a test chamber s<br>5% relative humidi                                                          |                                                              |
| Load<br>Humidity             | Dissipation<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ Initial Value x 2.0 (See Above)                                 | (+48, -0) with rated                                                                                     |                                                              |
| numicity                     | Insulation<br>Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≥ Initial Value x 0.3 (See Above)                                 | Remove from chamber<br>temperature an                                                                    | d humidity for                                               |
|                              | Dielectric<br>Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meets Initial Values (As Above)                                   | 24 ± 2 hours bef                                                                                         | ore measuring.                                               |






|        | SIZ   | ΖE    |     |         | LDC | )3  |   |         | LD0 | 5  |      | LD06 |     |     |  |
|--------|-------|-------|-----|---------|-----|-----|---|---------|-----|----|------|------|-----|-----|--|
|        |       | WVD   | OC  | 2       | 5V  | 50V |   | 25V     | Т   | 50 | )V   | 25V  |     | 50V |  |
| 271    | Cap   | 270   |     |         | G   | G   |   |         |     |    |      |      |     |     |  |
| 331    | (pF)  | 330   |     |         | G   | G   |   | J       |     |    | J    |      |     |     |  |
| 471    |       | 470   |     |         | G   | G   |   | J       |     | ,  | J    |      |     |     |  |
| 681    |       | 680   |     |         | G   | G   |   | J       |     | ,  | J    |      | Î   |     |  |
| 102    |       | 1000  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 152    |       | 1500  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 182    |       | 1800  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 222    |       | 2200  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 272    |       | 2700  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 332    |       | 3300  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 392    |       | 3900  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 472    |       | 4700  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 562    |       | 5600  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 682    |       | 6800  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 822    | Cap   | 8200  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 103    | (µF)  | 0.01  |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 123    |       | 0.012 |     |         | G   | G   |   | J       |     | J  |      | J    |     | J   |  |
| 153    |       | 0.015 |     | G       |     | G   |   | J       |     | J  |      | J    |     | J   |  |
| 183    |       | 0.018 |     | G       |     | G   |   | J       |     | J  |      | J    |     | J   |  |
| 223    |       | 0.022 |     | G       |     | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 273    |       | 0.027 |     |         | G   | G   |   | J       |     | ,  | J    | J    |     | J   |  |
| 333    |       | 0.033 |     |         | G   | G   |   | J       |     |    | J    | J    |     | J   |  |
| 393    |       | 0.039 |     |         | G   | G   |   | J       |     |    | J    | J    |     | J   |  |
| 473    |       | 0.047 |     |         | G   | G   |   | J       |     |    | J    | J    |     | J   |  |
| 563    |       | 0.056 |     |         | G   |     |   | N       |     |    | ١    | М    |     | М   |  |
| 683    |       | 0.068 |     |         | G   |     |   | N       |     |    | ١    | М    |     | М   |  |
| 823    |       | 0.082 |     |         |     |     |   | N       |     |    | ١    | M    |     | М   |  |
| 104    |       | 0.1   |     |         |     |     |   | N       |     |    | ١    | М    |     | М   |  |
| 124    |       | 0.12  |     |         |     |     |   | N       |     |    | 1    | М    |     | М   |  |
| 154    |       | 0.15  |     |         |     |     |   | N       |     | 1  | 1    | М    |     | M   |  |
| 184    |       | 0.18  |     |         |     |     |   | N       |     |    |      | М    |     | М   |  |
| 224    |       | 0.22  |     |         |     |     |   | N       |     |    |      | М    |     | M   |  |
| 274    |       | 0.27  |     |         |     |     |   |         |     |    |      | М    |     | М   |  |
| 334    |       | 0.33  |     | 1       |     |     |   |         |     |    |      | М    |     | M   |  |
| 394    |       | 0.39  |     | 1       |     |     |   |         |     |    |      | М    |     |     |  |
| 474    |       | 0.47  |     |         |     |     |   |         |     |    |      | М    |     |     |  |
| 684    |       | 0.68  |     | 1       |     |     |   |         |     |    |      |      |     |     |  |
| 824    |       | 0.82  |     |         |     |     |   |         |     |    |      |      |     |     |  |
| 105    | 05 1  |       |     |         |     |     |   |         |     |    |      |      |     |     |  |
|        | WVDC  |       |     | 25V 50V |     |     |   | 25V 50V |     | )V | 25V  |      | 50V |     |  |
|        | SIZE  |       |     | LD03    |     |     |   | LD05    |     |    | LD06 |      |     |     |  |
| Letter | Α     | С     | l E | G       | J   | K   | М | l N     |     | Р  | Q    | l X  | ΙΥ  | Z   |  |
|        | - / \ |       | _   |         |     | - 1 |   | - ''    |     | •  | ۷    | ^    |     |     |  |

| Letter    | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMB     | OSSED   |         |         |         |

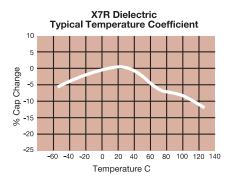
### **X7R - General Specifications**

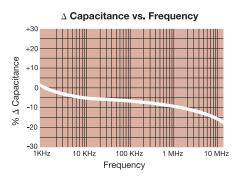


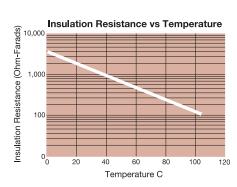


AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

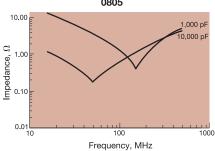
**Not RoHS Compliant** 

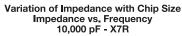

### PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

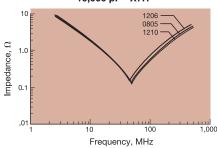

| LD05         | <u>5</u> | <u>c</u>   | 101             | <del>J</del>                      | <u>A</u>   | <u>B</u>        | <u>2</u>        | <u>A</u> |
|--------------|----------|------------|-----------------|-----------------------------------|------------|-----------------|-----------------|----------|
| Size         | Voltage  | Dielectric | Capacitance     | Capacitance                       | Failure    | Terminations    | Packaging       | Special  |
| LD03 - 0603  | 6.3V = 6 | X7R = C    | Code (In pF)    | Tolerance                         | Rate       | B = 5% min lead | 2 = 7" Reel     | Code     |
| LD04 - 0504* | 10V = Z  |            | 2 Sig. Digits + | $B = \pm .10 pF (<10pF)$          | A = Not    | X = FLEXITERM®  | 4 = 13" Reel    | A = Std. |
| LD05 - 0805  | 16V = Y  |            | Number of       | $C = \pm .25  pF  (< 10 pF)$      | Applicable | with 5% min     |                 | Product  |
| LD06 - 1206  | 25V = 3  |            | Zeros           | $D = \pm .50  pF  (< 10 pF)$      | • •        | lead**          | Contact Factory |          |
| LD10 - 1210  | 35V = D  |            |                 | F = ±1% (≥ 10 pF)                 |            |                 | For             |          |
| LD12 - 1812  | 50V = 5  |            |                 | $G = \pm 2\% (\ge 10 \text{ pF})$ |            | **X7R only      | Multiples*      |          |
| LD13 - 1825  | 100V = 1 |            |                 | J = ±5%                           |            | ,               |                 |          |
| LD14 - 2225  | 200V = 2 |            |                 | K = ±10%                          |            |                 |                 |          |
| LD20 - 2220  | 500V = 7 |            |                 | $M = \pm 20\%$                    |            |                 |                 |          |


<sup>\*</sup>LD04 has the same CV ranges as LD03.

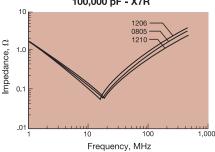
See FLEXITERM® section for CV options


Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.







Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805





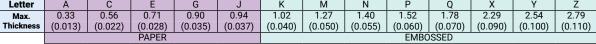


Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R








| Parame                       | ter/Test                                                                                                                                                                                                                                                                                                                                                                            | X7R Specification Limits                                                                                                   | Measuring (                                                                                                                               | Conditions                                                   |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| Operating Tem                | perature Range                                                                                                                                                                                                                                                                                                                                                                      | -55°C to +125°C                                                                                                            | Temperature C                                                                                                                             | ycle Chamber                                                 |  |  |  |  |
| Capac                        | itance                                                                                                                                                                                                                                                                                                                                                                              | Within specified tolerance                                                                                                 |                                                                                                                                           |                                                              |  |  |  |  |
| Dissipati                    | on Factor                                                                                                                                                                                                                                                                                                                                                                           | ≤ 10% for ≥ 50V DC rating<br>≤ 12.5% for 25V DC rating<br>≤ 12.5% for 25V and 16V DC rating<br>≤ 12.5% for ≤ 10V DC rating | Freq.: 1.0 k<br>Voltage: 1.0'                                                                                                             |                                                              |  |  |  |  |
| Insulation                   | Resistance                                                                                                                                                                                                                                                                                                                                                                          | 100,000MΩ or 1000MΩ - μF,<br>whichever is less                                                                             | Charge device with<br>120 ± 5 secs @ roo                                                                                                  |                                                              |  |  |  |  |
| Dielectric                   | : Strength                                                                                                                                                                                                                                                                                                                                                                          | No breakdown or visual defects                                                                                             | Charge device with 250<br>1-5 seconds, w/charge<br>limited to 50<br>Note: Charge device with<br>for 500V                                  | and discharge current<br>mA (max)<br>n 150% of rated voltage |  |  |  |  |
|                              | Appearance                                                                                                                                                                                                                                                                                                                                                                          | No defects                                                                                                                 | Deflectio                                                                                                                                 | n: 2mm                                                       |  |  |  |  |
| Resistance to                | Capacitance<br>Variation                                                                                                                                                                                                                                                                                                                                                            | ≤ ±12%                                                                                                                     | Test Time: 3                                                                                                                              | 0 seconds<br>7 1mm/sec                                       |  |  |  |  |
| Flexure<br>Stresses          | Dissipation<br>Factor                                                                                                                                                                                                                                                                                                                                                               | Meets Initial Values (As Above)                                                                                            |                                                                                                                                           |                                                              |  |  |  |  |
|                              | Insulation<br>Resistance                                                                                                                                                                                                                                                                                                                                                            | ≥ Initial Value x 0.3                                                                                                      | 90 n                                                                                                                                      | mm                                                           |  |  |  |  |
| Solder                       | rability                                                                                                                                                                                                                                                                                                                                                                            | ≥ 95% of each terminal should be covered with fresh solder                                                                 | Dip device in eutectic<br>for 5.0 ± 0.5                                                                                                   |                                                              |  |  |  |  |
|                              | Appearance                                                                                                                                                                                                                                                                                                                                                                          | No defects, <25% leaching of either end terminal                                                                           |                                                                                                                                           |                                                              |  |  |  |  |
|                              | Capacitance<br>Variation                                                                                                                                                                                                                                                                                                                                                            | ≤ ±7.5%                                                                                                                    |                                                                                                                                           |                                                              |  |  |  |  |
| Resistance to<br>Solder Heat | Appearance Capacitance Variation Dissipation Factor Insulation Resistance Olderability Appearance Capacitance Variation Dissipation Resistance Insulation Dissipation Factor Insulation Factor Insulation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation | Meets Initial Values (As Above)                                                                                            | Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. |                                                              |  |  |  |  |
|                              | Resistance                                                                                                                                                                                                                                                                                                                                                                          | Meets Initial Values (As Above)                                                                                            | nours before measuring                                                                                                                    | g electrical properties.                                     |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | Meets Initial Values (As Above)                                                                                            |                                                                                                                                           |                                                              |  |  |  |  |
|                              | Appearance                                                                                                                                                                                                                                                                                                                                                                          | No visual defects                                                                                                          | Step 1: -55°C ± 2°                                                                                                                        | 30 ± 3 minutes                                               |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | ≤ ±7.5%                                                                                                                    | Step 2: Room Temp                                                                                                                         | ≤ 3 minutes                                                  |  |  |  |  |
| Thermal Shock                |                                                                                                                                                                                                                                                                                                                                                                                     | Meets Initial Values (As Above)                                                                                            | Step 3: +125°C ± 2°                                                                                                                       | 30 ± 3 minutes                                               |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | Meets Initial Values (As Above)                                                                                            | Step 4: Room Temp                                                                                                                         | ≤ 3 minutes                                                  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | Meets Initial Values (As Above)                                                                                            | Repeat for 5 cycles<br>24 ± 2 hours at ro                                                                                                 |                                                              |  |  |  |  |
|                              | · · ·                                                                                                                                                                                                                                                                                                                                                                               | No visual defects                                                                                                          |                                                                                                                                           |                                                              |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | ≤ ±12.5%                                                                                                                   | Charge device with 1.5 r                                                                                                                  | ated voltage (≤ 10V) in                                      |  |  |  |  |
| Load Life                    |                                                                                                                                                                                                                                                                                                                                                                                     | ≤ Initial Value x 2.0 (See Above)                                                                                          | test chamber set<br>for 1000 hou                                                                                                          |                                                              |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | ≥ Initial Value x 0.3 (See Above)                                                                                          | Remove from test chamb<br>temperature for 24 ± 2 ho                                                                                       |                                                              |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                     | Meets Initial Values (As Above)                                                                                            |                                                                                                                                           |                                                              |  |  |  |  |
|                              | Appearance                                                                                                                                                                                                                                                                                                                                                                          | No visual defects                                                                                                          |                                                                                                                                           |                                                              |  |  |  |  |
|                              | Variation                                                                                                                                                                                                                                                                                                                                                                           | ≤ ±12.5%                                                                                                                   | Store in a test chamber s<br>5% relative humidi                                                                                           |                                                              |  |  |  |  |
| Load<br>Humidity             | Dissipation<br>Factor                                                                                                                                                                                                                                                                                                                                                               | ≤ Initial Value x 2.0 (See Above)                                                                                          | (+48, -0) with rated                                                                                                                      |                                                              |  |  |  |  |
| numany                       | Insulation<br>Resistance                                                                                                                                                                                                                                                                                                                                                            | ≥ Initial Value x 0.3 (See Above)                                                                                          | Remove from chamber temperature an                                                                                                        | d humidity for                                               |  |  |  |  |
|                              | Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation    | Meets Initial Values (As Above)                                                                                            | 24 ± 2 hours bef                                                                                                                          | ore measuring.                                               |  |  |  |  |

### X7R - Capacitance Range



### PREFERRED SIZES ARE SHADED

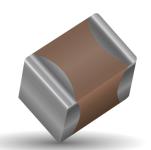
|              |              |     |                  |          |          | LD03                                             |        |                  |        |     |                                                  |      |        |        |                  |        |        |        |        |          |        | 1            |        |        |     |          |
|--------------|--------------|-----|------------------|----------|----------|--------------------------------------------------|--------|------------------|--------|-----|--------------------------------------------------|------|--------|--------|------------------|--------|--------|--------|--------|----------|--------|--------------|--------|--------|-----|----------|
| SIZI         | E            |     | LD02             | 2        |          |                                                  |        | LD03             | 3      |     |                                                  |      |        |        | LD05             | 5      |        |        |        |          |        | LD           | 06     |        |     |          |
| Solder       | ing          | Ref | flow/W           | /ave     |          |                                                  | Ref    | flow/W           | /ave   |     |                                                  |      |        | Ref    | flow/W           | /ave   |        |        |        |          |        | Reflow       | /Wave  | 9      |     |          |
| Packad       | ina          | Α   | II Pap           | er       |          |                                                  | A      | II Par           | er     |     |                                                  |      | F      | Paper  | /Emb             | osse   | d      |        |        |          | Pai    | per/Er       | nbos   | sed    |     |          |
| (L) Length   | mm           | 1.0 | 00 ± 0           | .10      |          |                                                  | 1.     | 60 ± 0           | .15    |     |                                                  |      |        | 2.     | 01 ± 0           | .20    |        |        |        |          |        | 3.20 ±       | 0.20   |        |     |          |
| (=) ==::9::: | (in.)        |     | 40 ± 0<br>50 ± 0 |          |          |                                                  |        | 63 ± 0<br>81 ± 0 |        |     |                                                  |      |        |        | 79 ± 0<br>25 ± 0 |        |        |        |        |          | (      | 0.126 ± 1.60 |        | 8)     |     |          |
| W) Width     | mm<br>(in.)  |     | 30 ± 0<br>20 ± 0 |          |          |                                                  |        | 32 ± 0           |        |     |                                                  |      |        |        | 25 ± 0<br>49 ± 0 |        |        |        |        |          | (      | 1.60 ±       |        | 8)     |     |          |
| (t) Terminal | mm           | 0.: | 25 ± 0           | .15      |          |                                                  | 0.     | 35 ± 0           | .15    |     |                                                  |      |        | 0.     | 50 ± 0           | .25    |        |        |        |          |        | 0.50 ±       | 0.25   |        |     |          |
| ` '          | (in.)        |     | 10 ± 0           |          | 100      | 100                                              |        | 14 ± 0           |        | 100 |                                                  | 6.0  | 1 40   |        | 20 ± 0           |        | 1 400  | 1 000  | 6.0    | 1 40     |        | 0.020 ±      |        |        |     | 1.500    |
| Cap          | 100          | 16  | 25               | 50       | 6.3      | 10                                               | 16     | 25               | 50     | 100 | 200                                              | 6.3  | 10     | 16     | 25               | 50     | 100    | 200    | 6.3    | 10       | 16     | 25           | 50     | 100    | 200 | 500      |
| (pF)         | 150          |     |                  |          |          |                                                  |        |                  |        |     |                                                  |      |        |        |                  |        |        |        |        |          |        |              |        |        |     |          |
| (Pi)         | 220          |     |                  | С        |          |                                                  |        |                  |        |     |                                                  |      |        |        |                  |        |        |        |        |          |        |              |        |        |     |          |
|              | 330          |     |                  | С        |          |                                                  |        |                  | G      | G   | G                                                |      | J      | J      | J                | J      | J      | J      |        |          |        |              |        |        |     | K        |
|              | 470          |     |                  | С        |          |                                                  |        |                  | G      | G   | G                                                |      | J      | J      | J                | J      | J      | J      |        |          |        |              |        |        |     | K        |
|              | 680          |     |                  | С        |          |                                                  |        |                  | G      | G   | G                                                |      | J      | J      | J                | J      | J      | J      |        |          |        |              |        |        |     | K        |
|              | 1000         |     |                  | С        |          |                                                  |        |                  | G      | G   | G                                                |      | J      | J      | J                | J      | J      | J      |        |          |        |              |        |        |     | K        |
|              | 1500<br>2200 |     |                  | C        |          |                                                  |        |                  | G<br>G | G   |                                                  |      | J<br>J | J      | J                | J      | J      | J      |        | J        | J      | J            | J      | J      | J   | M        |
|              | 3300         |     | С                | С        |          |                                                  |        |                  | G      | G   |                                                  |      | J      | J      | J                | J      | J      | J      |        | J        | J      | J            | J      |        | J   | M        |
|              | 4700         |     | C                | C        |          |                                                  |        |                  | G      | G   |                                                  |      | J      | J      | Ĵ                | J      | Ĵ      | Ĵ      |        | J        | Ĵ      | J            | Ĵ      | J      | Ĵ   | М        |
|              | 6800         | С   | С                |          |          |                                                  |        |                  | G      | G   |                                                  |      | J      | J      | J                | J      | J      | J      |        | J        | J      | J            | J      | J      | J   | Р        |
| Сар          | 0.010        | С   | С                |          |          |                                                  |        |                  | G      | G   |                                                  |      | J      | J      | J                | J      | J      | J      |        | J        | J      | J            | J      | J      | J   | Р        |
| (μF)         | 0.015        | С   |                  |          |          |                                                  |        | G                | G      |     |                                                  |      | J      | J      | J                | J      | J      | J      |        | J        | J      | J            | J      | J      | M   |          |
|              | 0.022        | C   |                  |          |          |                                                  |        | G                | G      |     |                                                  |      | J      | J      | J                | J      | J<br>N | N      |        | J        | J      | J            | J      | J      | M   |          |
|              | 0.033        | U   |                  |          |          |                                                  | G      | G                | G      |     |                                                  |      | J      | J      | J                | J      | N      |        |        | J        | J      | J            | J      | J      | M   |          |
|              | 0.068        |     |                  |          |          |                                                  | G      | G                | G      |     |                                                  |      | J      | J      | Ĵ                | J      | N      |        |        | J        | Ĵ      | J            | Ĵ      | J      | P   |          |
|              | 0.10         |     | C*               |          |          | G                                                | G      | G                | G      |     |                                                  |      | J      | J      | J                | J      | N      |        |        | J        | J      | J            | J      | Р      | Р   |          |
|              | 0.15         |     |                  |          | G        | G                                                |        |                  |        |     |                                                  |      | J      | J      | J                | N      | N      |        |        | J        | J      | J            | J      | Q      |     |          |
|              | 0.22         |     |                  |          | G        | G                                                |        |                  |        |     |                                                  |      | J      | J      | N                | N      | N      |        |        | J        | J      | J            | J<br>P | Q      |     |          |
|              | 0.33<br>0.47 |     |                  |          |          |                                                  |        | J*               |        |     |                                                  |      | N<br>N | N<br>N | N<br>N           | N<br>N | N<br>N |        |        | J<br>M   | J      | M<br>M       | P      | Q      |     |          |
|              | 0.47         |     |                  |          |          |                                                  |        | J                |        |     |                                                  |      | N      | N      | N                | IN     | IN     |        |        | M        | M      | Q            | 0      | Q      |     |          |
|              | 1.0          |     |                  |          |          | J*                                               | J*     |                  |        |     |                                                  |      | N      | N      | N*               |        |        |        |        | М        | М      | Q            | Q      | Q      |     |          |
|              | 1.5          |     |                  |          |          |                                                  |        | 1                |        |     |                                                  | İ    |        |        |                  |        |        |        | İ      | Р        | Q      | Q            |        |        | 1   |          |
|              | 2.2          |     |                  |          | J*       |                                                  |        |                  |        |     |                                                  |      |        |        | P*               |        |        |        |        | Q        | Q      | Q            |        |        |     |          |
|              | 3.3          |     |                  |          |          |                                                  |        |                  |        |     |                                                  |      | P*     | P*     |                  |        |        |        |        | 0+       | 0+     | 0+           |        |        |     |          |
|              | 4.7<br>10    |     |                  |          |          |                                                  |        |                  |        |     |                                                  | P*   | P*     | P^     |                  |        |        |        |        | Q*<br>Q* | Q*     | Q*           |        |        |     |          |
|              | 22           |     |                  |          | <u> </u> | <del>                                     </del> |        |                  |        |     | <del>                                     </del> | F    |        |        |                  |        |        |        | 0*     | Q        | Q      | Ų            |        |        |     | $\vdash$ |
|              | 47           |     |                  |          |          |                                                  |        |                  |        |     |                                                  |      |        |        |                  |        |        |        | -      | 1        |        |              |        |        |     |          |
|              | 100          |     |                  |          |          |                                                  |        |                  |        |     |                                                  |      |        |        |                  |        |        |        |        |          |        |              |        |        |     |          |
|              | WVDC         | 16  | 25               | 50       | 6.3      | 10                                               | 16     | 25               | 50     | 100 | 200                                              | 6.3  | 10     | 16     | 25               | 50     | 100    | 200    | 6.3    | 10       | 16     | 25           | 50     | 100    | 200 | 500      |
|              | SIZE         |     | LD02             | <u>′</u> |          |                                                  |        | LD03             | 5      |     |                                                  |      |        |        | LD05             | )      |        |        |        |          |        | LD           | U6     |        |     |          |
| Letter       | Α            |     | С                |          | Е        |                                                  | G      |                  | J      |     | K                                                |      | ИΙ     | N      | ı l              | Р      |        | Q      |        | Х        |        | Υ            |        | Z      |     |          |
| Max.         | 0.33         |     | 0.56             |          | 0.71     | (                                                | 0.90   | 1                | ).94   |     | .02                                              |      | 27     | 1.4    |                  | 1.5    | 2      | 1.78   |        | 2.29     |        | 2.54         |        | 2.79   |     |          |
| Thickness    | (0.013)      |     | 0.022            |          | 0.028)   |                                                  | .035)  |                  | .037)  |     | 040)                                             |      | 050)   | (0.0   |                  | (0.06  |        | (0.07) |        | (0.090   |        | 0.100        |        | D.110) |     |          |
|              | (0.0.0)      |     |                  |          | APFR     |                                                  | . 300) |                  | )      | (3. | /                                                | (0.0 |        | (0.0   | ,                |        | MBOS   |        | -/   ' | (3.03)   | -/   ( | 27.00        | ,   (  |        |     |          |





= Under Development






### **PREFERRED SIZES ARE SHADED**

| SIZE         | =              |        |        |                 | LD10                      |          |        |         |        | LD       | 12       |        | LD              | 13                 |          | LD       | 20                      |      | LD           | 14                 |
|--------------|----------------|--------|--------|-----------------|---------------------------|----------|--------|---------|--------|----------|----------|--------|-----------------|--------------------|----------|----------|-------------------------|------|--------------|--------------------|
| Solder       | ina            |        |        | R               | eflow Only                | ,        |        |         |        | Reflov   | v Only   |        | Reflox          | w Only             |          | Reflox   | w Only                  |      | Refloy       | v Only             |
| Packad       |                |        |        |                 | er/Embos                  |          |        |         |        | All Emi  |          |        |                 | bossed             |          |          | bossed                  |      |              | bossed             |
|              | mm             |        |        |                 | .20 + 0.20                |          |        |         |        | 4.50     |          |        |                 | ± 0.30             |          |          | ± 0.50                  |      |              | ± 0.25             |
| (L) Length   | (in.)          |        |        |                 | 126 ± 0.00                |          |        |         |        | (0.177 : |          |        |                 | ± 0.012)           |          |          | ± 0.020)                |      |              | ± 0.010)           |
| W) Width     | mm             |        |        |                 | .50 ± 0.20                |          |        |         |        | 3.20 :   |          |        |                 | ± 0.40             |          |          | ± 0.40                  |      |              | ± 0.25             |
|              | (in.)<br>mm    |        |        |                 | 098 ± 0.00<br>0.50 ± 0.25 |          |        |         |        | 0.126 :  |          |        |                 | ± 0.016)<br>± 0.36 |          | (0.197 : |                         |      | 0.64         | ± 0.010)<br>± 0.39 |
| (t) Terminal | (in.)          |        |        | (0.0            | 020 ± 0.01                | 0)       |        |         |        | (0.024 : | 0.014)   |        | (0.024 :        | ± 0.014)           |          | (0.025 : | ± 0.015)                |      | (0.025 :     | ± 0.015)           |
| WVD          |                | 10     | 16     | 25              | 50                        | 100      | 200    | 500     | 50     | 100      | 200      | 500    | 50              | 100                | 25       | 50       | 100                     | 200  | 50           | 100                |
| Cap<br>(pF)  | 100<br>150     |        |        |                 |                           |          |        |         |        |          |          |        |                 |                    |          |          | ' . >                   | •    | W_           | ' I                |
| (pi)         | 220            |        |        |                 |                           |          |        |         |        |          |          |        |                 |                    |          | *        |                         |      | <u>ڪيء</u> َ |                    |
|              | 330            |        |        |                 |                           |          |        |         |        |          |          |        |                 |                    |          | T Ì      | $\langle \cdot \rangle$ |      | 1).          | J⊤                 |
|              | 470            |        |        |                 |                           |          |        |         |        |          |          |        |                 |                    |          |          | <u></u>                 |      |              |                    |
|              | 680<br>1000    |        | -      | +               |                           |          |        | -       |        |          | -        |        |                 |                    |          | +        |                         | الما |              | 1                  |
|              | 1500           | J      | J      | J               | J                         | J        | J      | М       |        |          |          |        |                 |                    |          |          |                         | Tt   |              |                    |
|              | 2200           | Ĵ      | Ĵ      | Ĵ               | Ĵ                         | Ĵ        | Ĵ      | M       |        |          |          |        |                 |                    |          |          | 1                       | İ    | I            | ı                  |
|              | 3300           | J      | J      | J               | J                         | J        | J      | М       |        |          |          |        |                 |                    |          |          |                         |      |              |                    |
|              | 4700           | J      | J      | J               | J                         | J        | J      | M       |        |          |          |        |                 |                    |          |          |                         |      |              |                    |
| Сар          | 6800<br>0.010  | J<br>J | J      | J               | J                         | <u>J</u> | J      | M       | K      | K        | K        | K      | М               | М                  |          | Х        | Х                       | Х    | М            | Р                  |
| (μF)         | 0.015          | J      | J      | J               | J                         | J        | J      | P       | K      | K        | K        | P      | M               | M                  |          | x        | x                       | x    | M            | P                  |
| (1-7)        | 0.022          | Ĵ      | Ĵ      | J               | J                         | Ĵ        | J      | Q       | K      | K        | K        | P      | M               | М                  |          | X        | X                       | X    | М            | P                  |
|              | 0.033          | J      | J      | J               | J                         | J        | J      | Q       | K      | K        | K        | Х      | М               | М                  |          | X        | X                       | Х    | М            | Р                  |
|              | 0.047<br>0.068 | J<br>J | J      | J               | J                         | J        | J<br>M |         | K<br>K | K<br>K   | K<br>K   | Z<br>Z | M<br>M          | M<br>M             |          | X        | X                       | X    | M<br>M       | P                  |
|              | 0.068          |        | J      | J               | J                         | J        | M      |         | K      | K        | K        | Z      | M               | M                  |          | X        | X                       | X    | M            | P                  |
|              | 0.15           | Ĵ      | Ĵ      | Ĵ               | Ĵ                         | M        | Z      |         | K      | K        | P        | _      | M               | M                  |          | X        | x                       | x    | M            | P                  |
|              | 0.22           | J      | J      | J               | J                         | Р        | Z      |         | K      | K        | Р        |        | М               | М                  |          | X        | Х                       | Х    | М            | Р                  |
|              | 0.33           | J      | J      | J               | J                         | Q        |        |         | K      | М        | Х        |        | М               | М                  |          | X        | X                       | X    | M            | Р                  |
|              | 0.47<br>0.68   | M<br>M | M<br>M | M<br>P          | M<br>X                    | Q<br>X   |        |         | K<br>M | P<br>Q   |          |        | M<br>M          | M<br>P             |          | X        | X                       | Х    | M<br>M       | P<br>P             |
|              | 1.0            | N      | N      | P               | X                         | Z        |        | +       | M      | X        |          |        | M               | P                  |          | X        | X                       |      | M            | P                  |
|              | 1.5            | N      | N      | Z               | Z                         | Z        |        |         | Z      | Z        |          |        | М               |                    |          | X        | X                       |      | М            | Х                  |
|              | 2.2            | X      | X      | Z               | Z                         | Z        |        |         | Z      | Z        |          |        |                 |                    |          | X        | X                       |      | М            |                    |
|              | 3.3<br>4.7     | X<br>X | X      | Z<br>Z          | Z<br>Z                    |          |        |         | Z<br>Z |          |          |        |                 |                    |          | X        | Z<br>Z                  |      |              |                    |
|              | 10             | Ž      | Ź      | Z               | Z                         |          |        |         |        |          |          |        |                 |                    |          | Ž        | Z                       |      |              |                    |
|              | 22             | Z      | Z      |                 |                           |          |        |         |        |          |          |        |                 |                    | Z        |          |                         |      |              |                    |
|              | 47             |        |        |                 |                           |          |        |         |        |          |          |        |                 |                    |          |          |                         |      |              |                    |
|              | 100<br>WVDC    | 10     | 16     | 25              | 50                        | 100      | 200    | 500     | 50     | 100      | 200      | 500    | 50              | 100                | 25       | 50       | 100                     | 200  | 50           | 100                |
| SIZE         |                | 10     | 10     |                 | LD10                      | 100      | 200    | 1 300   | 30     | LD       |          | 300    |                 | 13                 | 23       | LD       |                         | 200  | LD           |                    |
|              |                |        |        |                 |                           |          |        |         |        |          |          |        |                 |                    |          |          |                         |      |              | · · ·              |
| Letter       |                |        |        |                 |                           |          |        |         |        |          | ١        | P      | Q               |                    | X        | Y        | Z                       |      |              |                    |
| Max.         | 0.33           | 0.5    |        | 0.71            | 0.90                      | 0.9      |        | 1.02    | 1.27   |          | 40       | 1.52   | 1.78            |                    | 29       | 2.54     | 2.79                    |      |              |                    |
| Thickness    | (0.013)        | (0.0   |        | 0.028)<br>PAPER | (0.035)                   | )   (0.0 | 137)   | (0.040) | (0.050 | )   (0.0 | )55)   ( | 0.060) | (0.070<br>DSSED | ))   (U.C          | 090)   ( | (0.100)  | (0.110                  | J)   |              |                    |
|              |                |        | 1      | MPER            |                           |          |        |         |        |          |          | EIVIB( | ノンシミレ           |                    |          |          |                         |      |              |                    |

### **X5R - General Specifications**



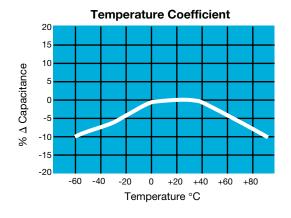


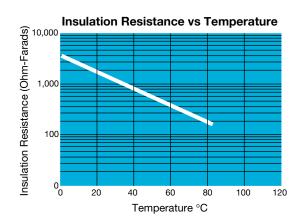
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

**Not RoHS Compliant** 

### PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

| LD05                                                                                                                                                        | <u>5</u>                                                                                                       | D                     | 101                                                                  | Ţ                                                                                                                                                                                                                              | <u>A</u>                                 | <u>B</u>                                                                   | 2                                                                                | <u>A</u>                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|
| Size<br>LD02 - 0402<br>LD03 - 0603<br>LD04 - 0504*<br>LD05 - 0805<br>LD06 - 1206<br>LD10 - 1210<br>LD12 - 1812<br>LD13 - 1825<br>LD14 - 2225<br>LD20 - 2220 | Voltage<br>6.3V = 6<br>10V = Z<br>16V = Y<br>25V = 3<br>35V = D<br>50V = 5<br>100V = 1<br>200V = 2<br>500V = 7 | Dielectric<br>X5R = D | Capacitance<br>Code (In pF)<br>2 Sig. Digits +<br>Number of<br>Zeros | Capacitance<br>Tolerance<br>B = $\pm$ .10 pF (<10pF)<br>C = $\pm$ .25 pF (<10pF)<br>D = $\pm$ .50 pF (<10pF)<br>F = $\pm$ 1% ( $\geq$ 10 pF)<br>G = $\pm$ 2% ( $\geq$ 10 pF)<br>J = $\pm$ 5%<br>K = $\pm$ 10%<br>M = $\pm$ 20% | Failure<br>Rate<br>A = Not<br>Applicable | Terminations B = 5% min lead X = FLEXITERM® with 5% min lead**  **X7R only | Packaging<br>2 = 7" Reel<br>4 = 13" Reel<br>Contact Factory<br>For<br>Multiples* | Special<br>Code<br>A = Std.<br>Product |


<sup>\*</sup>LD04 has the same CV ranges as LD03.


See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

### TYPICAL ELECTRICAL CHARACTERISTICS









| Parame                       | ter/Test                 | X5R Specification Limits                                                                                                                                  | Measuring (                                                               | Conditions               |
|------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| Operating Tem                |                          | -55°C to +85°C                                                                                                                                            | Temperature C                                                             | ycle Chamber             |
| Capac                        |                          | Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN | Freq.: 1.0 k<br>Voltage: 1.0<br>For Cap > 10 µF, 0                        | Vrms ± .2V               |
| Insulation                   | Resistance               | 10,000MΩ or 500MΩ - μF,<br>whichever is less                                                                                                              | Charge device with<br>120 ± 5 secs @ roo                                  |                          |
| Dielectric                   | Strength                 | No breakdown or visual defects                                                                                                                            | Charge device with 250<br>1-5 seconds, w/charge<br>limited to 50          | and discharge current    |
|                              | Appearance               | No defects                                                                                                                                                | Deflectio                                                                 |                          |
| Resistance to Flexure        | Capacitance<br>Variation | ≤ ±12%                                                                                                                                                    | Test Time: 3                                                              | 0 seconds<br>7 1mm/sec   |
| Stresses                     | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                                           |                                                                           |                          |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                                                                                                     | 90 r                                                                      |                          |
| Solder                       |                          | ≥ 95% of each terminal should be covered with fresh solder                                                                                                | Dip device in eutection for 5.0 ± 0.5                                     |                          |
|                              | Appearance               | No defects, <25% leaching of either end terminal                                                                                                          |                                                                           |                          |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                                                   |                                                                           |                          |
| Resistance to<br>Solder Heat | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                                           | Dip device in eutectic s<br>seconds. Store at room                        | temperature for 24 ± 2   |
| 00.00.1100.                  | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                                                           | hours before measuring                                                    | g electrical properties. |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                           |                                                                           |                          |
|                              | Appearance               | No visual defects                                                                                                                                         | Step 1: -55°C ± 2°                                                        | 30 ± 3 minutes           |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                                                   | Step 2: Room Temp                                                         | ≤ 3 minutes              |
| Thermal Shock                | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                                                           | Step 3: +85°C ± 2°                                                        | 30 ± 3 minutes           |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                                                           | Step 4: Room Temp                                                         | ≤ 3 minutes              |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                           | Repeat for 5 cycles<br>24 ± 2 hours at ro                                 |                          |
|                              | Appearance               | No visual defects                                                                                                                                         |                                                                           |                          |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                                                  | Charge device with 1.5<br>chamber set at 85°C:<br>(+48, -0). Note: Contac | ± 2°C for 1000 hours     |
| Load Life                    | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                                                         | specification part numl                                                   | pers that are tested at  |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                                                         | Remove from test chamb                                                    | •                        |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                           | temperature for 24 ± 2 h                                                  |                          |
|                              | Appearance               | No visual defects                                                                                                                                         |                                                                           |                          |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                                                  | Store in a test chamber s<br>5% relative humidi                           |                          |
| Load                         | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                                                         | (+48, -0) with rated                                                      |                          |
| Humidity                     | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                                                         | Remove from chamber<br>temperature an                                     | d humidity for           |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                                                           | 24 ± 2 hours bef                                                          | ore measuring.           |

### X5R - Capacitance Range



### PREFERRED SIZES ARE SHADED

|                   |                |    |      |              |     |              |    |          |      |               | <b>=</b> |        |        |     |      |          |          | <b>1</b> |     |     |     |      |             | ⊐          |      |            |    |     |      |                |               |          |     |          |          |              |     |
|-------------------|----------------|----|------|--------------|-----|--------------|----|----------|------|---------------|----------|--------|--------|-----|------|----------|----------|----------|-----|-----|-----|------|-------------|------------|------|------------|----|-----|------|----------------|---------------|----------|-----|----------|----------|--------------|-----|
| SIZ               | Έ              |    |      | LI           | D02 | :            |    |          |      | L             | .D0      | 3      |        |     |      |          | LD       | 05       |     |     |     |      | LD          | 06         |      |            |    |     | ı    | _D10           | )             |          |     |          | LD       | 12           |     |
| Solde             | ring           |    | F    | Reflo        | w/W | ave          |    |          |      | Reflo         | w/V      | Vave   | •      |     |      | Re       | flow     | /Wa      | /e  |     |     | Re   | eflow       | /Wa        | ve   |            |    | _   | Refl | ow/V           | Vave          |          |     |          |          |              |     |
| Packa             | ging           |    |      | All          | Pap | er           |    |          |      | All           | Pa       | oer    |        |     | P    | ape      | r/Er     | nbo      | sse | d   | Р   | ape  | r/Er        | nbo        | sse  | d          |    | Pa  | per/ | /Emb           | oss           | ed       |     |          |          |              |     |
| (L) Length        | mm             |    |      | 1.00         |     |              |    |          | "    | 1.60          |          |        | ٠,     |     |      |          |          | 0.2      |     |     |     |      | .20 ±       |            |      |            |    | ,   |      | 0 ± 0          |               |          |     |          |          |              |     |
| 14/) 14/: -[4]-   | (in.)<br>mm    |    |      | 0.50         |     | 004)<br>10   |    |          | ((   | 0.063         |          |        | 0)     |     |      |          |          | 0.0      |     |     |     |      | 126 ± .60 ± |            |      |            |    | (   |      | 6 ± 0<br>0 ± 0 |               | 5)       |     |          | _        |              |     |
| W) Width          | (in.)          |    |      |              |     | 004)         |    |          | ((   | 0.032         |          |        | 6)     |     |      |          |          | 0.0      |     |     |     |      | 063 ±       |            |      |            |    | (   |      | 8 ± 0          |               | 3)       |     |          |          |              |     |
| (t) Terminal      | mm<br>(in.)    |    |      | 0.25<br>.010 |     | .15<br>.006) |    |          | ((   | 0.35<br>0.014 |          |        | 5)     |     |      |          |          | 0.2      |     |     |     |      | .50 ±       |            |      |            |    | (   |      | 0 ± 0<br>0 ± 0 |               | ))       |     |          |          |              |     |
| WVE               | oc (           |    |      |              |     | 25           | 50 | 4        |      |               |          |        |        | 50  | 6.3  |          |          |          |     | 50  | 6.3 |      |             |            |      | 50         | 4  |     |      |                |               |          | 50  | 6.3      | 10       | 25           | 50  |
| Cap               | 100            |    |      |              |     |              |    |          |      |               |          |        |        |     |      |          |          | ļ        | ļ   |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
| (pF)              | 150<br>220     |    |      |              |     |              | 0  |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 330            |    |      |              |     |              | C  |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            | -' | ,   |      |                | >             | <u>'</u> | _   | <u> </u> | Ι Ι<br>N |              | 1   |
|                   | 470            |    |      |              |     |              | C  |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            |    | ~   | ~    |                | _             | _        | _   | $\leq$   | `,≥      | _            |     |
|                   | 680            | L  | L    | L            | L   |              | С  |          | L    |               | L        | L      | L      | L   | L    |          |          | L        | L   | L   |     |      | L           | L          |      |            |    |     | (    | _              | $\overline{}$ | 7        |     |          | ノ、       | ŢT           |     |
|                   | 1000           |    |      |              |     |              | С  |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            |    |     | •    | _              | Ų             | 4        | _   |          |          | -            | 1   |
|                   | 1500           |    |      |              |     |              | С  |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                | -             | T T      |     |          |          |              |     |
|                   | 2200<br>3300   |    | -    |              |     |              | C  |          |      |               |          |        |        |     | -    |          |          |          | ┢   |     |     |      |             |            |      |            | _  |     |      |                | - 1           |          |     |          |          |              | - { |
|                   | 4700           |    |      |              |     | С            | C  |          |      |               |          |        |        | G   |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 6800           |    |      |              |     | C            |    |          |      |               |          |        |        | G   |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
| Сар               | 0.010          |    |      |              |     | С            |    |          |      |               |          |        |        | G   |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                |               | T        |     |          | П        |              |     |
| (μF)              | (μF) 0.015 C   |    |      |              |     |              |    |          |      | G             | G        | G      |        |     |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 0.022 C        |    |      |              | С   |              | _  |          |      |               | G        | G      | G      |     |      |          |          |          | N   |     |     |      |             |            |      |            |    |     |      |                | _             |          |     | Ш        | <u> </u> | Ш            |     |
|                   | 0.033          |    |      |              | С   | С            |    |          |      |               |          | G<br>G | G      | G   |      |          |          |          |     | N   |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 0.047<br>0.068 |    |      |              | C   |              |    |          |      |               |          | G      | G      | G   |      |          |          |          |     | N   |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 0.10           |    |      | С            | C   | С            |    |          |      |               |          | G      |        | G   |      |          |          | N        |     | N   |     |      |             |            |      |            |    |     |      |                |               |          | 1   |          | Н        |              |     |
|                   | 0.15           |    | İ    |              |     |              |    |          |      |               |          | G      |        |     |      |          |          | N        | N   |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 0.22           |    | C*   |              |     |              |    |          |      |               | G        | G      |        |     |      |          |          | N        | N   |     |     |      |             |            |      | Q          |    |     |      |                |               |          |     |          | Ш        |              | Ш   |
|                   | 0.33           |    |      |              |     |              |    |          |      |               | G        | G      |        |     |      |          |          | N        |     |     |     |      |             | _          | _    |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 0.47<br>0.68   | C* | C*   |              |     |              |    |          |      |               | G        |        |        |     |      |          |          | N<br>N   |     |     |     |      |             | Q          | Q    |            |    |     |      |                |               |          | X   |          |          |              |     |
|                   | 1.0            | C* | C*   | C*           |     |              |    | $\vdash$ | G    | G             | G        | J*     |        |     |      |          | N        | N        |     | P*  |     |      |             | Q          | Q    |            |    | _   |      |                | Х             | X        | X   |          | Н        |              | Н   |
|                   | 1.5            |    |      |              |     |              |    |          |      |               |          |        |        |     |      |          |          |          |     | •   |     |      |             | ~          | ~    |            |    |     |      |                |               |          |     |          |          |              |     |
|                   | 2.2            | C* |      |              |     |              |    | G*       | G*   | J*            | J*       |        |        |     |      | Ν        | N        | N        |     |     |     |      | Q           | Q          |      |            |    |     |      |                | Z             | X        |     |          | Ш        | $oxed{oxed}$ | Ш   |
|                   | 3.3            |    |      |              |     |              | J* | J*       | J*   | J*            |          |        |        | N   | N    |          |          |          |     | X   | Х   |      |             |            |      |            |    |     | _    |                |               |          |     |          |          |              |     |
|                   | 4.7            |    |      |              |     | J*           | J* | J*       |      |               |          |        | N<br>P | N   | N*   | N*       |          |          | X   | X   | X   | X    |             |            |      |            | V  | Q   | Z    |                |               |          |     | 7        |          |              |     |
|                   | 22             |    |      | $\vdash$     | K*  |              |    |          |      |               |          | P*     | Р      | Р   |      | $\vdash$ | $\vdash$ | X        | X   | X   | X   |      | Н           | $\vdash$   | Z    | X<br>Z     | Z  | Z   | H    | +              | $\vdash$      | $\vdash$ | Z   | Н        |          |              |     |
|                   | 47             |    | l    |              |     |              |    |          |      |               |          |        |        |     | •    |          |          |          |     |     | X   | ^    |             | ^          |      |            |    | Z*  | _    |                | _             | 1        |     |          |          |              |     |
|                   | 100            |    |      |              |     |              |    |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            | Z* | Z   |      |                |               |          |     |          |          |              |     |
|                   | WVDC           | 4  | 6.3  | _            | _   | 25           | 50 | 4        | 6.3  |               | _        | _      | 35     | 50  | 6.3  | 10       | 16       | 25       | 35  | 50  | 6.3 | 10   |             |            | 35   | 50         | 4  | 6.3 | 10   | 16             | 25            | 35       | 50  | 6.3      |          | _            | 50  |
|                   | SIZE           |    |      | LI           | D02 |              |    |          |      | L             | .D0      | 3      |        |     |      |          | LD       | 05       |     |     |     |      | LD          | 06         |      |            |    |     | L    | .D10           | )             |          |     |          | LD       | 12           |     |
|                   |                |    |      |              |     |              |    |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      |             |            |      |            |    |     |      |                |               |          |     |          |          |              |     |
| Letter            |                |    |      |              |     |              |    | G        |      |               | J        |        |        | K   |      | Ν        |          |          | N   |     |     | Р    |             |            | Q    |            |    | Χ   |      | )              |               |          | Z   |          | ]        |              |     |
| Max.<br>Thickness |                |    |      |              |     |              |    | 0.90     |      |               | 0.94     |        |        | .02 |      | 1.1      |          |          | 1.4 |     | 4   | 1.52 |             |            | 1.78 |            |    | .29 |      | 2.             |               |          | 2.7 |          |          |              |     |
| THICKNESS         | (0.013)        |    | (U.C | 122)         |     | (0.0)<br>PAP |    | 1 ((     | 0.03 | o)            | (0       | .03    | /)     | (U  | .040 | <u> </u> | (0.0     | 100)     | (   | 0.0 | 55) | 1 (  | 0.06<br>FN  | ивс<br>ИВС |      | .070<br>FD | U) | (U. | 090  | <u> </u>       | (0.1          | UU)      |     | (0.1     | 10)      | 1            |     |
|                   |                |    |      |              |     |              |    |          |      |               |          |        |        |     |      |          |          |          |     |     |     |      | LI          | VIDC       | اددر | LU         |    |     |      |                |               |          |     |          |          | J            |     |

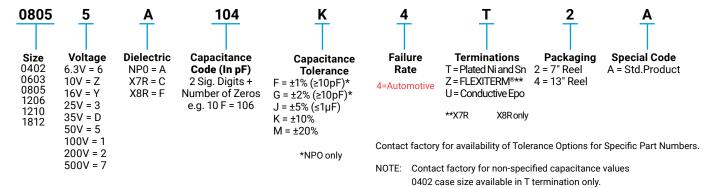

#### \*Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

### **Automotive MLCC**

### **General Specifications**






#### **GENERAL DESCRIPTION**

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

#### **HOW TO ORDER**

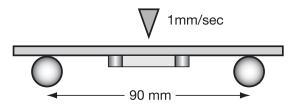


### COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

|                                                               | Commercial                                                             | Automotive                                                                                                |
|---------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Administrative                                                | Standard Part Numbers.<br>No restriction on who purchases these parts. | Specific Automotive Part Number. sed to control supply of product to Automotive customers.                |
| Design                                                        | Minimum ceramic thickness of 0.020"                                    | Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.                                          |
| Dicing                                                        | Side & End Margins = 0.003" min                                        | Side & End Margins = 0.004" min Cover Layers = 0.003" min                                                 |
| Lot Qualification<br>(Destructive Physical<br>Analysis - DPA) | As per EIA RS469                                                       | Increased sample plan stricter criteria.                                                                  |
| Visual/Cosmetic Quality                                       | Standard process and inspection                                        | 100% inspection                                                                                           |
| Application Robustness                                        | Standard sampling for accelerated wave solder on X7R dielectrics       | Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing. |

All Tests have Accept/Reject Criteria 0/1

# **Automotive MLCC**


### **NP0/X7R Dielectric**



### **FLEXITERM FEATURES**

a) Bend Test

The capacitor is soldered to the PC Board as shown:



Typical bend test results are shown below:

| Style | Conventional | Soft Term |
|-------|--------------|-----------|
| 0603  | >2mm         | >5        |
| 0805  | >2mm         | >5        |
| 1206  | >2mm         | >5        |

a) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

# **Automotive MLCC-NP0**





| SIZE              | 04     | 02     |        | 06     | 03     |        |     |     | 0805      |        |        |     |     | 12     | 206    |          |      |
|-------------------|--------|--------|--------|--------|--------|--------|-----|-----|-----------|--------|--------|-----|-----|--------|--------|----------|------|
| Soldering         | Reflow | //Wave |        | Reflov | //Wave |        |     | R   | eflow/Wav | ve     |        |     |     | Reflov | v/Wave |          |      |
| WVDC              | 25V    | 50V    | 25V    | 50V    | 100V   | 200V   | 25V | 50V | 100V      | 200V   | 250V   | 25V | 50V | 100V   | 200V   | 250V     | 500V |
| 100 10pF          | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 120 12            | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 150 15            | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 180 18            | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 220 22            | C      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 270 27            | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 330 33            | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 390 39            | С      | С      | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J.     | J        | J    |
| 470 47            |        |        | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | J        | J    |
| 510 51            |        |        | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      |          |      |
| 560 56            |        |        | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      |          |      |
| 680 68<br>820 82  |        |        | G      | G<br>G | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      | ļ        |      |
| 820 82<br>101 100 |        |        | G<br>G | G      | G<br>G | G<br>G | J   | J   | J         | N<br>N | N<br>N | J   | J   | J      | J      |          |      |
| 121 120           |        |        | G      | G      | G      | G      | J   | J   | J         | N      | N      | J   | J   | J      | J      |          |      |
| 151 150           |        |        | G      | G      | G      |        | J   | J   | J         | N      | N      | J   | J   | J      | -      |          |      |
| 181 180           |        |        | G      | G      | G      |        | J   | J   | J         | N<br>N | N      | J   | J   | J      | J      | -        |      |
| 221 220           |        |        | G      | G      | G      |        | J   | J   | J         | N      | N      | 1   | J   | 1      | 1 1    | 1        |      |
| 271 270           |        |        | G      | G      | G      |        | J   | 1   | 1         | N      | N      | 1   | 1   | 1      | 1      |          |      |
| 331 330           |        |        | G      | G      | G      |        |     | j   |           | N      | N      | i   | i   | l i    | i      |          |      |
| 391 390           |        |        | G      | G      | 0      |        | J   | J   | J         | 14     | 14     | J   | j   | j      | ĭ      |          |      |
| 471 470           |        |        | G      | Ğ      |        |        | J   | J   | .J        |        |        | J   | Ĭ.  | .i     | J      | i        |      |
| 561 560           |        |        | Ğ      | Ğ      |        |        | Ĵ   | Ĵ   | J         |        |        | J   | J   | J      | J      | <u> </u> |      |
| 681 680           |        |        | G      | G      |        |        | J   | J   | J         |        |        | J   | J   | J      | J      |          |      |
| 821 820           |        |        |        |        |        |        | J   | J   | J         |        |        | J   | J   | J      | J      |          |      |
| 102 1000          |        |        |        |        |        |        | J   | Ĵ   | J         |        |        | J   | J   | J      | J      | İ        |      |
| 122 1200          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 152 1500          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 182 1800          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 222 2200          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 272 2700          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 332 3300          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 392 3900          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 472 4700          |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| 103 <b>10nF</b>   |        |        |        |        |        |        |     |     |           |        |        |     |     |        |        |          |      |
| WVDC              | 25V    | 50V    | 25V    | 50V    | 100V   | 200V   | 25V | 50V | 100V      | 200V   | 250V   | 25V | 50V | 100V   | 200V   | 250V     | 500V |
| Size              | 04     | 02     |        | 06     | 03     |        |     |     | 0805      |        |        |     |     | 12     | 206    |          |      |

|   | Letter   | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | Χ       | Υ       | Z       |
|---|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|   | Max.     | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| 1 | hickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
| _ |          |         |         | PAPER   |         |         |         |         |         | EMBC    | SSED    |         |         |         |

# **Automotive MLCC - X7R**





| 155 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5             | SIZE     |      | 0402  |       |      |      |       | 060    | 3    |       |       |          |      | 0     | 805  |             |       |      |             |      | 120     | 6    |       |        |      | 12    | 210         |       | 1     | 812     |     | 2220                 |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------|-------|-------|------|------|-------|--------|------|-------|-------|----------|------|-------|------|-------------|-------|------|-------------|------|---------|------|-------|--------|------|-------|-------------|-------|-------|---------|-----|----------------------|-----------|
| 1221   Cap 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sol           | dering   | Ref  | low/W | ave   |      |      | Re    | flow/\ | Nave |       |       |          |      | Reflo | w/Wa | ve .        |       |      |             | Re   | eflow/\ | Wave |       |        |      | Reflo | w Onl       | у     | Refle | ow Only | Ref | low C                | nly       |
| 271   272   273   274   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   275   | W             | /VDC     | 16V  | 25V   | 50V   | 10V  | 16V  | 25V   | 50V    | 100V | 200V  | 250V  | 16V      | 25V  | 50V   | 100V | 200V        | 250V  | 16V  | 25V         | 50V  | 100V    | 200V | 250V  | 500V   | 16V  | 25V   | 50V         | 100V  | 50V   | 100V    | 25V | 50V                  | 100V      |
| 331 330 C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 221           | Cap 220  | С    | С     | С     |      |      |       |        |      |       |       |          |      |       | С    |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      | $\Box$    |
| 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 271           | (pF) 270 | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| A77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 331           | 330      | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| 561   560   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 391           | 390      | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| B81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 471           | 470      | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| B21   B20   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 561           | 560      | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| 102 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 681           | 680      | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| 182   1800   C   C   C   G   G   G   G   G   G   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 821           | 820      | С    | С     | С     |      |      |       |        |      |       |       |          |      |       |      |             |       |      |             |      |         |      |       |        |      |       |             |       |       |         |     |                      |           |
| 222   2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _             |          |      |       | _     |      | G    | G     | G      | G    | G     | G     | J        | J    | J     | J    | J           | J     | J    | J           | J    | J       | J    | J     | J      |      |       | -           |       |       | -       |     |                      |           |
| 332 3300 C C C C G G G G G G G G G G G J J J J J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          |      |       | _     |      |      |       |        | -    | -     |       | J        | J    | J     | J    | J           | J     | J    | J           | J    | J       | J    | J     | J      |      |       | +           |       | K     | +       |     |                      |           |
| 472   4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |          |      |       | _     | _    | _    | _     | -      | -    | -     | _     | -        | -    | -     | _    | <del></del> |       | -    | <del></del> | _    | _       | _    | _     | _      |      |       | +           | -     |       | -       |     |                      | لـــــــا |
| 103   Cap 0.01   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |      |       | _     | _    | _    |       | -      | -    | -     | _     | -        |      | -     | _    | _           |       |      | _           | _    |         | -    | _     | _      | _    |       |             | -     | -     | -       |     |                      | لـــــــ  |
| 123 (F) 0.012 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -             |          |      | С     | С     | _    | _    |       | -      | _    | -     | _     | -        | -    | -     | _    | <del></del> |       | _    | -           | _    | _       | _    | _     | _      | _    |       |             |       | -     | -       |     |                      |           |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{}$ |          |      |       |       |      | _    |       | -      |      | G     | G     | _        |      | -     | _    |             |       |      | -           | -    |         | -    |       | J      |      |       | -           |       |       |         |     |                      |           |
| 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _             | ` '      | _    | _     |       |      |      |       | -      |      | _     |       |          | _    | -     |      |             |       |      | _           |      |         |      | _     |        |      |       | -           | _     |       | -       |     |                      |           |
| 223 0.022 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |          |      |       |       | _    | _    |       | -      | -    | _     |       |          | -    | _     |      | _           |       |      | -           | _    | _       | _    | _     |        | _    |       | -           | -     | -     | -       |     |                      |           |
| 273   0.027   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |      |       | _     | _    | _    |       | -      | -    | -     |       | _        | _    | -     |      | _           |       |      | _           | _    |         | -    | _     |        | _    |       | -           | -     | -     | -       |     |                      |           |
| 333 0.033 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |          |      | _     |       | _    | _    |       | -      | G    |       |       |          | _    | -     |      |             |       |      | -           | _    | -       | _    | -     |        | _    |       | -           | -     | -     |         |     |                      |           |
| 473   0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _             |          |      |       |       | _    | _    |       | -      |      |       |       | _        | -    | -     |      | _           |       |      | -           | -    | _       | _    | _     |        |      |       | -           | _     |       |         |     |                      |           |
| Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   Season   S  | $\overline{}$ |          | U    |       |       | _    |      | -     | -      |      |       |       |          | _    | -     | _    |             |       |      | _           | _    |         | _    | _     |        |      |       |             |       |       | -       |     |                      |           |
| 683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _             |          |      |       |       |      |      | -     | -      |      |       |       |          |      | -     | _    | IN          | IN    |      | _           | _    |         | _    | _     |        |      |       |             | _     |       | -       |     |                      |           |
| 823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |          |      |       |       | _    | _    | _     | -      |      |       |       |          | -    | -     | _    |             |       | _    | _           | -    |         | _    | _     |        |      | _     | -           | _     | -     |         |     |                      |           |
| 104   0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          |      |       |       | _    | _    | _     | -      |      |       |       |          | -    | -     | _    |             |       | _    | _           | -    |         | _    | _     |        |      |       |             | -     | -     |         |     |                      | $\neg$    |
| 124   0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _             |          |      |       |       | _    | _    | _     |        |      |       |       |          | _    | _     |      |             |       |      | _           | -    |         |      |       |        |      |       | -           |       |       |         |     |                      | $\neg$    |
| 224 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -             | 0.12     |      |       |       | G    |      |       |        |      |       |       |          |      | _     | N    |             |       |      |             | _    | _       | Q    | Q     |        |      |       | -           | Р     |       |         |     |                      | $\neg$    |
| 334 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154           | 0.15     |      |       |       | G    |      |       |        |      |       |       | М        | N    | N     | N    |             |       | J    | J           | М    | М       | Q    | Q     |        | К    | К     | K           | Р     | К     | К       |     |                      |           |
| 474 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 224           | 0.22     |      |       |       | G    |      |       |        |      |       |       | М        | N    | N     | N    |             |       | J    | М           | М    | Q       | Q    | Q     |        | М    | М     | М           | Р     | М     | М       |     |                      |           |
| 684 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 334           | 0.33     |      |       |       |      |      |       |        |      |       |       | N        | N    | N     | N    |             |       | J    | М           | Р    | Q       |      |       |        | Р    | Р     | Р           | Q     | X     | Х       |     |                      |           |
| 105 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 474           | 0.47     |      |       |       |      |      |       |        |      |       |       | N        | N    | N     | N    |             |       | М    | М           | Р    | Q       |      |       |        | Р    | Р     | Р           | Q     | Х     | X       |     |                      |           |
| 155 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 684           | 0.68     |      |       |       |      |      |       |        |      |       |       | N        | N    | N     |      |             |       | М    | Q           | Q    | Q       |      |       |        | Р    | Р     | Q           | _     |       |         |     |                      |           |
| 225 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          |      |       |       |      |      |       |        |      |       |       | N        |      | N     |      |             |       | М    | Q           | Q    |         |      |       |        | -    | _     | <del></del> |       |       |         |     | Z                    | Z         |
| 335 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          |      |       |       |      |      |       |        |      |       |       | _        |      |       |      |             |       | _ `  |             | _    |         |      |       |        | -    |       | -           | _     | _     |         |     | Z                    | Z         |
| 4.75 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{}$ |          |      |       |       |      |      |       |        |      |       |       | N        | N    |       |      |             |       |      | -           | _    | Q       |      |       |        |      |       |             | _     |       | Z       |     | Z                    | Z         |
| 106 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overline{}$ |          |      |       |       |      |      |       |        |      |       |       |          |      |       |      |             |       |      | -           | _    |         |      |       |        |      |       |             | _     |       |         |     | Z                    | Z         |
| 226 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _             |          |      |       |       |      |      |       | ļ      |      |       |       | <u> </u> |      |       |      |             |       | Q    | Q           | Q    |         |      |       |        |      |       |             | Z     | _     |         |     | Z                    | Z         |
| WVDC 16V 25V 50V 10V 16V 25V 50V 10V 25V 50V 10V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V |               |          |      |       |       |      |      |       |        |      |       |       | <u> </u> |      |       |      |             |       |      |             |      |         |      |       |        | Z    | Z     | Z           |       | Z     |         |     | Z                    | Z         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          | 16\/ | OEV.  | EOV / | 10\/ | 16\/ | OE) / | EOV.   | 1001 | 20017 | 2501/ | 16\/     | OEV. | EOV.  | 1000 | 2001        | 25017 | 16\/ | OEV.        | EOV. | 1001    | 2005 | 2501/ | E00) / | 16\/ | OEV.  | EOV.        | 1001/ | EOV.  | 100)/   |     | EOV/                 | 1001/     |
| Size         0402         0603         0805         1206         1210         1812         222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | 16V  |       | 507   | TUV  | 167  | 25V   |        |      | 200V  | 250V  | 167      | 25V  |       |      | 200V        | 250V  | 167  | 25V         | 15UV |         |      | 250V  | 5007   | 167  |       |             | 100V  |       |         | 25V | 50V <u> </u><br>2220 | 1007      |

| Letter    | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | DADER   |         |         |         |         |         | FMR     | 199FD   |         |         |         |

# **Automotive MLCC - X8R**

# **Capacitance Range**



| S    | SIZE      | 06     | 03    | 0     | 805    | 12     | 06     |
|------|-----------|--------|-------|-------|--------|--------|--------|
| Sol  | dering    | Reflow | /Wave | Reflo | w/Wave | Reflow | //Wave |
| WVDC | WVDC      | 25V    | 50V   | 25V   | 50V    | 25V    | 50V    |
| 271  | Cap 270   | G      | G     |       |        |        |        |
| 331  | (pF) 330  | G      | G     | J     | J      |        |        |
| 471  | 470       | G      | G     | J     | J      |        |        |
| 681  | 680       | G      | G     | J     | J      |        |        |
| 102  | 1000      | G      | G     | J     | J      | J      | J      |
| 152  | 1500      | G      | G     | J     | J      | J      | J      |
| 182  | 1800      | G      | G     | J     | J      | J      | J      |
| 222  | 2200      | G      | G     | J     | J      | J      | J      |
| 272  | 2700      | G      | G     | J     | J      | J      | J      |
| 332  | 3300      | G      | G     | J     | J      | J      | J      |
| 392  | 3900      | G      | G     | J     | J      | J      | J      |
| 472  | 4700      | G      | G     | J     | J      | J      | J      |
| 562  | 5600      | G      | G     | J     | J      | J      | J      |
| 682  | 6800      | G      | G     | J     | J      | J      | J      |
| 822  | 8200      | G      | G     | J     | J      | J      | J      |
| 103  | Cap 0.01  | G      | G     | J     | J      | J      | J      |
| 123  | (F) 0.012 | G      | G     | J     | J      | J      | J      |
| 153  | 0.015     | G      | G     | J     | J      | J      | J      |
| 183  | 0.018     | G      | G     | J     | J      | J      | J      |
| 223  | 0.022     | G      | G     | J     | J      | J      | J      |
| 273  | 0.027     | G      | G     | J     | J      | J      | J      |
| 333  | 0.033     | G      | G     | J     | J      | J      | J      |
| 393  | 0.039     | G      | G     | J     | J      | J      | J      |
| 473  | 0.047     | G      | G     | J     | J      | J      | J      |
| 563  | 0.056     | G      |       | N     | N      | М      | М      |
| 683  | 0.068     | G      |       | N     | N      | М      | М      |
| 823  | 0.082     |        |       | N     | N      | М      | M      |
| 104  | 0.1       |        |       | N     | N      | М      | М      |
| 124  | 0.12      |        |       | N     | N      | M      | М      |
| 154  | 0.15      |        |       | N     | N      | M      | М      |
| 184  | 0.18      |        |       | N     |        | М      | М      |
| 224  | 0.22      |        |       | N     |        | М      | М      |
| 274  | 0.27      |        |       |       |        | М      | М      |
| 334  | 0.33      |        |       |       |        | М      | М      |
| 394  | 0.39      |        |       |       |        | М      |        |
| 474  | 0.47      |        |       |       |        | М      |        |
| 684  | 0.68      |        |       |       |        |        |        |
| 824  | 0.82      |        |       |       |        |        |        |
| 105  | 1         |        |       |       |        |        |        |
| WVDC | WVDC      | 25V    | 50V   | 25V   | 50V    | 25V    | 50V    |
| S    | SIZE      | 06     | 03    | 0     | 805    | 12     | .06    |

|   | Letter    | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|---|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|   | Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| İ | Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
| - |           |         |         | PAPER   |         |         |         |         |         | EMBC    | SSED    |         |         |         |

### **APS for COTS+ High Reliability Applications**



### General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

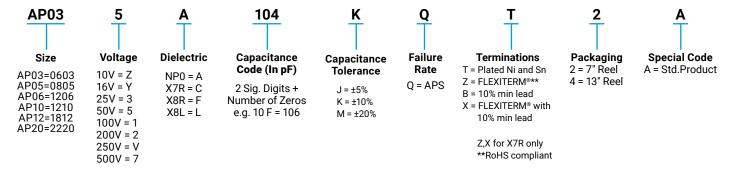


AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NPO, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

# AVX'S APS RELIABILITY TEST SUMMARY


- · 100% Visual Inspection
- DPA
- · IR, DF, Cap, DWV
- · Maverick Lot Review
- Thermal Shock
- 85/85 Testing
- · Additional Life Testing
- · C of C with every Order
- · Quarterly Data Package

#### **FEATURES**

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm® that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

| Dielectric | Temperature/Percentage Cap Change |
|------------|-----------------------------------|
| NP0        | -30ppm +30ppm from -55°C + 125°C  |
| X7R        | -15% +15% from -55°C to + 125°C   |
| X8R        | -15% +15% from -55°C to + 150°C   |
| X8L        | -15% +40% from -55°C to + 150°C   |

#### **HOW TO ORDER**



 ${\tt NOTE: Contact \ factory \ for \ availability \ of \ Termination \ and \ Tolerance \ Options \ for \ Specific \ Part \ Number.}$ 

# **APS COTS+ NP0 Series**





| Size                 | AP  | 03 = 060 | 03   | AP    | 05 = 08 | 05   |     | AF  | P06 = 12 | 06   |        |       | AP10  | = 1210 |        |
|----------------------|-----|----------|------|-------|---------|------|-----|-----|----------|------|--------|-------|-------|--------|--------|
| WVDC                 | 25V | 50V      | 100V | 25V   | 50V     | 100V | 25V | 50V | 100V     | 200V | 500V   | 25V   | 50V   | 100V   | 200V   |
| 100 10pF             | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    | J      |       |       |        |        |
| 120 12               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    | J      |       |       |        |        |
| 150 15               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    | J      |       |       |        |        |
| 180 18               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 220 22               | G   | G        | Ð    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 270 27               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 330 33               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 390 39               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 470 47               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 510 51               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 560 56               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 680 68               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 820 82               | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 101 100              | G   | G        | G    | J J J |         |      | J   | J   | J        | J    |        |       |       |        |        |
| 121 120              | G   | G        | G    | J J J |         | J    | J   | J   | J        |      |        |       |       |        |        |
| 151 150              | G   | G        | G    |       |         |      | J   | J   | J        | J    |        |       |       |        |        |
| 181 180              | G   | G        | G    | -     |         | _    | J   | J   | J        | J    |        |       |       |        |        |
| 221 220              | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 271 270              | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 331 330              | G   | G        | G    | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 391 390              | G   | G        |      | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 471 470              | G   | G        |      | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 561 560              |     |          |      | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 681 680              |     |          |      | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 821 820              |     |          |      | J     | J       | J    | J   | J   | J        | J    |        |       |       |        |        |
| 102 1000             |     |          |      | J     | J       | J    | J   | J   | J        | J    |        | J     | J     | J      | J      |
| 122 1200             |     |          |      |       |         |      |     |     |          |      |        | J     | J     | M      | М      |
| 152 1500             |     |          |      |       |         |      |     |     |          |      |        | J     | J     | M<br>M | M<br>M |
| 182 1800             |     |          |      |       |         |      |     |     |          |      |        | J     | J     | M      | M      |
| 222 2200<br>272 2700 |     |          |      |       |         |      |     |     |          |      |        | J     | J     | IVI    | IVI    |
| 332 3300             |     |          |      |       |         |      |     |     |          |      |        |       |       |        |        |
| 392 3900             |     |          |      |       |         |      |     |     |          |      |        |       |       |        |        |
| 472 4700             |     |          |      |       |         |      |     |     |          |      |        |       |       |        |        |
| 103 10nF             |     |          |      |       |         |      |     |     |          |      |        |       |       |        |        |
| WVDC                 | 25V | 50V      | 100V | 25V   | 50V     | 100V | 25V | 50V | 100V     | 200V | 500V   | 25V   | 50V   | 100V   | 200V   |
| Size                 |     | 03 = 060 |      | _     | 05 = 08 |      | Z3V |     | 206 = 12 |      | J 300V | _ Z3V |       | = 1210 | _ Z00V |
| 3126                 | AF  | 05 - 000 | ,,   | AF    | 00 - 00 | 00   |     | Ar  | 00 - 12  | 00   |        |       | AP 10 | - 1210 |        |



| Letter    | Α       | С       | Е       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | SSED    |         |         |         |

# **APS COTS+ X7R Series**





|     | Size      |     | AP  | 03 = 06 | 503  |      |     | AP                   | 05 = 0      | 805  |      |     | -   | AP06 = | 1206 |      |      |     | AP10 = | = 1210 | )    | AP12: | = 1812 | AP  | 20 = 22 | 220  |
|-----|-----------|-----|-----|---------|------|------|-----|----------------------|-------------|------|------|-----|-----|--------|------|------|------|-----|--------|--------|------|-------|--------|-----|---------|------|
| ١   | WVDC      | 16V | 25V | 50V     | 100V | 200V | 16V | 25V                  | 50V         | 100V | 200V | 16V | 25V | 50V    | 100V | 200V | 500V | 16V | 25V    | 50V    | 100V | 50V   | 100V   | 25V | 50V     | 100V |
| 102 | Cap 1000  | G   | G   | G       | G    | G    | J   | J                    | J           | J    | J    | J   | J   | J      | J    | J    | J    | K   | K      | K      | K    | К     | К      |     |         |      |
| 182 | (pF) 1800 | G   | G   | G       | G    |      | J   | J                    | J           | J    | J    | J   | J   | J      | J    | J    | J    | K   | K      | K      | K    | K     | К      |     |         |      |
| 222 | 2200      | G   | G   | G       | G    |      | J   | J                    | J           | J    | J    | J   | J   | J      | J    | J    | J    | K   | K      | K      | K    | K     | K      |     |         |      |
| 332 | 3300      | G   | G   | G       | G    |      | J   | J                    | J           | J    | J    | J   | J   | J      | J    | J    | ٦    | K   | K      | K      | K    | K     | K      |     |         |      |
| 472 | 4700      | G   | G   | G       | G    |      | J   | J                    | J           | J    | J    | J   | J   | J      | J    | J    | J    | K   | K      | K      | K    | K     | K      |     |         |      |
| 103 | 0.01      | G   | G   | G       | G    |      | J   | J                    | J           | J    | J    | J   | J   | J      | J    | J    | J    | K   | K      | K      | K    | K     | K      |     |         |      |
| 123 | 0.012     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | J    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 153 | 0.015     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | J    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 183 | 0.018     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | J    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 223 | 0.022     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | J    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 273 | 0.027     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | J    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 333 | 0.033     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | J    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 473 | 0.047     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | М    | J    |      | K   | K      | K      | K    | K     | K      |     |         |      |
| 563 | 0.056     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | М    | J    |      | K   | K      | K      | М    | K     | K      |     |         |      |
| 683 | 0.068     | G   | G   | G       |      |      | J   | J J M .              |             | J    | J    | J   | М   | J      |      | K    | K    | K   | М      | K      | K    |       |        |     |         |      |
| 823 | 0.082     | G   | G   | G       |      |      | J   | J                    | J           | М    |      | J   | J   | J      | М    | J    |      | K   | K      | K      | М    | K     | K      |     |         |      |
| 104 | 0.1       | G   | G   | G       |      |      | J   | J                    | М           | М    |      | J   | J   | J      | М    | J    |      | K   | K      | K      | М    | K     | K      |     |         |      |
| 124 | 0.12      |     |     |         |      |      | J   | J                    | М           | N    |      | J   | J   | М      | М    |      |      | K   | K      | K      | Р    | K     | K      |     |         |      |
| 154 | 0.15      |     |     |         |      |      | М   | N                    | М           | N    |      | J   | J   | М      | М    |      |      | K   | K      | K      | Р    | K     | K      |     |         |      |
| 224 | 0.22      |     |     |         |      |      | М   | N                    | М           | N    |      | J   | М   | М      | Q    |      |      | М   | М      | М      | Р    | М     | М      |     |         |      |
| 334 | 0.33      |     |     |         |      |      | N   | N                    | М           | N    |      | J   | М   | Р      | Q    |      |      | Р   | Р      | Р      | Q    | Х     | Х      |     |         |      |
| 474 |           |     |     |         |      |      | N   | N                    | М           | N    |      | М   | М   | Р      | Q    |      |      | Р   | Р      | Р      | Q    | Х     | Х      |     |         |      |
| 684 | 0.68      |     |     |         |      |      | N   | N                    | N           |      |      | М   | Q   | Q      | Q    |      |      | Р   | Р      | Q      | Х    | Х     | X      |     |         |      |
| 105 |           |     |     |         |      |      | N   | N                    | N*          |      |      | М   | Q   | Q      | Q*   |      |      | Р   | Q      | Q      | Z*   | Х     | Х      |     |         |      |
| 155 | (μF) 1.5  |     |     |         |      |      |     |                      |             |      |      | Q   | Q   | Q      |      |      |      | Р   | Q      | Z      | Z    | Х     | X      |     |         |      |
| 225 | 2.2       |     |     |         |      |      |     |                      |             |      |      | Q   | Q   | Q      |      |      |      | Х   | Z      | Z      | Z*   | Z     | Z      |     |         |      |
| 335 |           |     |     |         |      |      |     |                      |             |      |      | Q   |     |        |      |      |      | Х   | Z      | Z      | Z    | Z     |        |     |         |      |
| 475 | 4.7       |     |     |         |      |      |     |                      |             |      |      | Q   |     |        |      |      |      | Х   | Z      | Z      |      | Z*    |        |     |         |      |
| 106 | 10        |     |     |         |      |      |     |                      |             |      |      |     |     |        |      |      |      | Z   | Z*     |        |      |       |        |     | Z       | Z*   |
| 226 | 22        |     |     |         |      |      |     | 550 500 4000 0000 46 |             |      |      |     |     |        |      |      |      |     |        |        |      |       |        | Z   |         |      |
| V   | VVDC      | 16V | 25V | 50V     | 100V | 200V | 16V |                      |             |      |      |     | 25V | 50V    | 100V | 200V | 500V | 16V | 25V    | 50V    | 100V | 50V   | 100V   | 25V | 50V     | 100V |
|     | Size      |     | AP  | 03 = 06 | 503  |      |     | AP                   | AP05 = 0805 |      |      |     |     | AP06 = | 1206 |      |      |     | AP10 = | = 1210 | )    | AP12: | =1812  | AP: | 20 = 22 | 220  |

<sup>\*</sup>Not currently available with lead plating finish, contact plant for further information.

| Letter    | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | X       | Y       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | SSED    |         |         |         |

# **APS COTS+ X8R/L Series**





### X8R

|     | 0.75       | 4500   | 0400   | 4505    | 2025   | 1000   | 1004 |
|-----|------------|--------|--------|---------|--------|--------|------|
|     | SIZE       | AP03 = | : 0603 | AP05    | = 0805 | AP06 = | 1206 |
| 1   | WVDC       | 25V    | 50V    | 25V     | 50V    | 25V    | 50V  |
| 331 | Cap 330    | G      | G      | <u></u> | J      |        |      |
| 471 | (pF) 470   | G      | G      | J       | J      |        |      |
| 681 | 680        | G      | G      | J       | J      |        |      |
| 102 | 1000       | G      | G      | J       | J      | J      | J    |
| 152 | 1500       | G      | G      | J       | J      | J      | J    |
| 222 | 2200       | G      | G      | J       | J      | J      | J    |
| 332 | 3300       | G      | G      | J       | J      | J      | J    |
| 472 | 4700       | G      | G      | J       | J      | J      | J    |
| 682 | 6800       | G      | G      | J       | J      | J      | J    |
| 103 | Cap 0.01   | G      | G      | J       | J      | J      | J    |
| 153 | (μF) 0.015 | G      | G      | J       | J      | J      | J    |
| 223 | 0.022      | G      | G      | J       | J      | J      | J    |
| 333 | 0.033      | G      | G      | 7       | J      | J      | J    |
| 473 | 0.047      | G      | G      | 7       | J      | J      | J    |
| 683 | 0.068      | G      |        | Ν       | N      | M      | М    |
| 104 | 0.1        |        |        | N       | N      | M      | М    |
| 154 | 0.15       |        |        | N       | N      | M      | М    |
| 224 | 0.22       |        |        | N       |        | M      | М    |
| 334 | 0.33       |        |        |         |        | M      | М    |
| 474 | 0.47       |        |        |         |        | M      |      |
| 684 | 0.68       |        |        |         |        |        |      |
| 105 | 1          |        |        |         |        |        |      |
|     | WVDC       | 25V    | 50V    | 25V     | 50V    | 25V    | 50V  |
|     | SIZE       | 060    | 03     | 08      | 05     | 120    | 6    |

### X8L

|     | SIZE       | ı   | AP03 = 0603 | 3    |     | AP05 = 080 | 5    |     | AP06 | = 1206 |      |
|-----|------------|-----|-------------|------|-----|------------|------|-----|------|--------|------|
|     | WVDC       | 25V | 50V         | 100V | 25V | 50V        | 100V | 16V | 25V  | 50V    | 100V |
| 331 | Cap 330    |     | G           | G    |     | J          | J    |     |      |        |      |
| 471 | (pF) 470   |     | G           | G    |     | J          | J    |     |      |        |      |
| 681 | 680        |     | G           | G    |     | J          | J    |     |      |        |      |
| 102 | 1000       |     | G           | G    |     | J          | J    |     |      |        |      |
| 152 | 1500       |     | G           | G    |     | J          | J    |     |      | J      | J    |
| 222 | 2200       |     | G           | G    |     | J          | J    |     |      | J      | J    |
| 332 | 3300       |     | G           | G    |     | J          | J    |     |      | J      | J    |
| 472 | 4700       |     | G           | G    |     | J          | J    |     |      | J      | J    |
| 682 | 6800       |     | G           | G    |     | J          | J    |     |      | J      | J    |
| 103 | Cap 0.01   |     | G           | G    |     | J          | J    |     |      | J      | J    |
| 153 | (µF) 0.015 | G   | G           |      | J   | J          | J    |     |      | J      | J    |
| 223 | 0.022      | G   | G           |      | J   | J          | J    |     |      | J      | J    |
| 333 | 0.033      | G   | G           |      | J   | J          | N    |     |      | J      | J    |
| 473 | 0.047      | G   | G           |      | J   | J          | N    |     |      | J      | J    |
| 683 | 0.068      | G   | G           |      | J   | J          |      |     |      | J      | J    |
| 104 | 0.1        | G   | G           |      | J   | J          |      |     |      | J      | M    |
| 154 | 0.15       |     |             |      | J   | N          |      | J   | J    | J      | Q    |
| 224 | 0.22       |     |             |      | N   | N          |      | J   | J    | J      | Q    |
| 334 | 0.33       |     |             |      | N   |            |      | J   | М    | Р      | Q    |
| 474 | 0.47       |     |             |      | N   |            |      | М   | М    | Р      |      |
| 684 | 0.68       |     |             |      |     |            |      | М   |      |        |      |
| 105 | 1          |     |             |      |     |            |      | М   |      |        |      |
|     | WVDC       | 25V | 50V         | 100V | 25V | 50V        | 100V | 16V | 25V  | 50V    | 100V |
|     | SIZE       |     | 0603        |      |     | 0805       |      |     | 12   | 06     |      |



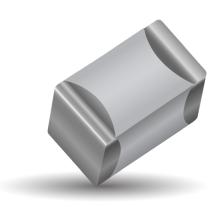
| Letter    | Α       | С       | E       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | SSED    |         |         |         |

### MLCC with FLEXITERM®

### **General Specifications**



#### **GENERAL DESCRIPTION**


With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

#### **PRODUCT ADVANTAGES**

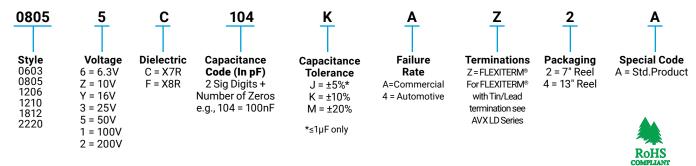
- High mechanical performance able to withstand, 5mm bend test guaranteed.
- Increased temperature cycling performance, 3000 cycles and beyond.
- · Flexible termination system.
- · Reduction in circuit board flex failures.
- · Base metal electrode system.
- · Automotive or commercial grade products available.



#### **APPLICATIONS**

#### **High Flexure Stress Circuit Boards**

 e.g. Depanelization: Components near edges of board.


#### **Variable Temperature Applications**

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

#### **Automotive Applications**

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

#### **HOW TO ORDER**



NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

### MLCC with FLEXITERM®

### **Specifications and Test Methods**

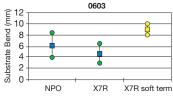
# 

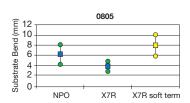
#### **PERFORMANCE TESTING**

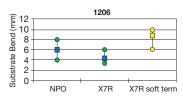
#### **AEC-Q200 Qualification:**

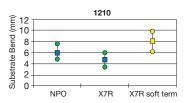
 Created by the Automotive Electronics Council

 Specification defining stress test qualification for passive components


#### Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:


- · Bend Test
- · Temperature Cycle Test


#### **BOARD BEND TEST RESULTS**

AEC-Q200 Vrs AVX FLEXITERM® Bend Test



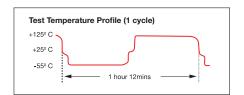






### **TABLE SUMMARY**

Typical bend test results are shown below:


| Style | <b>Conventional Termination</b> | FLEXITERM <sup>®</sup> |
|-------|---------------------------------|------------------------|
| 0603  | >2mm                            | >5mm                   |
| 0805  | >2mm                            | >5mm                   |
| 1206  | >2mm                            | >5mm                   |

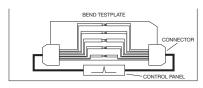
#### **TEMPERATURE CYCLE TEST PROCEDURE**

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- · Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance




#### **BOARD BEND TEST PROCEDURE**

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components

Span: 90mm Minimum deflection spec: 2 mm

- · Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)



LOADING KNIFE

MOUNTING ASSEMBLY

DIGITAL

CALIFER

CONTROL
PANEL

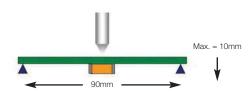

Fig 1 - PCB layout with electrical connections

Fig 2 - Board Bend test equipment

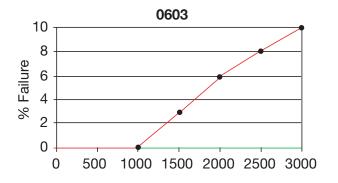
### AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

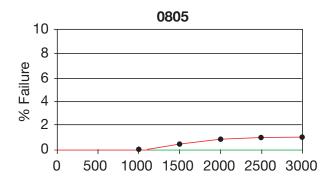
#### **Bend Test**

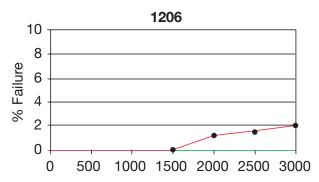
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

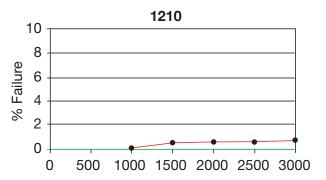


- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife





- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm


### **Specifications and Test Methods**



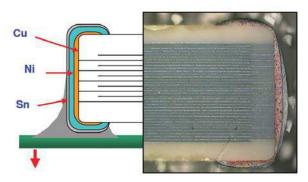

### **BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS**





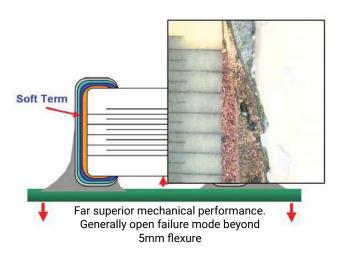





Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

### **FLEXITERM® TEST SUMMARY**


- Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- FLEXITERM® provides improved performance compared to standard termination systems.
- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
  - 0% Failure up to 3000 cycles
- No ESR change up to 3000 cycle

#### WITHOUT SOFT TERMINATION



Major fear is of latent board flex failures.

#### WITH SOFT TERMINATION



# **MLCC with FLEXITERM®**



# **Capacitance Range X8R Dielectric**

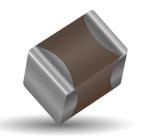
|     | SIZE       | 06     | 03     | 08     | 305    | 12     | 206    |
|-----|------------|--------|--------|--------|--------|--------|--------|
| S   | oldering   | Reflow | //Wave | Reflov | v/Wave | Reflov | v/Wave |
|     | WVDC       | 25V    | 50V    | 25V    | 50V    | 25V    | 50V    |
| 271 | Cap 270    | G      | G      |        |        |        |        |
| 331 | (pF) 330   | G      | G      | J      | J      |        |        |
| 471 | 470        | G      | G      | J      | J      |        |        |
| 681 | 680        | G      | G      | J      | J      |        |        |
| 102 | 1000       | G      | G      | J      | J      | J      | J      |
| 152 | 1500       | G      | G      | J      | J      | J      | J      |
| 182 | 1800       | G      | G      | J      | J      | J      | J      |
| 222 | 2200       | G      | G      | J      | J      | J      | J      |
| 272 | 2700       | G      | G      | J      | J      | J      | J      |
| 332 | 3300       | G      | G      | J      | J      | J      | J      |
| 392 | 3900       | G      | G      | J      | J      | J      | J      |
| 472 | 4700       | G      | G      | J      | J      | J      | J      |
| 562 | 5600       | G      | G      | J      | J      | J      | J      |
| 682 | 6800       | G      | G      | J      | J      | J      | J      |
| 822 | 8200       | G      | G      | J      | J      | J      | J      |
| 103 | Cap 0.01   | G      | G      | J      | J      | J      | J      |
| 123 | (µF) 0.012 | G      | G      | J      | J      | J      | J      |
| 153 | 0.015      | G      | G      | J      | J      | J      | J      |
| 183 | 0.018      | G      | G      | J      | J      | J      | J      |
| 223 | 0.022      | G      | G      | J      | J      | J      | J      |
| 273 | 0.027      | G      | G      | J      | J      | J      | J      |
| 333 | 0.033      | G      | G      | J      | J      | J      | J      |
| 393 | 0.039      | G      | G      | J      | J      | J      | J      |
| 473 | 0.047      | G      | G      | J      | J      | J      | J      |
| 563 | 0.056      | G      |        | N      | N      | М      | M      |
| 683 | 0.068      | G      |        | N      | N      | M      | M      |
| 823 | 0.082      |        |        | N      | N      | M      | M      |
| 104 | 0.1        |        |        | N      | N      | M      | M      |
| 124 | 0.12       |        |        | N      | N      | М      | М      |
| 154 | 0.15       |        |        | N      | N      | М      | М      |
| 184 | 0.18       |        |        | N      |        | М      | М      |
| 224 | 0.22       |        |        | N      |        | М      | M      |
| 274 | 0.27       |        |        |        |        | М      | М      |
| 334 | 0.33       |        |        |        |        | М      | М      |
| 394 | 0.39       |        |        |        |        | М      |        |
| 474 | 0.47       |        |        |        |        | М      |        |
| 684 | 0.68       |        |        |        |        |        |        |
| 824 | 0.82       |        |        |        |        |        |        |
| 105 | 1          |        |        |        |        |        |        |
|     | WVDC       | 25V    | 50V    | 25V    | 50V    | 25V    | 50V    |
|     | SIZE       | 06     | 03     | 08     | 305    | 12     | 206    |
|     |            |        |        |        |        |        |        |

| Letter    | А       | С       | Е       | G       | J       | K       | М       | N       | Р       | Q       | Х       | Υ       | Z       |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27    | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |
|           |         |         | PAPER   |         |         |         |         |         | EMBO    | SSED    |         |         |         |

# **MLCC with FLEXITERM®**



# **Capacitance Range X7R Dielectric**


|     | Size   |       | (   | 0402         | 2        |          |                                                  |          | 06       | 03       |      |      |          |          | 0        | 805                                              |          |          |          |          |          | 120      | 6                                                |          |          |     | 12    | 210          |       | 18  | 12         |          | 2220                                             | 0                                                |
|-----|--------|-------|-----|--------------|----------|----------|--------------------------------------------------|----------|----------|----------|------|------|----------|----------|----------|--------------------------------------------------|----------|----------|----------|----------|----------|----------|--------------------------------------------------|----------|----------|-----|-------|--------------|-------|-----|------------|----------|--------------------------------------------------|--------------------------------------------------|
| s   | olderi | ng    |     | eflov<br>Nav |          |          |                                                  | Re       | eflow    | //Wa     | /e   |      |          | F        | Reflo    | w/Wa                                             | ave      |          |          |          | Re       | flow/    | Wave                                             | 9        |          |     | Reflo | w Onl        | у     |     | low<br>nly | Re       | flow (                                           | Only                                             |
|     | WVDO   | )     | 16V | 25V          | 50V      | 10V      | 16V                                              | 25V      | 50V      | 100 V    | 200V | 250V | 16V      | 25V      | 50V      | 100 V                                            | 200V     | 250V     | 16V      | 25V      | 50V      | 100 V    | 200V                                             | 250V     | 500V     | 16V | 25V   | 50V          | 100 V | 50V | 100 V      | 25V      | 50V                                              | 100 V                                            |
| 221 | Cap    | 220   | С   | С            | С        |          |                                                  |          |          |          |      |      |          |          |          |                                                  |          |          |          |          |          |          |                                                  |          |          |     |       |              |       |     |            |          |                                                  |                                                  |
| 271 | (pF)   | 270   | С   | С            | С        |          |                                                  |          | İ        |          |      |      |          |          |          |                                                  |          |          |          |          |          | İ        | İ                                                |          |          |     |       |              |       |     |            | İ        |                                                  |                                                  |
| 331 | " 1    | 330   | С   | С            | С        |          |                                                  |          |          |          |      |      |          |          |          |                                                  |          |          |          |          |          |          |                                                  |          |          |     |       |              |       |     |            |          |                                                  |                                                  |
| 391 |        | 390   | С   | С            | С        |          |                                                  |          |          |          |      |      |          |          |          |                                                  |          |          |          |          |          |          |                                                  |          |          |     |       |              |       |     |            |          |                                                  |                                                  |
| 471 |        | 470   | С   | С            | С        |          |                                                  |          | İ        |          |      |      | İ        | İ        |          |                                                  |          |          |          |          |          | İ        | İ                                                |          |          |     |       |              |       |     |            | İ        |                                                  |                                                  |
| 561 |        | 560   | С   | С            | С        |          |                                                  |          |          |          |      |      |          |          |          |                                                  |          |          |          |          |          |          |                                                  |          |          |     |       |              |       |     |            |          |                                                  |                                                  |
| 681 |        | 680   | C   | С            | C        |          | T                                                |          |          |          |      |      |          | İ        |          |                                                  |          |          |          |          |          |          |                                                  |          |          |     |       |              |       |     |            |          |                                                  |                                                  |
| 821 |        | 820   | c   | C            | C        |          |                                                  |          |          |          |      |      | <u> </u> |          |          |                                                  |          |          |          |          |          |          |                                                  |          |          |     |       |              |       |     |            |          |                                                  |                                                  |
| 102 |        | 1000  | c   | C            | C        |          | G                                                | G        | G        | G        | G    | G    | J        | J        | J        | J                                                | J        | J        | J        | J        | J        | J        | J                                                | J        | J        | K   | K     | К            | К     | K   | К          |          |                                                  |                                                  |
| 182 |        | 1800  | č   | c            | Č        |          | G                                                | Ğ        | G        | G        | G    | G    | J        | J        | J        | J                                                | J        | Ĵ        | J        | J        | J        | J        | J                                                | J        | J        | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 222 |        | 2200  | c   | С            | c        |          | G                                                | G        | G        | G        | G    | G    | J        | J        | J        | J                                                | J        | J        | J        | J        | J        | J        | J                                                | J        | J        | K   | K     | K            | K     | K   | K          |          |                                                  | <u> </u>                                         |
| 332 |        | 3300  | c   | C            | Č        |          | G                                                | G        | G        | G        | G    | G    | Ĵ        | J        | J        | J                                                | J        | J        | J        | J        | J        | J        | J                                                | J        | Ĵ        | K   | K     | K            | K     | K   | K          |          | $\vdash$                                         | <u> </u>                                         |
| 472 |        | 4700  | c   | С            | c        |          | G                                                | G        | G        | G        | G    | G    | J        | J        | J        | J                                                | J        | J        | J        | J        | J        | J        | J                                                | J        | J        | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 103 | Сар    | 0.01  | c   |              | Ŭ        |          | G                                                | G        | G        | G        | G    | G    | J        | J        | J        | J                                                | J        | J        | J        | J        | J        | J        | J                                                | J        | J        | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 123 | (µF)   | 0.012 | c   |              |          | $\vdash$ | G                                                | Ğ        | Ğ        | ١Ť       |      |      | J        | J        | J        | М                                                | J        | J        | J        | J        | J        | J        | J                                                | J        | Ť        | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 153 | (μ. )  | 0.015 | c   |              |          | $\vdash$ | G                                                | G        | G        |          |      |      | J        | J        | J        | М                                                | J        | J        | J        | J        | J        | J        | J                                                | J        |          | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 183 |        | 0.018 | c   |              |          |          | G                                                | G        | G        |          |      |      | J        | J        | J        | М                                                | J        | J        | J        | J        | J        | J        | Ĵ                                                | J        |          | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 223 |        | 0.022 | C   |              |          |          | G                                                | G        | G        |          |      |      | J        | J        | J        | J                                                | J        | J        | J        | J        | J        | J        | J                                                | J        |          | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 273 |        | 0.027 | c   |              |          |          | G                                                | Ğ        | G        |          |      |      | J        | J        | J        | М                                                | J        | J        | J        | J        | J        | J        | J                                                | J        |          | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 333 |        | 0.033 | _   |              |          |          | G                                                | G        | G        |          |      |      | J        | J        | J        | М                                                | J        | J        | J        | J        | J        | J        | J                                                | J        |          | K   | K     | K            | K     | K   | K          |          | <del>                                     </del> |                                                  |
| 473 |        | 0.047 | _   |              |          |          | G                                                | G        | G        |          |      |      | J        | J        | J        | М                                                | J        | J        | J        | J        | J        | М        | J                                                | J        |          | K   | K     | K            | K     | K   | K          |          |                                                  |                                                  |
| 563 |        | 0.056 |     |              |          |          | G                                                | G        | G        |          |      |      | J        | J        | J        | М                                                |          | "        | J        | J        | J        | М        | J                                                | J        |          | K   | K     | K            | M     | K   | K          |          | $\vdash$                                         |                                                  |
| 683 |        | 0.068 |     |              |          | $\vdash$ | G                                                | G        | G        |          |      |      | J        | J        | J        | М                                                |          |          | J        | J        | J        | М        | J                                                | J        |          | K   | K     | K            | М     | K   | K          |          |                                                  |                                                  |
| 823 |        | 0.082 |     |              |          |          | G                                                | G        | Ğ        |          |      |      | J        | J        | J        | М                                                |          |          | J        | J        | J        | М        | J                                                | J        |          | K   | K     | K            | M     | K   | K          |          |                                                  |                                                  |
| 104 |        | 0.1   | С   |              |          |          | G                                                | G        | G        |          |      |      | J        | J        | М        | М                                                |          |          | J        | J        | J        | М        | J                                                | J        |          | K   | K     | K            | М     | K   | K          |          | <del>                                     </del> |                                                  |
| 124 |        | 0.12  | Ť   |              |          | $\vdash$ | Ŭ                                                | Ŭ        | <u> </u> |          |      |      | J        | J        | М        | N                                                |          |          | J        | J        | М        | М        | _                                                |          |          | K   | K     | K            | P     | K   | K          |          |                                                  |                                                  |
| 154 |        | 0.15  |     |              |          | $\vdash$ | t                                                | $\vdash$ | $\vdash$ |          |      |      | М        | N        | М        | N                                                |          |          | J        | J        | М        | М        |                                                  |          |          | K   | K     | K            | P     | K   | K          |          |                                                  |                                                  |
| 224 |        | 0.22  |     |              |          | G        |                                                  |          |          |          |      |      | М        | N        | М        | N                                                |          |          | J        | М        | М        | 0        |                                                  |          |          | М   | М     | М            | P     | М   | М          |          |                                                  |                                                  |
| 334 |        | 0.33  |     |              |          |          |                                                  |          |          |          |      |      | N        | N        | М        | N                                                |          |          | J        | М        | P        | Q        |                                                  |          |          | P   | P     | P            | Q     | X   | X          |          |                                                  |                                                  |
| 474 |        | 0.47  |     |              |          | $\vdash$ | <u> </u>                                         | $\vdash$ |          |          |      |      | N        | N        | М        | N                                                |          |          | М        | M        | P        | Q        |                                                  |          |          | P   | P     | P            | Q     | X   | X          |          | $\vdash$                                         | $\vdash$                                         |
| 684 |        | 0.68  |     |              | t        |          | t                                                |          |          | <b>†</b> |      |      | N        | N        | N        | <u> </u>                                         |          |          | M        | Q        | Q        | Q        |                                                  |          |          | P   | P     | Q            | X     | X   | X          |          | $\vdash$                                         | <u> </u>                                         |
| 105 |        | 1     |     |              | t        | $\vdash$ | t                                                | $\vdash$ |          | t        |      |      | N        | N        | N        |                                                  | $\vdash$ |          | M        | Q        | Q        | Q        |                                                  | t        | $\vdash$ | P   | Q     | Q            | Z     | X   | X          |          | $\vdash$                                         | <u> </u>                                         |
| 155 |        | 1.5   |     |              | t        |          |                                                  |          |          |          |      |      | - 1      | <u> </u> | .,       |                                                  |          |          | 0        | Q        | 0        | <u> </u> |                                                  |          |          | P   | 0     | Z            | Z     | X   | X          |          |                                                  |                                                  |
| 225 |        | 2.2   |     |              | t        | $\vdash$ | t                                                | $\vdash$ | $\vdash$ |          |      |      |          | $\vdash$ |          | <del>                                     </del> |          |          | ō        | Q        | ō        |          | <del>                                     </del> | t —      |          | X   | Z     | Z            | Z     | Z   | Z          |          | $\vdash$                                         |                                                  |
| 335 |        | 3.3   |     |              |          | $\vdash$ | 1                                                | $\vdash$ |          |          |      |      |          |          |          |                                                  |          |          | 0        | Q        | ~        |          |                                                  |          |          | X   | Z     | Z            | Z     | Z   |            |          |                                                  | <del>                                     </del> |
| 475 | -      | 4.7   |     | $\vdash$     | $\vdash$ | $\vdash$ | +                                                | $\vdash$ |          | $\vdash$ |      |      | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$                                         | $\vdash$ | $\vdash$ | 0        | 0        | $\vdash$ |          |                                                  | $\vdash$ | $\vdash$ | X   | Z     | Z            | Z     | Z   |            | $\vdash$ | $\vdash$                                         | Z                                                |
| 106 |        | 10    |     |              | $\vdash$ | $\vdash$ | <del>                                     </del> | $\vdash$ |          |          |      |      | $\vdash$ | $\vdash$ |          |                                                  |          |          | ٧        | ٧        |          |          |                                                  |          |          | Z   | Z     | <del>-</del> |       |     |            | $\vdash$ | Z                                                | Z                                                |
| 226 |        | 22    |     |              | $\vdash$ | $\vdash$ |                                                  | $\vdash$ |          | $\vdash$ |      |      | $\vdash$ | $\vdash$ |          | <del>                                     </del> | $\vdash$ |          | $\vdash$ | $\vdash$ |          | $\vdash$ | $\vdash$                                         | $\vdash$ | $\vdash$ |     |       |              |       |     | $\vdash$   | Z        |                                                  |                                                  |
| 220 | WVDO   |       | 16V | 25V          | 50V      | 10V      | 16V                                              | 25V      | 50V      | 100 V    | 200V | 250V | 16V      | 25V      | 50V      | 100 V                                            | 200V     | 250V     | 16V      | 25V      | 50V      | 100 V    | 200V                                             | 250V     | 500V     | 16V | 25V   | 50V          | 100 V | 50V | 100 V      |          | 50V                                              | 100 V                                            |
|     | Size   |       |     | 0402         |          | 1        | ,                                                | ,        |          | 03       | ,    |      |          | ,        |          | 805                                              |          | ,        |          |          |          | 120      |                                                  | ,        | ,        |     |       | 210          |       |     | 12         |          | 2220                                             |                                                  |
|     | SIZE   |       | , T | J4U          |          |          |                                                  |          | 00       | 03       |      |      |          |          |          | 003                                              |          |          |          |          |          | 120      | <u> </u>                                         |          |          |     | 12    | -10          |       | 10  | 14         |          | 2220                                             |                                                  |

| Letter    | А       | С       | E       | G       | J       | K       | М        | N       | Р       | Q       | Х       | Υ       | Z       |  |  |
|-----------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--|--|
| Max.      | 0.33    | 0.56    | 0.71    | 0.90    | 0.94    | 1.02    | 1.27     | 1.40    | 1.52    | 1.78    | 2.29    | 2.54    | 2.79    |  |  |
| Thickness | (0.013) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050)  | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) |  |  |
|           |         | PAPER   |         |         |         |         | EMBOSSED |         |         |         |         |         |         |  |  |

### **FLEXISAFE MLC Chips**

# General Specifications and Capacitance Range For Ultra Safety Critical Applications





AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM™ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM™ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM™ layer, the FLEXISAFE range of capacitors has unbeatable safety features.

#### **HOW TO ORDER**

| 0805                                                        | <u>5</u>                                             | <u>C</u>                     | <u>104</u>                                                                             | <b>K</b><br>T                                                                 | <b>Q</b><br>T                                      | <b>z</b><br>                                                                       | <b>2</b><br>T                            | <u>A</u>                           |
|-------------------------------------------------------------|------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|
| <b>Size</b> FS03 = 0603 FS05 = 0805 FS06 = 1206 FS10 = 1210 | Voltage<br>16V = Y<br>25V = 3<br>50V = 5<br>100V = 1 | <b>Dielectric</b><br>X7R = C | Capacitance<br>Code (In pF)<br>2 Sig. Digits +<br>Number of<br>Zeros<br>e.g. 10µF =106 | Capacitance<br>Tolerance<br>$J = \pm 5\%$<br>$K = \pm 10\%$<br>$M = \pm 20\%$ | Failure Rate A = Commercial 4 = Automotive Q = APS | Terminations Z = FLEXITERMTM *X = FLEXITERMTM with 5% min lead *Not RoHS Compliant | Packaging<br>2 = 7" Reel<br>4 = 13" Reel | Special<br>Code<br>A = Std.Product |

#### **FLEXISAFE X7R RANGE**

| Capacitance<br>Code<br>Soldering<br>WVDC |          | FS03 = 0603 |    |    | <b>FS05 = 0805</b><br>Reflow/Wave |    |    |    | FS06 = 1206<br>Reflow/Wave |    |    | FS10 = 1210<br>Reflow Only |    |    |    |
|------------------------------------------|----------|-------------|----|----|-----------------------------------|----|----|----|----------------------------|----|----|----------------------------|----|----|----|
|                                          |          | Reflow/Wave |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
|                                          |          | 16          | 25 | 50 | 100                               | 16 | 25 | 50 | 100                        | 16 | 25 | 50                         | 16 | 25 | 50 |
| 102                                      | μF 0.001 |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 182                                      | 0.0018   |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 222                                      | 0.0022   |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 332                                      | 0.0033   |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 472                                      | 0.0047   |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 103                                      | 0.01     |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 123                                      | 0.012    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 153                                      | 0.015    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 183                                      | 0.018    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 223                                      | 0.022    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 273                                      | 0.027    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 333                                      | 0.033    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 473                                      | 0.047    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 563                                      | 0.056    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 683                                      | 0.068    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 823                                      | 0.082    |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 104                                      | 0.1      |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 124                                      | 0.12     |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 154                                      | 0.15     |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 224                                      | 0.22     |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 334                                      | 0.33     |             |    |    |                                   |    |    |    |                            |    |    |                            |    |    |    |
| 171                                      | 0.47     |             |    |    |                                   |    | 1  |    |                            | ĺ  |    |                            |    |    |    |





### **Capacitor Array**

### **Capacitor Array (IPC)**



# BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

#### **Reduced Costs**

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

#### **Space Saving**

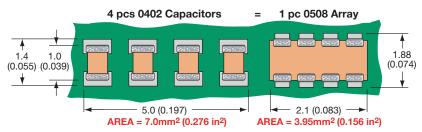
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs.  $4 \times 0402$  discrete capacitors and of >70% vs.  $4 \times 0603$  discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

#### **Increased Throughput**

Assuming that there are 220 passive components placed in a mobile phone:

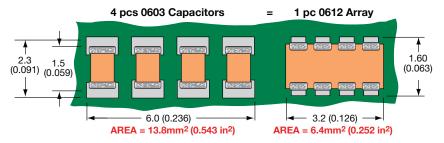
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

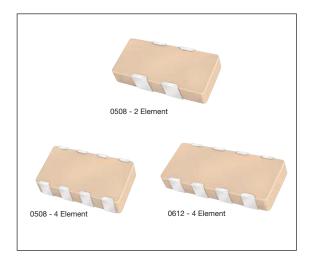
#### W2A (0508) Capacitor Arrays



The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

#### W3A (0612) Capacitor Arrays




The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.



### **Capacitor Array**

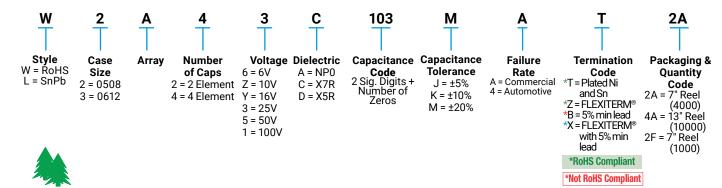
### **Capacitor Array (IPC)**





#### **GENERAL DESCRIPTION**

AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.


AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

#### AVX Capacitor Array - W2A41A\*\*\*K S21 Magnitude 0 -5 -10 -15 S21 mag. (dB) -20 5pF 10pF -25 15pF 22pF -30 33pF 39pF 68pF -35 -40 0.01 Frequency (GHz)

#### **HOW TO ORDER**

COMPLIANT



NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.



# **Capacitor Array**

# Capacitance Range - NP0/C0G



| S                 | IZE    |        | W   | 2 = 05     | 08       | W                              | 3 = 061  | 12       |  |  |
|-------------------|--------|--------|-----|------------|----------|--------------------------------|----------|----------|--|--|
| # Ele             | men    | ts     |     | 4          |          |                                | 4        |          |  |  |
|                   | dering |        | Re  | flow/Wa    | ave      | Re                             | flow/Wa  | IVE      |  |  |
|                   | kaging |        |     | er/Embos   |          |                                | er/Embos |          |  |  |
| 1 40              | качпч  | mm     |     | 1.30 ± 0.1 |          | 1.60 ± 0.150                   |          |          |  |  |
| Length            |        | (in.)  |     | 051 ± 0.0  |          | (0.063 ± 0.006)                |          |          |  |  |
| -                 |        | mm     |     | 2.10 ± 0.1 |          | (0.063 ± 0.006)<br>3.20 ± 0.20 |          |          |  |  |
| Width             |        | (in.)  |     | 0.0 ± 0.1  |          | 3.20 ± 0.20<br>(0.126 ± 0.008) |          |          |  |  |
| Maria             |        | mm     | (0. | 0.94       | 00)      | (0.                            | 1.35     | 06)      |  |  |
| Max.<br>Thickness |        | (in.)  |     | (0.037)    |          |                                | (0.053)  |          |  |  |
|                   | VDC    | (111.) | 16  | 25         | 50       | 16                             | 25       | 50       |  |  |
| 1R0               |        | 1.0    | 10  | 2.5        | 30       | 10                             | 2.5      | 30       |  |  |
| 1R0               | Cap    | 1.2    |     |            |          |                                |          |          |  |  |
| 1R5               | (pF)   | 1.5    |     |            |          |                                |          |          |  |  |
| 1R8               | -      | 1.8    |     |            |          |                                |          |          |  |  |
| 2R2               |        | 2.2    |     |            |          |                                |          |          |  |  |
| 2R7               |        | 2.7    |     |            |          |                                |          |          |  |  |
| 3R3               |        | 3.3    |     |            |          |                                |          |          |  |  |
| 3R9               |        | 3.9    |     |            |          |                                |          |          |  |  |
| 4R7               |        | 4.7    |     |            |          |                                |          |          |  |  |
| 5R6               |        | 5.6    |     |            |          |                                |          |          |  |  |
| 6R8               |        | 6.8    |     |            |          |                                |          |          |  |  |
| 8R2               |        | 8.2    |     |            |          |                                |          |          |  |  |
| 100               |        | 10     |     |            |          |                                |          |          |  |  |
| 120               |        | 12     |     |            |          |                                |          |          |  |  |
| 150               |        | 15     |     |            |          |                                |          |          |  |  |
| 180               |        | 18     |     |            |          |                                |          |          |  |  |
| 220               |        | 22     |     |            |          |                                |          |          |  |  |
| 270               |        | 27     |     |            |          |                                |          |          |  |  |
| 330               |        | 33     |     |            |          |                                |          |          |  |  |
| 390               |        | 39     |     |            |          |                                |          |          |  |  |
| 470               |        | 47     |     |            |          |                                |          |          |  |  |
| 560               |        | 56     |     |            |          |                                |          |          |  |  |
| 680               |        | 68     |     |            |          |                                |          |          |  |  |
| 820               |        | 82     |     |            |          |                                |          |          |  |  |
| 101               |        | 100    |     |            |          |                                |          |          |  |  |
| 121               |        | 120    |     |            |          |                                |          |          |  |  |
| 151               |        | 150    |     |            |          |                                |          |          |  |  |
| 181               |        | 180    |     |            |          |                                |          |          |  |  |
| 221               |        | 220    |     |            |          |                                |          |          |  |  |
| 271               |        | 270    |     |            |          |                                |          |          |  |  |
| 331               |        | 330    |     |            |          |                                |          |          |  |  |
| 391               |        | 390    |     |            |          |                                |          |          |  |  |
| 471               |        | 470    |     |            |          |                                |          |          |  |  |
| 561               |        | 560    |     |            |          |                                |          |          |  |  |
| 681               |        | 680    |     |            |          |                                |          |          |  |  |
| 821               |        | 820    |     |            |          |                                |          |          |  |  |
| 102               |        | 1000   |     |            |          |                                |          |          |  |  |
| 122               |        | 1200   |     |            |          |                                |          |          |  |  |
| 152               |        | 1500   |     |            |          |                                |          |          |  |  |
| 182               |        | 1800   |     |            |          |                                |          |          |  |  |
| 222               |        | 2200   |     |            |          |                                |          |          |  |  |
| 272               |        | 2700   |     |            |          |                                |          |          |  |  |
| 332               |        | 3300   |     |            |          |                                |          |          |  |  |
| 392               |        | 3900   |     |            |          |                                |          |          |  |  |
| 472               |        | 4700   |     |            |          |                                |          |          |  |  |
| 562               |        | 5600   |     |            |          |                                |          |          |  |  |
| 682               |        | 6800   |     |            |          |                                |          |          |  |  |
| 822               |        | 8200   |     |            | <u> </u> | <u> </u>                       |          | <u> </u> |  |  |

= Supported Values

# **Capacitor Array**

# Capacitance Range - X7R



|            | SIZE      |                |   |    | N2 =  | 050                                              | 8               |     |                 | v        | V2 =   | 050                                              | 8        |                                                  |                 |          | N3 =          | 061  | 2       |          |
|------------|-----------|----------------|---|----|-------|--------------------------------------------------|-----------------|-----|-----------------|----------|--------|--------------------------------------------------|----------|--------------------------------------------------|-----------------|----------|---------------|------|---------|----------|
| #          | Elemen    | ıts            |   |    |       | 2                                                |                 |     |                 |          |        | 4                                                |          |                                                  |                 |          |               | 4    |         |          |
| - "        | Soldering |                |   |    |       | v/Wav                                            | 'e              |     |                 | F        |        | //Wave                                           | e        |                                                  |                 |          | Reflow        |      | e       |          |
|            | Packagino |                |   |    |       | Paper                                            |                 |     | Paper/Embossed  |          |        |                                                  |          |                                                  |                 | per/Er   |               |      |         |          |
|            |           | mm             |   |    |       | ± 0.15                                           |                 |     | 1.30 ± 0.15     |          |        |                                                  |          | 1.60 ± 0.150                                     |                 |          |               |      |         |          |
| Lengt      | h         | (in.)          |   | (0 |       | ± 0.00                                           |                 |     | (0.051 ± 0.006) |          |        |                                                  |          | (0.063 ± 0.006)                                  |                 |          |               |      |         |          |
| Width      |           | mm             |   |    | 2.10  | ± 0.15                                           |                 |     | 2.10 ± 0.15     |          |        |                                                  |          | 3.20 ± 0.20                                      |                 |          |               |      |         |          |
| Width      |           | (in.)          |   | (0 | 0.083 | ± 0.00                                           | 6)              |     |                 | (0       | .083 : | ± 0.00                                           | 6)       |                                                  | (0.126 ± 0.008) |          |               |      |         |          |
| Мах.       |           | mm             |   |    | 0.    | .94                                              |                 |     |                 |          |        | 94                                               |          |                                                  |                 |          | 1.            | 35   |         |          |
| Thick      |           | (in.)          |   |    |       | 037)                                             |                 |     |                 |          |        | )37)                                             |          |                                                  |                 |          | $\overline{}$ | )53) |         |          |
|            | WVDC      |                | 6 | 10 | 16    | 25                                               | 50              | 100 | 6               | 10       | 16     | 25                                               | 50       | 100                                              | 6               | 10       | 16            | 25   | 50      | 100      |
| 101        | Сар       | 100            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 121        | (PF)      | 120            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 151<br>181 |           | 150<br>180     |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  | -               |          |               |      |         |          |
| 221        |           | 220            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 271        |           | 270            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 331        |           | 330            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 391        |           | 390            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 471        |           | 470            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 561        |           | 560            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 681        |           | 680            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 821        |           | 820            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 102        |           | 1000<br>1200   |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 122<br>152 |           | 1500           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 182        |           | 1800           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 222        |           | 2200           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 272        |           | 2700           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 332        |           | 3300           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 392        |           | 3900           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 472        |           | 4700           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 562        |           | 5600           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 682        |           | 6800           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 822        | 0         | 8200           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          | -                                                |                 |          |               |      |         |          |
| 103<br>123 |           | 0.010<br>0.012 |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 153        |           | 0.012          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 183        |           | 0.018          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 223        |           | 0.022          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 273        |           | 0.027          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 333        |           | 0.033          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 393        |           | 0.039          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 473        |           | 0.047          |   |    |       |                                                  |                 |     |                 |          |        | _                                                |          | _                                                |                 |          |               |      |         | Ш        |
| 563<br>683 |           | 0.056<br>0.068 |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 823        |           | 0.082          |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 104        |           | 0.10           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 124        |           | 0.12           |   |    |       |                                                  |                 |     |                 |          |        | 1                                                |          |                                                  |                 |          |               |      | 1       |          |
| 154        |           | 0.15           |   |    |       |                                                  | Ш               |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         | Ш        |
| 184        |           | 0.18           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 224        |           | 0.22           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 274<br>334 |           | 0.27           |   |    |       | <del>                                     </del> | $\vdash \vdash$ |     | -               | <u> </u> |        | <del>                                     </del> | <u> </u> | <del>                                     </del> |                 | <u> </u> | -             | -    | -       | $\vdash$ |
| 474        |           | 0.33<br>0.47   |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 564        |           | 0.47           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 684        |           | 0.68           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         | Н        |
| 824        |           | 0.82           |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 105        |           | 1.0            |   |    |       | L_                                               |                 |     | L               |          | L      |                                                  | L_       | L_                                               | L               | L_       | <u></u>       | L    | <u></u> |          |
| 125        |           | 1.2            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 155        |           | 1.5            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 185        |           | 1.8            |   |    |       | <u> </u>                                         | Ш               |     |                 | <u> </u> |        | <u> </u>                                         |          | <u> </u>                                         |                 | <u> </u> | -             | -    | -       | Ш        |
| 225        |           | 2.2            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 335<br>475 |           | 3.3<br>4.7     |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 106        |           | 10             |   |    |       |                                                  | Н               |     |                 |          |        | -                                                | $\vdash$ | $\vdash$                                         | $\vdash$        | $\vdash$ |               |      |         | $\vdash$ |
| 226        |           | 22             |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 476        |           | 47             |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
| 107        |           | 100            |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |
|            |           |                |   |    |       |                                                  |                 |     |                 |          |        |                                                  |          |                                                  |                 |          |               |      |         |          |

## **Capacitor Array**

# **Automotive Capacitor Array (IPC)**





0508 - 4 Element



0612 - 4 Element

As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request.

All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

W2 = 0508

#### **HOW TO ORDER**

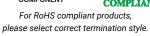
| <u>W</u>                      | 3                                    | <u>A</u> | 4                 | <u>Y</u>                                                        | <del>C</del>                                | <u>104</u>                                                                                    | <u>K</u>                                                       | 4                              | <u>T</u>                                                                                                           | 2 <b>A</b>                                                                                                      |
|-------------------------------|--------------------------------------|----------|-------------------|-----------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Style<br>W = RoHS<br>L = SnPb | Case<br>Size<br>2 = 0508<br>3 = 0612 | Array    | Number<br>of Caps | Voltage<br>Z = 10V<br>Y = 16V<br>3 = 25V<br>5 = 50V<br>1 = 100V | Dielectric<br>A = NP0<br>C = X7R<br>F = X8R | Capacitance<br>Code (In pF)<br>Significant<br>Digits +<br>Number of<br>Zeros<br>e.g. 10µF=106 | Capacitance<br>Tolerance<br>*J = ±5%<br>*K = ±10%<br>*M = ±20% | Failure Rate<br>4 = Automotive | Terminations *T = Plated Ni and Sn *Z = FLEXITERM® B = 5% min lead X = FLEXITERM® with 5% min lead *RoHS Compliant | Packaging<br>& Quantity<br>Code<br>2A = 7" Reel<br>(4000)<br>4A = 13" Reel<br>(10000)<br>2F = 7" Reel<br>(1000) |

<sup>\*</sup>Contact factory for availability by part number for  $K = \pm 10\%$  and  $J = \pm 5\%$  tolerance.

#### NPO/COG

|            |              | r  |      |      |     |    |        |       |     |
|------------|--------------|----|------|------|-----|----|--------|-------|-----|
|            | SIZE         |    | W2 = | 0508 | 3   |    | W3 =   | 0612  |     |
| No. c      | of Elements  |    |      | 4    |     |    | Reflow | /Wave |     |
|            | WVDC         | 16 | 25   | 50   | 100 | 16 | 25     | 50    | 100 |
| 1R0        | Cap 1.0      |    |      |      |     |    |        |       |     |
| 1R2        | (pF) 1.2     |    | İ    | İ    | İ   | İ  |        |       |     |
| 1R5        | 1.5          | İ  | İ    | İ    | İ   | İ  | ĺ      | ĺ     | İ   |
| 1R8        | 1.8          |    |      |      |     |    |        |       |     |
| 2R2        | 2.2          |    |      |      |     |    |        |       |     |
| 2R7        | 2.7          |    |      |      |     |    |        |       |     |
| 3R3        | 3.3          |    |      |      |     |    |        |       |     |
| 3R9        | 3.9          |    |      |      |     |    |        |       |     |
| 4R7        | 4.7          |    |      |      |     |    |        |       |     |
| 5R6        | 5.6          |    |      |      |     |    |        |       |     |
| 6R8        | 6.8          |    |      |      |     |    |        |       |     |
| 8R2        | 8.2          |    |      |      |     |    |        |       |     |
| 100        | 10           |    |      |      |     |    |        |       |     |
| 120        | 12           |    |      |      |     |    |        |       |     |
| 150        | 15           |    |      |      |     |    |        |       |     |
| 180        | 18           |    |      |      |     |    |        |       |     |
| 220<br>270 | 22<br>27     |    |      |      |     |    |        |       |     |
| 330        | 33           |    |      |      |     |    |        |       |     |
| 390        | 39           |    |      |      |     |    |        |       |     |
| 470        | 47           |    |      |      |     |    |        |       |     |
| 560        | 56           |    |      |      |     |    |        |       |     |
| 680        | 68           |    |      |      |     |    |        |       |     |
| 820        | 82           |    |      |      |     |    |        |       |     |
| 101        | 100          |    |      |      |     |    |        |       |     |
| 121        | 120          |    |      |      | i   |    |        |       |     |
| 151        | 150          |    | İ    | İ    | İ   |    |        |       |     |
| 181        | 180          |    |      |      |     |    |        |       |     |
| 221        | 220          |    | İ    | İ    | İ   |    |        |       |     |
| 271        | 270          |    |      |      |     |    |        |       |     |
| 331        | 330          |    |      |      |     |    |        |       |     |
| 391        | 390          |    |      |      |     |    |        |       |     |
| 471        | 470          |    |      |      |     |    |        |       |     |
| 561        | 560          |    |      |      |     |    |        |       |     |
| 681        | 680          |    |      |      |     |    |        |       |     |
| 821        | 820          |    |      |      |     |    |        |       |     |
| 102        | 1000         |    |      |      |     |    |        |       |     |
| 122        | 1200         |    |      |      |     |    |        |       |     |
| 152        | 1500         |    | _    |      | _   |    |        |       |     |
| 182<br>222 | 1800         |    |      |      |     |    |        |       |     |
| 272        | 2200<br>2700 |    |      |      |     |    |        |       |     |
| 332        | 3300         |    | -    | -    | _   |    |        |       |     |
| 392        | 3900         |    |      |      |     |    |        |       |     |
| 472        | 4700         |    |      |      |     |    |        |       |     |
| 562        | 5600         |    |      |      |     |    |        |       |     |
| 682        | 6800         |    |      |      |     |    |        |       |     |
| 822        | 8200         |    |      |      |     |    |        |       |     |

No. of Elements 16 25 50 100 16 25 50 100 10 16 25 50 100 WVDC Cap (pF) 120 151 181 221 150 180 220 271 331 391 270 330 390 471 470 1000 1200 1500 1800 222 2200 392 3900 472 562 682 4700 5600 6800 822 103 123 153 8200 Cap 0 010 (µF) 0.012 0.015 273 333 393 473 563 0.039 683 0.068 823 104 124 0.082 0.10 0.12

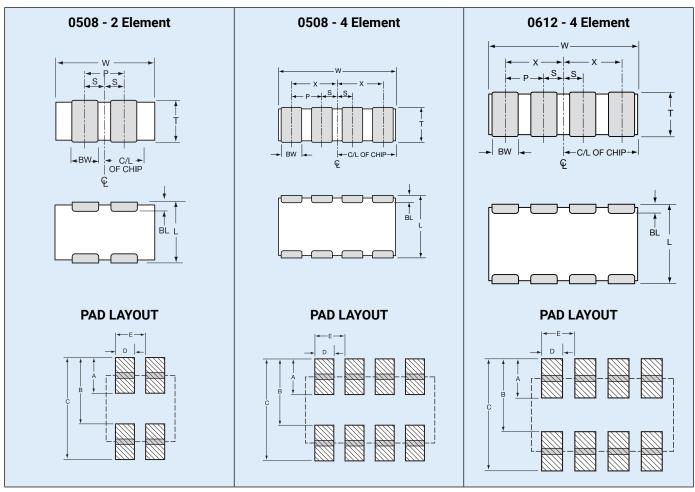

W2 = 0508

\*Not RoHS Compliant

W3 = 0612












#### **PART & PAD LAYOUT DIMENSIONS**

millimeters (inches)



#### **PART DIMENSIONS**

#### 0508 - 2 Element

| L                   | W                   | T           | BW              | BL                  | Р           | S                   |
|---------------------|---------------------|-------------|-----------------|---------------------|-------------|---------------------|
| 1.30 ± 0.15         | 2.10 ± 0.15         | 0.94 MAX    | 0.43 ± 0.10     | 0.33 ± 0.08         | 1.00 REF    | 0.50 ± 0.10         |
| $(0.051 \pm 0.006)$ | $(0.083 \pm 0.006)$ | (0.037 MAX) | (0.017 ± 0.004) | $(0.013 \pm 0.003)$ | (0.039 REF) | $(0.020 \pm 0.004)$ |

#### 0508 - 4 Element

| Į | L               | W               | Т           | BW              | BL                  | Р           | X                   | S               |
|---|-----------------|-----------------|-------------|-----------------|---------------------|-------------|---------------------|-----------------|
| ı | 1.30 ± 0.15     | 2.10 ± 0.15     | 0.94 MAX    | 0.25 ± 0.06     | 0.20 ± 0.08         | 0.50 REF    | 0.75 ± 0.10         | 0.25 ± 0.10     |
| Į | (0.051 ± 0.006) | (0.083 ± 0.006) | (0.037 MAX) | (0.010 ± 0.003) | $(0.008 \pm 0.003)$ | (0.020 REF) | $(0.030 \pm 0.004)$ | (0.010 ± 0.004) |

#### 0612 - 4 Element

| L               | W               | Т           | BW              | BL             | Р           | Х               | S               |
|-----------------|-----------------|-------------|-----------------|----------------|-------------|-----------------|-----------------|
| 1.60 ± 0.20     | 3.20 ± 0.20     | 1.35 MAX    | 0.41 ± 0.10     | 0.18 +0.25     | 0.76 REF    | 1.14 ± 0.10     | 0.38 ± 0.10     |
| (0.063 ± 0.008) | (0.126 ± 0.008) | (0.053 MAX) | (0.016 ± 0.004) | (0.007+0.010 ) | (0.030 REF) | (0.045 ± 0.004) | (0.015 ± 0.004) |

#### PAD LAYOUT DIMENSIONS

#### 0508 - 2 Element

| Α       | В       | С       | D       | E       |
|---------|---------|---------|---------|---------|
| 0.68    | 1.32    | 2.00    | 0.46    | 1.00    |
| (0.027) | (0.052) | (0.079) | (0.018) | (0.039) |

#### 0508 - 4 Element

| Α       | В       | С       | D       | E       |
|---------|---------|---------|---------|---------|
| 0.56    | 1.32    | 1.88    | 0.30    | 0.50    |
| (0.022) | (0.052) | (0.074) | (0.012) | (0.020) |

#### 0612 - 4 Element

| Α       | В       | С       | D       | E       |
|---------|---------|---------|---------|---------|
| 0.89    | 1.65    | 2.54    | 0.46    | 0.76    |
| (0.035) | (0.065) | (0.100) | (0.018) | (0.030) |

### **Low Inductance Capacitors**

#### Introduction



The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

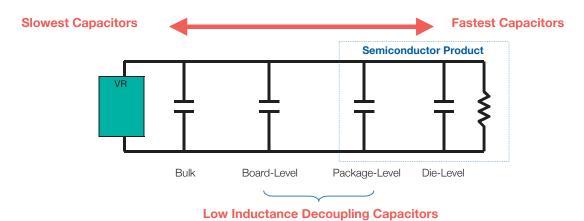



Figure 1 Classic Power Delivery Network (PDN) Architecture

#### LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

#### INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

### **Low Inductance Capacitors**

#### Introduction



#### LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

#### **LOW INDUCTANCE CHIP ARRAYS (LICA®)**

The LICA® product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA®.

LICA® products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA® devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors,  $LICA^{\oplus}$  products are the best option.

#### 470 nF 0306 Impedance Comparison

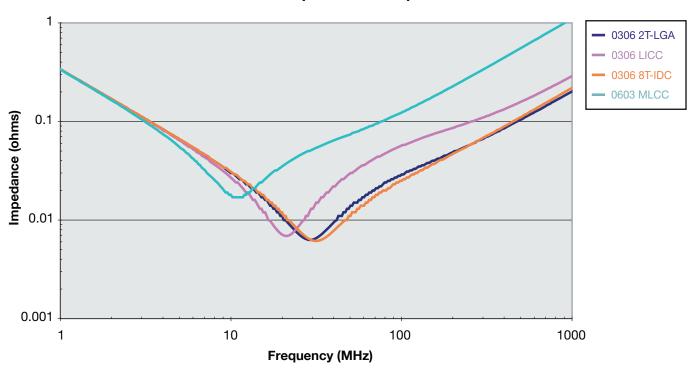
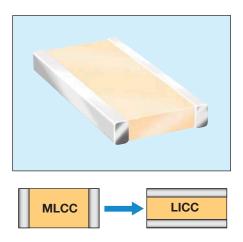



Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

### **Low Inductance Ceramic Capacitors**



### LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

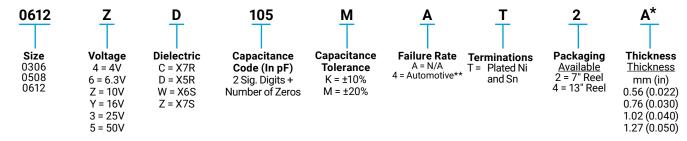

#### **GENERAL DESCRIPTION**

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

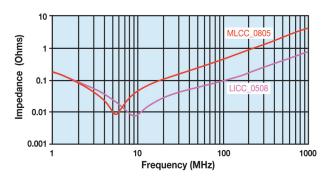
AVX LICC products are available with a lead-free finish of plated Nickel/Tin.

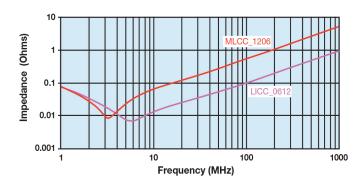



#### PERFORMANCE CHARACTERISTICS

| Capacitance Tolerances         | K = ±10%; M = ±20%                                                     |
|--------------------------------|------------------------------------------------------------------------|
| Operation<br>Temperature Range | X7R = -55°C to +125°C<br>X5R = -55°C to +85°C<br>X7S = -55°C to +125°C |
| Temperature Coefficient        | X7R, X5R = ±15%; X7S = ±22%                                            |
| Voltage Ratings                | 4, 6.3, 10, 16, 25 VDC                                                 |
| Dissipation Factor             | 4V, 6.3V = 6.5% max; 10V = 5.0% max;<br>16V = 3.5% max; 25V = 3.0% max |
| Insulation Resistance          | 100,000M $\Omega$ min, or 1,000M $\Omega$ per μF                       |
| (@+25°C, RVDC)                 | min.,whichever is less                                                 |




#### **HOW TO ORDER**




<sup>\*</sup>See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

#### TYPICAL IMPEDANCE CHARACTERISTICS







<sup>\*\*</sup>Select voltages for Automotive version, contact factory

# **Low Inductance Ceramic Capacitors**



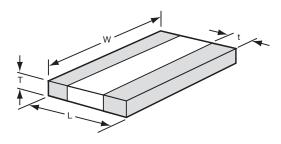
# LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

| S        | SIZE        |   |                                | 0306               | •   |    |                                | (                              | 0508  | 3  |    | 0612                           |                                |       |    |    |
|----------|-------------|---|--------------------------------|--------------------|-----|----|--------------------------------|--------------------------------|-------|----|----|--------------------------------|--------------------------------|-------|----|----|
| Pac      | kaging      |   | En                             | nboss              | ed  |    |                                | En                             | nboss | ed |    |                                | En                             | nboss | ed |    |
| Length   | mm<br>(in.) |   |                                | 31 + 0.<br>32 ± 0. |     |    |                                | 1.27 + 0.25<br>(0.050 ± 0.010) |       |    |    |                                | 1.60 + 0.25<br>(0.063 ± 0.010) |       |    |    |
| Width    | mm<br>(in.) |   | 1.60 + 0.15<br>(0.063 ± 0.006) |                    |     |    | 2.00 + 0.25<br>(0.080 ± 0.010) |                                |       |    |    | 3.20 + 0.25<br>(0.126 ± 0.010) |                                |       |    |    |
| Cap Code | WVDC        | 4 | 6.3                            | 10                 | 16  | 25 | 6.3                            | 10                             | 16    | 25 | 50 | 6.3                            | 10                             | 16    | 25 | 50 |
| 102      | Cap 0.001   |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | V  | S                              | S                              | S     | S  | V  |
| 222      | (μF) .0022  |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | ٧  |
| 332      | 0.0033      |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | ٧  |
| 472      | 0.0047      |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | ٧  |
| 682      | 0.0068      |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | ٧  |
| 103      | 0.01        |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | ٧  |
| 153      | 0.015       |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | W  |
| 223      | 0.022       |   | Α                              | Α                  | Α   | Α  | S                              | S                              | S     | S  | ٧  | S                              | S                              | S     | S  | W  |
| 333      | 0.033       |   | Α                              | Α                  | Α   |    | S                              | S                              | S     | ٧  | ٧  | S                              | S                              | S     | S  | W  |
| 473      | 0.047       |   | Α                              | Α                  | Α   |    | S                              | S                              | S     | ٧  | Α  | S                              | S                              | S     | S  | W  |
| 683      | 0.068       |   | Α                              | Α                  | Α   |    | S                              | S                              | S     | Α  | Α  | S                              | S                              | S     | ٧  | W  |
| 104      | 0.1         |   | Α                              | Α                  | /// |    | S                              | S                              | ٧     | Α  | Α  | S                              | S                              | S     | ٧  | W  |
| 154      | 0.15        |   | Α                              | Α                  |     |    | S                              | S                              | ٧     |    |    | S                              | S                              | S     | W  | W  |
| 224      | 0.22        |   | Α                              | Α                  |     |    | S                              | S                              | Α     |    |    | S                              | S                              | ٧     | W  |    |
| 334      | 0.33        |   |                                |                    |     |    | ٧                              | ٧                              | Α     |    |    | S                              | S                              | ٧     |    |    |
| 474      | 0.47        |   |                                |                    |     |    | ٧                              | ٧                              | /N/   |    |    | S                              | S                              | ٧     |    |    |
| 684      | 0.68        |   |                                |                    |     |    | Α                              | Α                              |       |    |    | V                              | ٧                              | W     |    |    |
| 105      | 1           | A |                                |                    |     |    | Α                              | Α                              |       |    |    | V                              | ٧                              | Α     |    |    |
| 155      | 1.5         |   |                                |                    |     |    |                                |                                |       |    |    | W                              | W                              |       |    |    |
| 225      | 2.2         |   |                                |                    |     |    |                                |                                |       |    |    | Α                              | Α                              |       |    |    |
| 335      | 3.3         |   |                                |                    |     |    |                                |                                |       |    |    |                                |                                |       |    |    |
| 475      | 4.7         |   |                                |                    |     |    |                                |                                |       |    |    |                                |                                |       |    |    |
| 685      | 6.8         |   |                                |                    |     |    |                                |                                |       |    |    |                                |                                |       |    |    |
| 106      | 10          |   |                                |                    |     |    |                                |                                |       |    |    |                                |                                |       |    |    |

Solid = X7R








mm (in.) 0306 Code Thickness A 0.56 (0.022)

|      | mm (in.)     |  |  |  |  |
|------|--------------|--|--|--|--|
|      | 0508         |  |  |  |  |
| Code | Thickness    |  |  |  |  |
| S    | 0.56 (0.022) |  |  |  |  |
| V    | 0.76 (0.030) |  |  |  |  |
| A    | 1.02 (0.040) |  |  |  |  |

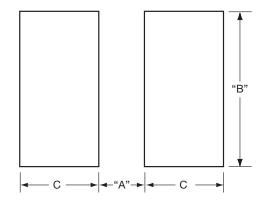
|      | mm (in.)     |  |  |  |  |
|------|--------------|--|--|--|--|
|      | 0612         |  |  |  |  |
| Code | Thickness    |  |  |  |  |
| S    | 0.56 (0.022) |  |  |  |  |
| V    | 0.76 (0.030) |  |  |  |  |
| W    | 1.02 (0.040) |  |  |  |  |
| Α    | 1.27 (0.050) |  |  |  |  |

### PHYSICAL DIMENSIONS AND **PAD LAYOUT**



#### **PHYSICAL DIMENSIONS**

#### mm (in.)


| Size | L               | W                   | t            |
|------|-----------------|---------------------|--------------|
| 0206 | 0.81 ± 0.15     | 1.60 ± 0.15         | 0.13 min.    |
| 0306 | (0.032 ± 0.006) | $(0.063 \pm 0.006)$ | (0.005 min.) |
| 0508 | 1.27 ± 0.25     | 2.00 ± 0.25         | 0.13 min.    |
| 0508 | (0.050 ± 0.010) | $(0.080 \pm 0.010)$ | (0.005 min.) |
| 0612 | 1.60 ± 0.25     | 3.20 ± 0.25         | 0.13 min.    |
| 0012 | (0.063 ± 0.010) | $(0.126 \pm 0.010)$ | (0.005 min.) |

T - See Range Chart for Thickness and Codes

#### PAD LAYOUT DIMENSIONS

#### mm (in )

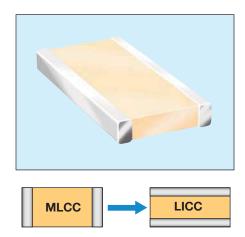
|      |              |              | 111111 (111.) |
|------|--------------|--------------|---------------|
| Size | Α            | В            | С             |
| 0306 | 0.31 (0.012) | 1.52 (0.060) | 0.51 (0.020)  |
| 0508 | 0.51 (0.020) | 2.03 (0.080) | 0.76 (0.030)  |
| 0612 | 0.76 (0.030) | 3.05 (0.120) | 0.635 (0.025) |



# Low Inductance Capacitors with SnPb Terminations

#### LD16/LD17/LD18 Tin-Lead Termination "B"



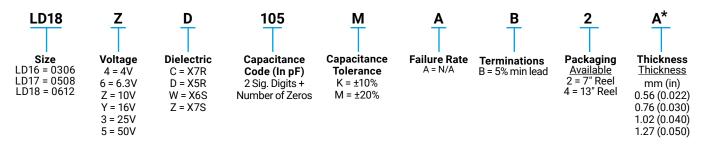

#### **GENERAL DESCRIPTION**

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

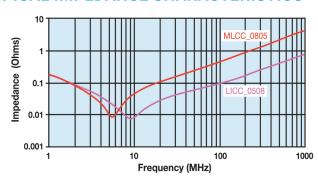
AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues

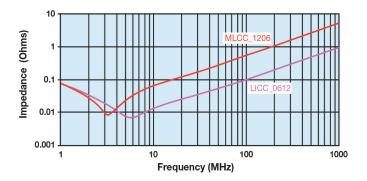



#### PERFORMANCE CHARACTERISTICS

| Capacitance Tolerances                  | K = ±10%; M = ±20%                                                     |
|-----------------------------------------|------------------------------------------------------------------------|
| Operation<br>Temperature Range          | X7R = -55°C to +125°C<br>X5R = -55°C to +85°C<br>X7S = -55°C to +125°C |
| Temperature Coefficient                 | X7R, X5R = ±15%; X7S = ±22%                                            |
| Voltage Ratings                         | 4, 6.3, 10, 16, 25 VDC                                                 |
| Dissipation Factor                      | 4V, 6.3V = 6.5% max; 10V = 5.0% max;<br>16V = 3.5% max; 25V = 3.0% max |
| Insulation Resistance<br>(@+25°C, RVDC) | 100,000MΩ min, or 1,000MΩ per μF min.,whichever is less                |

### \*Not RoHS Compliant


#### **HOW TO ORDER**




\*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

#### TYPICAL IMPEDANCE CHARACTERISTICS







# **Low Inductance Capacitors** with SnPb Terminations

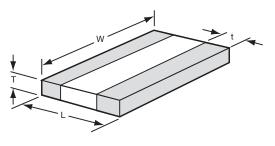
### LD16/LD17/LD18 Tin-Lead Termination "B"



| SIZE LD16 (0306) |             |     | LD17<br>(0508)    |       |    | LD18<br>(0612) |       |                    |      |          |                                |                                |    |    |    |
|------------------|-------------|-----|-------------------|-------|----|----------------|-------|--------------------|------|----------|--------------------------------|--------------------------------|----|----|----|
| Pac              | kaging      |     | Embo              |       |    | Embossed       |       |                    |      | Embossed |                                |                                |    |    |    |
| Length           | mm<br>(in.) | (   | 0.81 ± 0.032 ±    | 0.006 | 5) |                | (0.05 | 27 ± 0.<br>50 ± 0. | 010) |          | 1.60 ± 0.25<br>(0.063 ± 0.010) |                                |    |    |    |
| Width            | mm<br>(in.) |     | 1.60 ±<br>0.063 ± |       | 5) |                |       | 00 ± 0.<br>30 ± 0. |      |          |                                | 3.20 ± 0.25<br>(0.126 ± 0.010) |    |    |    |
| Cap Code         | WVDC        | 6.3 | 10                | 16    | 25 | 6.3            | 10    | 16                 | 25   | 50       | 6.3                            | 10                             | 16 | 25 | 50 |
| 102              | Cap 0.001   | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | ٧        | S                              | S                              | S  | S  | V  |
| 222              | (μF) .0022  | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | ٧        | S                              | S                              | S  | S  | V  |
| 332              | 0.0033      | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | ٧        | S                              | S                              | S  | S  | V  |
| 472              | 0.0047      | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | >        | S                              | S                              | S  | S  | V  |
| 682              | 0.0068      | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | ٧        | S                              | S                              | S  | S  | V  |
| 103              | 0.01        | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | ٧        | S                              | S                              | S  | S  | V  |
| 153              | 0.015       | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | >        | S                              | S                              | S  | S  | W  |
| 223              | 0.022       | Α   | Α                 | Α     | Α  | S              | S     | S                  | S    | ٧        | S                              | S                              | S  | S  | W  |
| 333              | 0.033       | Α   | Α                 | Α     |    | S              | S     | S                  | ٧    | ٧        | S                              | S                              | S  | S  | W  |
| 473              | 0.047       | Α   | Α                 | Α     |    | S              | S     | S                  | ٧    | Α        | S                              | S                              | S  | S  | W  |
| 683              | 0.068       | Α   | Α                 | Α     |    | S              | S     | S                  | Α    | Α        | S                              | S                              | S  | ٧  | W  |
| 104              | 0.1         | Α   | Α                 | //    |    | S              | S     | ٧                  | Α    | Α        | S                              | S                              | S  | ٧  | W  |
| 154              | 0.15        | Α   | Α                 |       |    | S              | S     | ٧                  |      |          | S                              | S                              | S  | W  | W  |
| 224              | 0.22        | Α   | Α                 |       |    | S              | S     | Α                  |      |          | S                              | S                              | V  | W  |    |
| 334              | 0.33        |     |                   |       |    | ٧              | ٧     | Α                  |      |          | S                              | S                              | ٧  |    |    |
| 474              | 0.47        |     |                   |       |    | ٧              | ٧     | <b>/M</b> //       |      |          | S                              | S                              | ٧  |    |    |
| 684              | 0.68        |     |                   |       |    | Α              | Α     |                    |      |          | V                              | ٧                              | W  |    |    |
| 105              | 1           |     |                   |       |    | Α              | Α     |                    |      |          | V                              | ٧                              | Α  |    |    |
| 155              | 1.5         |     |                   |       |    | / <u>k</u> //  |       |                    |      |          | W                              | W                              |    |    |    |
| 225              | 2.2         |     |                   |       |    |                |       |                    |      |          | Α                              | Α                              |    |    |    |
| 335              | 3.3         |     |                   |       |    |                |       |                    |      |          | //                             |                                |    |    |    |
| 475              | 4.7         |     |                   |       |    |                |       |                    |      |          |                                |                                |    |    |    |
| 685              | 6.8         |     |                   |       |    |                |       |                    |      |          |                                |                                |    |    |    |
| 106              | 10          |     |                   |       |    |                |       |                    |      |          |                                |                                |    |    |    |

#### Solid = X7R






| mm (in.) |              |  |  |
|----------|--------------|--|--|
| LD16     |              |  |  |
| (0306)   |              |  |  |
| Code     | Thickness    |  |  |
| Α        | 0.56 (0.022) |  |  |

|      | mm (in.)     |
|------|--------------|
|      | LD17         |
| (    | (0508)       |
| Code | Thickness    |
| S    | 0.56 (0.022) |
| V    | 0.76 (0.030) |
| Α    | 1.02 (0.040) |

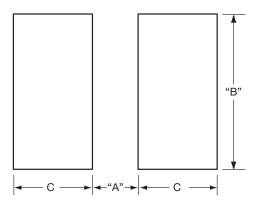
|        | mm (in.)     |  |  |
|--------|--------------|--|--|
|        | LD18         |  |  |
| (0612) |              |  |  |
| Code   | Thickness    |  |  |
| S      | 0.56 (0.022) |  |  |
| V      | 0.76 (0.030) |  |  |
| W      | 1.02 (0.040) |  |  |
| Α      | 1.27 (0.050) |  |  |

#### PHYSICAL DIMENSIONS AND **PAD LAYOUT**



#### **PHYSICAL DIMENSIONS**

mm (in.)


| Size   | L               | W               | t            |
|--------|-----------------|-----------------|--------------|
| LD16   | 0.81 ± 0.15     | 1.60 ± 0.15     | 0.13 min.    |
| (0306) | (0.032 ± 0.006) | (0.063 ± 0.006) | (0.005 min.) |
| LD17   | 1.27 ± 0.25     | 2.00 ± 0.25     | 0.13 min.    |
| (0508) | (0.050 ± 0.010) | (0.080 ± 0.010) | (0.005 min.) |
| LD18   | 1.60 ± 0.25     | 3.20 ± 0.25     | 0.13 min.    |
| (0612) | (0.063 ± 0.010) | (0.126 ± 0.010) | (0.005 min.) |

T - See Range Chart for Thickness and Codes

#### **PAD LAYOUT DIMENSIONS**

mm (in.)

|                |              |              | ,             |
|----------------|--------------|--------------|---------------|
| Size           | Α            | В            | С             |
| LD16<br>(0306) | 0.31 (0.012) | 1.52 (0.060) | 0.51 (0.020)  |
| LD17<br>(0508) | 0.51 (0.020) | 2.03 (0.080) | 0.76 (0.030)  |
| LD18<br>(0612) | 0.76 (0.030) | 3.05 (0.120) | 0.635 (0.025) |

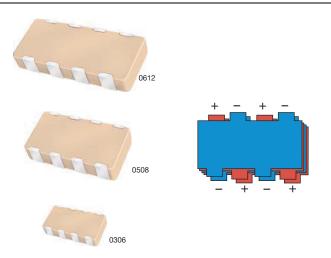


## **IDC Low Inductance Capacitors (RoHS)**

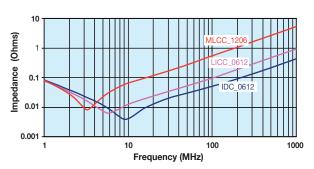
### IDC (InterDigitated Capacitors) 0306/0612/0508



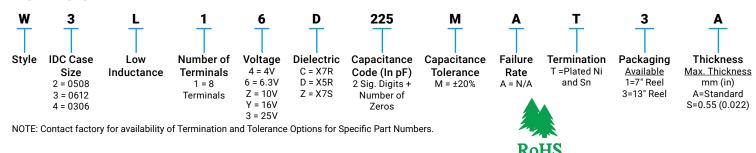
#### **GENERAL DESCRIPTION**


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on  $0.13\mu, 90nm, 65nm,$  and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead-free finish of plated Nickel/Tin.



#### **TYPICAL IMPEDANCE**



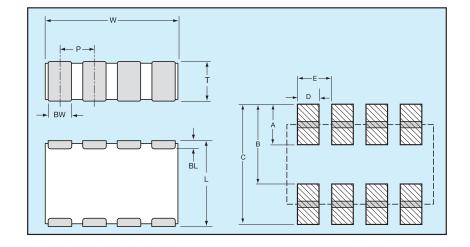
#### **HOW TO ORDER**



#### PERFORMANCE CHARACTERISTICS

|                       | · -                              |
|-----------------------|----------------------------------|
| Capacitance Tolerance | ±20% Preferred                   |
| Operation             | X7R = -55°C to +125°C            |
| •                     | X5R = -55°C to +85°C             |
| Temperature Range     | X7S = -55°C to +125°C            |
| Temperature           | ±15% (0VDC), ±22% (X7S)          |
| Coefficient           | 21070 (0 7 0 0), 22270 (777 0)   |
| Voltage Ratings       | 4, 6.3, 10, 16, 25 VDC           |
|                       | ≤ 6.3V = 6.5% max;               |
| Dissipation Factor    | 10V = 5.0% max;                  |
| •                     | ≥ 16V = 3.5% max                 |
| Insulation Resistance | 100,000MΩ min, or 1,000MΩ per μF |
| (@+25°C, RVDC)        | min.,whichever is less           |

| Dissipation Factor        | No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current |
|---------------------------|-------------------------------------------------------------------------|
| CTE (ppm/C)               | 12.0                                                                    |
| Thermal Conductivity      | 4-5W/M K                                                                |
| Terminations<br>Available | Plated Nickel and Solder                                                |


# **IDC Low Inductance Capacitors (RoHS)**





| SIZE              | W4 =        | 0306 |         | W2 = | Thin  | 0508 | 3       |   | W2  | 2 = 05 | 808     |    | W | 3= Th   | nin 06 | 12 |   | W3      | 3 = 06 | 512 |    | W3 | = TH | CK 0 | 612 |
|-------------------|-------------|------|---------|------|-------|------|---------|---|-----|--------|---------|----|---|---------|--------|----|---|---------|--------|-----|----|----|------|------|-----|
| Max. mm           |             | 55   |         |      | 0.55. |      |         |   |     | 0.95   |         |    |   |         | .55    |    |   |         | 0.95   |     |    |    |      | 22   |     |
| Thickness (in.)   | <del></del> |      | (0.022) |      |       |      | (0.037) |   |     |        | (0.022) |    |   | (0.037) |        |    |   | (0.048) |        |     |    |    |      |      |     |
| WVDC              | 4           | 6.3  | 4       | 6.3  | 10    | 16   | 25      | 4 | 6.3 | 10     | 16      | 25 | 4 | 6.3     | 10     | 16 | 4 | 6.3     | 10     | 16  | 25 | 4  | 6.3  | 10   | 16  |
| Cap<br>(μF) 0.010 |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.022             |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.033             |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.047             |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.068             |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.10              |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.22              |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.33              |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.47              |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 0.68              |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 1.0               |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 1.5               | _           |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 2.2               | _           |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |
| 3.3               |             |      |         |      |       |      |         |   |     |        |         |    |   |         |        |    |   |         |        |     |    |    |      |      |     |

#### PHYSICAL DIMENSIONS AND PAD LAYOUT



# Consult factory for additional requirements



## PHYSICAL CHIP DIMENSIONSMILLIMETERS (INCHES)

| SIZE | W                   | L                   | BW                  | BL              | Р               |
|------|---------------------|---------------------|---------------------|-----------------|-----------------|
| 0306 | 1.60 ± 0.20         | 0.82 ± 0.10         | 0.25 ± 0.10         | 0.20 ± 0.10     | 0.40 ± 0.05     |
| 0306 | $(0.063 \pm 0.008)$ | $(0.032 \pm 0.006)$ | $(0.010 \pm 0.004)$ | (0.008± 0.004)  | (0.015 ± 0.002) |
| 0500 | 2.03 ± 0.20         | 1.27 ± 0.20         | 0.30 ± 0.10         | 0.25 ± 0.15     | 0.50 ± 0.05     |
| 0508 | $(0.080 \pm 0.008)$ | $(0.050 \pm 0.008)$ | (0.012 ± 0.004)     | (0.010± 0.006)  | (0.020 ± 0.002) |
| 0612 | 3.20 ± 0.20         | 1.60 ± 0.20         | 0.50 ± 0.10         | 0.25 ± 0.15     | 0.80 ± 0.10     |
| 0012 | (0.126 ± 0.008)     | $(0.063 \pm 0.008)$ | $(0.020 \pm 0.004)$ | (0.010 ± 0.006) | (0.031 ± 0.004) |

# PAD LAYOUT DIMENSIONS

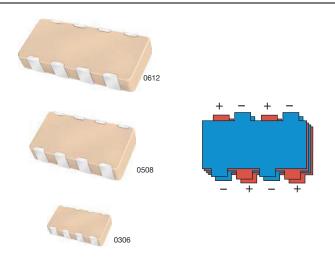
| SIZE | Α       | В       | С       | D       | E       |
|------|---------|---------|---------|---------|---------|
| 0306 | 0.38    | 0.89    | 1.27    | 0.20    | 0.40    |
|      | (0.015) | (0.035) | (0.050) | (0.008) | (0.015) |
| 0508 | 0.64    | 1.27    | 1.91    | 0.28    | 0.50    |
|      | (0.025) | (0.050) | (0.075) | (0.011) | (0.020) |
| 0612 | 0.89    | 1.65    | 2.54    | 0.45    | 0.80    |
|      | (0.035) | (0.065) | (0.010) | (0.018) | (0.031) |

## **IDC Low Inductance Capacitors (SnPb)**

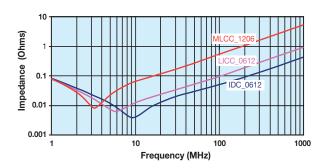
### IDC (InterDigitated Capacitors) 0306/0612/0508



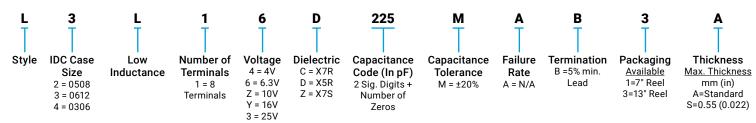
#### **GENERAL DESCRIPTION**


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on  $0.13\mu, 90nm, 65nm,$  and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.



#### TYPICAL IMPEDANCE



#### **HOW TO ORDER**



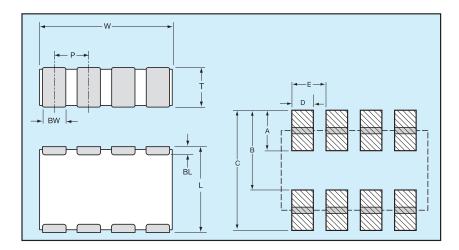
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

\*Not RoHS Compliant

#### PERFORMANCE CHARACTERISTICS

| Capacitance Tolerance                   | ±20% Preferred                                                          |
|-----------------------------------------|-------------------------------------------------------------------------|
| Operation<br>Temperature Range          | X7R = -55°C to +125°C<br>X5R = -55°C to +85°C<br>X7S = -55°C to +125°C  |
| Temperature<br>Coefficient              | ±15% (0VDC), ±22% (X7S)                                                 |
| Voltage Ratings                         | 4, 6.3, 10, 16, 25 VDC                                                  |
| Dissipation Factor                      | ≤ 6.3V = 6.5% max;<br>10V = 5.0% max;<br>≥ 16V = 3.5% max               |
| Insulation Resistance<br>(@+25°C, RVDC) | 100,000M $\Omega$ min, or 1,000M $\Omega$ per μF min.,whichever is less |

| Dissipation Factor        | No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current |
|---------------------------|-------------------------------------------------------------------------|
| CTE (ppm/C)               | 12.0                                                                    |
| Thermal Conductivity      | 4-5W/M K                                                                |
| Terminations<br>Available | Plated Nickel and Solder                                                |


# **IDC Low Inductance Capacitors (SnPb)**



# IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

| SIZE                       | W4 = | 0306 |                | W2 = | Thin            | 0508 | 3   |    | W2 | 2 = 05         | 508 |     | W               | 3= Th | nin 06         | 12 |  | W3 | 3 = 00         | 512         |  | W3 | = TH | ICK 0      | 612 |
|----------------------------|------|------|----------------|------|-----------------|------|-----|----|----|----------------|-----|-----|-----------------|-------|----------------|----|--|----|----------------|-------------|--|----|------|------------|-----|
| Max. mm<br>Thickness (in.) |      |      |                |      | 0.55.<br>(0.022 |      |     |    |    | 0.95<br>(0.037 | `   |     | 0.55<br>(0.022) |       |                |    |  |    | 0.95<br>(0.037 |             |  |    |      | 22<br>(48) |     |
| WVDC (III.)                | 4    | 6.3  | 4 6.3 10 16 25 |      |                 | 4    | 6.3 | 10 | 16 | 25             | 4   | 6.3 | 10              | 16    | 4 6.3 10 16 25 |    |  |    | 25             | 4 6.3 10 16 |  |    | 16   |            |     |
| Cap<br>(μF) 0.010          |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.022                      |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.033                      |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.047                      |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.068                      |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.10                       |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.22                       |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.33                       |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.47                       |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 0.68                       |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 1.0                        |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 1.5                        |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 2.2                        |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |
| 3.3                        |      |      |                |      |                 |      |     |    |    |                |     |     |                 |       |                |    |  |    |                |             |  |    |      |            |     |

#### PHYSICAL DIMENSIONS AND PAD LAYOUT



# Consult factory for additional requirements



### PHYSICAL CHIP DIMENSIONSMILLIMETERS (INCHES)

| SIZE | W                   | L                   | BW                  | BL              | Р               |
|------|---------------------|---------------------|---------------------|-----------------|-----------------|
| 0306 | 1.60 ± 0.20         | 0.82 ± 0.10         | $0.25 \pm 0.10$     | 0.20 ± 0.10     | 0.40 ± 0.05     |
| 0306 | $(0.063 \pm 0.008)$ | $(0.032 \pm 0.006)$ | $(0.010 \pm 0.004)$ | (0.008± 0.004)  | (0.015 ± 0.002) |
| 0500 | 2.03 ± 0.20         | 1.27 ± 0.20         | 0.30 ± 0.10         | 0.25 ± 0.15     | 0.50 ± 0.05     |
| 0508 | $(0.080 \pm 0.008)$ | $(0.050 \pm 0.008)$ | $(0.012 \pm 0.004)$ | (0.010± 0.006)  | (0.020 ± 0.002) |
| 0612 | 3.20 ± 0.20         | 1.60 ± 0.20         | $0.50 \pm 0.10$     | 0.25 ± 0.15     | 0.80 ± 0.10     |
| 0012 | (0.126 ± 0.008)     | $(0.063 \pm 0.008)$ | $(0.020 \pm 0.004)$ | (0.010 ± 0.006) | (0.031 ± 0.004) |

# PAD LAYOUT DIMENSIONS

| SIZE | Α       | В       | С       | D       | Е       |
|------|---------|---------|---------|---------|---------|
| 0306 | 0.38    | 0.89    | 1.27    | 0.20    | 0.40    |
|      | (0.015) | (0.035) | (0.050) | (0.008) | (0.015) |
| 0508 | 0.64    | 1.27    | 1.91    | 0.28    | 0.50    |
|      | (0.025) | (0.050) | (0.075) | (0.011) | (0.020) |
| 0612 | 0.89    | 1.65    | 2.54    | 0.45    | 0.80    |
|      | (0.035) | (0.065) | (0.010) | (0.018) | (0.031) |

### **LGA Low Inductance Capacitors**

#### 0204/0306 Land Grid Array



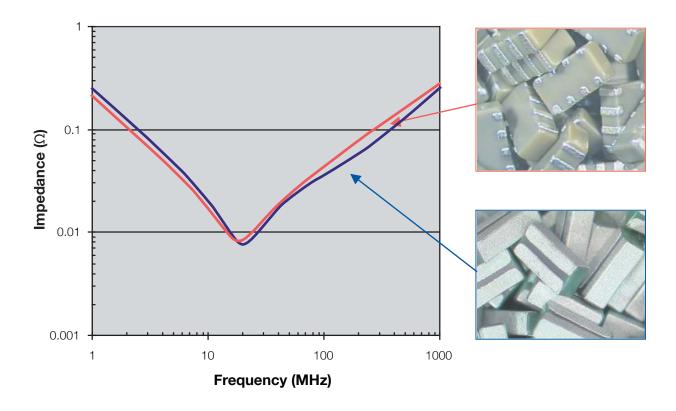


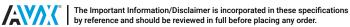
Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- · Better solder joint reliability

#### **APPLICATIONS**

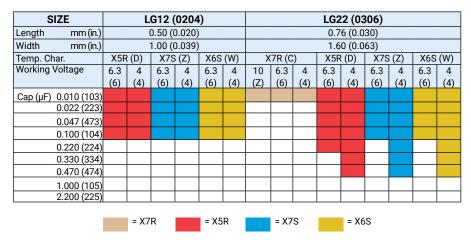

#### **Semiconductor Packages**


- · Microprocessors/CPUs
- · Graphics Processors/GPUs
- · Chipsets
- FPGAs
- ASICs

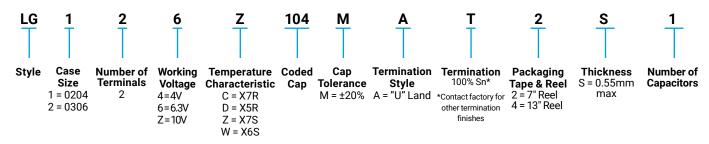
#### **Board Level Device Decoupling**

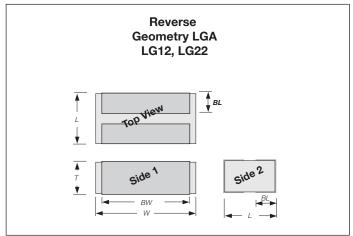
- · Frequencies of 300 MHz or more
- · ICs drawing 15W or more
- · Low voltages
- · High speed buses

#### 0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC







# **LGA Low Inductance Capacitors**








#### **HOW TO ORDER**

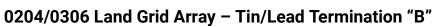




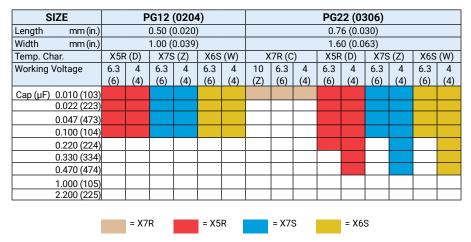
#### **PART DIMENSIONS**

#### MM (INCHES)

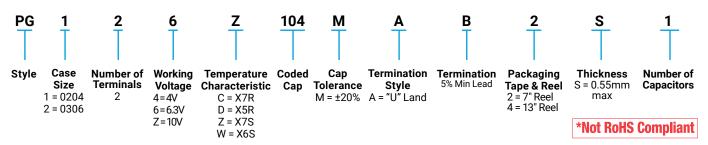
| Series      | L               | W               | Т               | BW              | BL              |
|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| LG12 (0204) | 0.5 ± 0.05      | 1.00 ± 0.10     | 0.50 ± 0.05     | 0.8 ± 0.10      | 0.13 ± 0.08     |
|             | (0.020±0.002)   | (0.039 ± 0.004) | (0.020 ± 0.002) | (0.031 ± 0.004) | (0.005 ± 0.003) |
| LG22 (0306) | 0.76 ± 0.10     | 1.60 ± 0.10     | 0.50 ± 0.05     | 1.50 ±0.10      | 0.28 ± 0.08     |
|             | (0.030 ± 0.004) | (0.063 ± 0.004) | (0.020 ± 0.002) | (0.059 ± 0.004) | (0.011 ± 0.003) |




#### RECOMMENDED SOLDER PAD DIMENSIONS MM (INCHES)




| Series      | PL           | PW1          | G            |
|-------------|--------------|--------------|--------------|
| LG12 (0204) | 0.50 (0.020) | 1.00 (0.039) | 0.20 (0.008) |
| LG22 (0306) | 0.65 (0.026) | 1.50 (0.059) | 0.20 (0.008) |


# **LGA Low Inductance Capacitors**







#### **HOW TO ORDER**





#### **PART DIMENSIONS**

#### MM (INCHES)

| Series      | L                              | W                              | Т                              | BW                            | BL                             |
|-------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|
| PG12 (0204) | 0.5 ± 0.05<br>(0.020±0.002)    | 1.00 ± 0.10<br>(0.039 ± 0.004) | 0.50 ± 0.05<br>(0.020 ± 0.002) | 0.8 ± 0.10<br>(0.031 ± 0.004) | 0.13 ± 0.08<br>(0.005 ± 0.003) |
| PG22 (0306) | 0.76 ± 0.10<br>(0.030 ± 0.004) | 1.60 ± 0.10<br>(0.063 ± 0.004) | 0.50 ± 0.05<br>(0.020 ± 0.002) | 1.50 ±0.10<br>(0.059 ± 0.004) | 0.28 ± 0.08<br>(0.011 ± 0.003) |

#### RECOMMENDED SOLDER PAD DIMENSIONS





| Series      | PL           | PW1          | G            |
|-------------|--------------|--------------|--------------|
| PG12 (0204) | 0.50 (0.020) | 1.00 (0.039) | 0.20 (0.008) |
| PG22 (0306) | 0.65 (0.026) | 1.50 (0.059) | 0.20 (0.008) |



#### AT Series - 200°C & 250°C Rated





Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "down-hole" oil exploration and aerospace programs.

#### **HOW TO ORDER**

| AT10        | 3       | Т             | 104                   | K              | Α            | Т                  | 2            | Α            |
|-------------|---------|---------------|-----------------------|----------------|--------------|--------------------|--------------|--------------|
|             | T       | T             |                       | T              | T            | T                  | T            | Τ            |
| AVX         | Voltage | Temperature   | Capacitance Code      | Capacitance    | Test Level   | Termination        | Packaging    | Special      |
| Style       | Code    | Coefficient   | (2 significant digits | Tolerance      | A = Standard | 1 = Pd/Ag          | 2 = 7" Reel  | Code         |
| AT03 = 0603 | 16V = Y | PME           | + no. of zeros)       | $J = \pm 5\%$  |              | T = 100% Sn Plated | 4 = 13" Reel | A = Standard |
| AT05 = 0805 | 25V = 3 | C0G 250°C = A | 101 = 100pF           | $K = \pm 10\%$ |              | (RoHS Compliant)   | 9 = Bulk     |              |
| AT06 = 1206 | 50V = 5 | COG 200°C = 2 | 102 = 1nF             | $M = \pm 20\%$ |              | 7 = Ni/Au Plated   |              |              |
| AT10 = 1210 |         | VHT 250°C = T | 103 = 10nF            |                |              | (For 250°C BME     |              |              |
| AT12 = 1812 |         | VHT 200°C = 4 | 104 = 100nF           |                |              | COG Only)          |              |              |
| AT14 = 2225 |         | BME           | 105 = 1μF             |                |              | • •                |              |              |
|             |         | C0G 250°C = 5 | ·                     |                |              |                    |              |              |
|             |         | COG 200°C = 3 |                       |                |              |                    |              |              |

#### **ELECTRICAL SPECIFICATIONS**

#### **Temperature Coefficient**

PME COG 0±30ppm/°C, -55C to 250°C BME COG 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C

VHT: T ±15%,-55°C to +150°C

See TCC Plot for +250°C

Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

#### Dissipation factor 25°C

COG: 0.15% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Insulation Resistance 25°C (MIL-STD-202, Method 302)

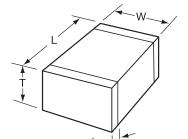
100GΩ or 1000MΩ- $\mu$ F (whichever is less)

Insulation Resistance 125°C (MIL-STD-202, Method 302)

 $10G\Omega$  or  $100M\Omega$ -μF (whichever is less)

Insulation Resistance 200°C (MIL-STD-202, Method 302)

1GΩ or 10MΩ- $\mu$ F (whichever is less)


Insulation Resistance 250°C (MIL-STD-202, Method 302)

100MΩ or 1MΩ- $\mu$ F (whichever is less)

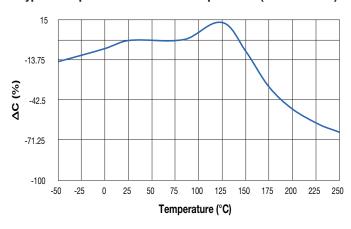
Direct Withstanding Voltage 25°C (Flash Test)

250% rated voltage for 5 seconds with 50mA max charging current

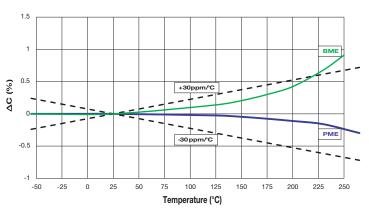
#### **DIMENSIONS**



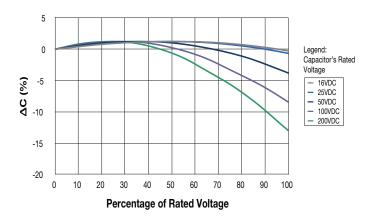
### **MILLIMETERS (INCHES)**


| Size               | AT03 = 0603     | AT05= 0805      | AT06=1206       | AT10=1210       | AT12=1812       | AT14=2225       |  |
|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| (L) Length         | 1.60 ± 0.15     | 2.01 ± 0.20     | 3.20 ± 0.20     | 3.20 ± 0.20     | 4.50 ± 0.30     | 5.72 ± 0.25     |  |
|                    | (0.063 ± 0.006) | (0.079 ± 0.008) | (0.126 ± 0.008) | (0.126 ± 0.008) | (0.177 ± 0.012) | (0.225 ± 0.010) |  |
| (W) Width          | 0.81 ± 0.15     | 1.25 ± 0.20     | 1.60 ± 0.20     | 2.50 ± 0.20     | 3.20 ± 0.20     | 6.35 ± 0.25     |  |
|                    | (0.032 ± 0.006) | (0.049 ± 0.008) | (0.063 ± 0.008) | (0.098 ± 0.008) | (0.126 ± 0.008) | (0.250 ± 0.010) |  |
| (T) Thickness Max. | 1.02            | 1.30            | 1.52            | 1.70            | 2.54            | 2.54            |  |
|                    | (0.040)         | (0.051)         | (0.060)         | (0.067)         | (0.100)         | (0.100)         |  |
| (t) min.           | 0.25 (0.010)    | 0.25 (0.010)    | 0.25 (0.010)    | 0.25 (0.010)    | 0.25 (0.010)    | 0.25 (0.010)    |  |
| terminal max.      | 0.75 (0.030)    | 0.75 (0.030)    | 0.75 (0.030)    | 0.75 (0.030)    | 1.02 (0.040)    | 1.02 (0.040)    |  |

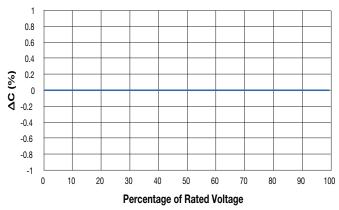
#### AT Series - 200°C & 250°C Rated



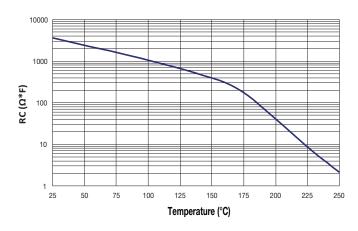

#### PERFORMANCE CHARACTERISTICS


#### Typical Temperature Coefficient of Capacitance (VHT Dielectric)

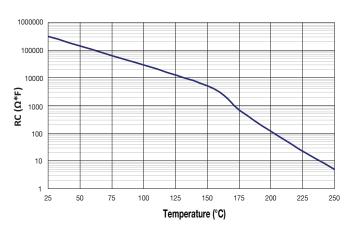



#### **Typical Temperature Coefficient of Capacitance (COG Dielectric)**




#### Typical Voltage Coefficient of Capacitance (VHT Dielectric)



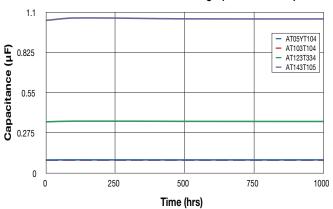

#### Typical Voltage Coefficient of Capacitance (COG Dielectric)



#### Typical RC vs Temperature (VHT Dielectric)



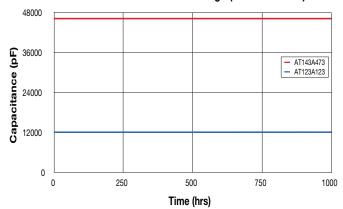
#### Typical RC vs Temperature (COG Dielectric)




#### AT Series - 200°C & 250°C Rated



#### **RELIABILITY**

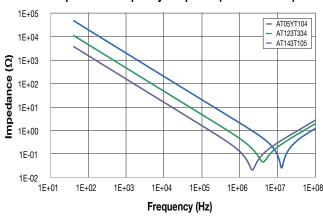




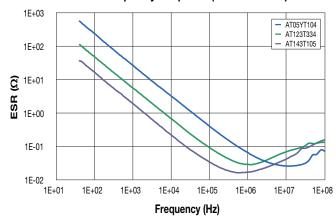

| VHT - Failure Rate | VHT - Failure Rate @ 90% Confidence Level (%/1000 hours) |                    |  |  |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| Temperature (°C)   | 50% Rated Voltage                                        | 100% Rated Voltage |  |  |  |  |  |  |  |  |  |
| 200                | 0.002                                                    | 0.017              |  |  |  |  |  |  |  |  |  |
| 250                | 0.026                                                    | 0.210              |  |  |  |  |  |  |  |  |  |

<sup>\*</sup>Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

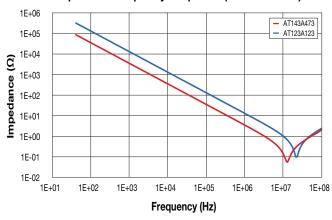
#### 250°C Life Test @ 2x Rated Voltage (C0G Dielectric)



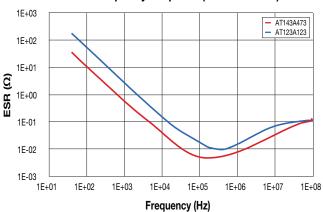

| COG - Failure Rate | COG - Failure Rate @ 90% Confidence Level (%/1000 hours) |       |  |  |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|
| Temperature (°C)   | Temperature (°C) 50% Rated Voltage 100% Rated Voltage    |       |  |  |  |  |  |  |  |  |  |
| 200                | 0.006                                                    | 0.047 |  |  |  |  |  |  |  |  |  |
| 250                | 0.074                                                    | 0.590 |  |  |  |  |  |  |  |  |  |


<sup>\*</sup>Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

#### **FREQUENCY RESPONSE**


#### Impedance Frequency Response (VHT Dielectric)




#### **ESR Frequency Response (VHT Dielectric)**



#### Impedance Frequency Response (COG Dielectric)



#### ESR Frequency Response (COG Dielectric)



The Important Information/Disclaimer is incorporated in these specifications by reference and should be reviewed in full before placing any order.

#### AT Series - 200°C & 250°C Rated



# CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

|            |           |            | AT03 =                       | ATO     |            | 200°C  | )6 =             | AT1               | 0 =       | AT12 =              | AT14 =                       |
|------------|-----------|------------|------------------------------|---------|------------|--------|------------------|-------------------|-----------|---------------------|------------------------------|
| (          | Case S    | ize        | 0603                         | 08      |            |        | 06               |                   | 10        | 1812                | 2225                         |
| -          | Solderi   | ina        | Reflow/Wave                  |         |            |        | //Wave           |                   | v Only    | Reflow Only         | Reflow Only                  |
|            |           | mm         | 1.60±0.15                    | 2.01 :  | ±0.20      | 3.20:  | ±0.20            | 3.20±             | ±0.20     | 4.50±0.30           | 5.72±0.25                    |
| ` ′        |           | (in.)      | (0.063±0.006)                | (0.079  |            |        | ±0.008)          | (0.126            | 0.008)    | (0.177±0.012)       | (0.225±0.010)                |
| (W)        | Width     | mm         | 0.81 ± 0.15                  |         | ±0.20      | _      | ±0.20            | 2.50:             |           | 3.20±0.20           | 6.35±0.25                    |
|            |           | (in.)      | (0.032±0.006)                | (0.049: |            |        | ±0.008)          | (0.098±           |           | (0.126±0.008)       | (0.250 ± 0.010)              |
| T(T)       | Thickness |            | 1.02                         | 1.3     |            |        | 52               | 1.3               |           | 2.54                | 2.54                         |
| (A) 7      | F         | (in.)      | (0.040)                      |         | )51)       |        | 060)             | (0.0              |           | (0.100)             | (0.100)                      |
| (t) I      | Terminal  | min<br>max | 0.25 (0.010)<br>0.75 (0.030) | 0.25(   |            |        | 0.010)<br>0.030) | 0.25(0            |           | 0.25(0.010)         | 0.25 (0.010)<br>1.02 (0.040) |
| D۵         | ted Temp  |            | 200                          | 0.75(   | 0000)      |        | 0.030)           | 0.75(0            |           | 1.02 (0.040)<br>200 | 200                          |
|            | mp. Coef  |            | 4                            | 20      |            |        | 4                | 20                |           | 4                   | 4                            |
|            | <u> </u>  |            |                              |         |            |        |                  |                   |           |                     |                              |
|            | Voltage   | ~          | 25                           | 25      | 50         | 25     | 50               | 25                | 50        | 50                  | 50                           |
| Cap<br>pF) |           | 102        |                              |         |            |        |                  | <u> </u>          |           |                     |                              |
| . /        | 1200      | 122        |                              |         |            |        |                  | <u> </u>          |           |                     |                              |
|            | 1500      | 152        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 1800      | 182        |                              |         |            |        |                  | $ldsymbol{f eta}$ |           |                     |                              |
|            | 2200      | 222        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 2700      | 272        |                              |         |            | $\Box$ |                  |                   |           |                     |                              |
|            | 3300      | 332        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 3900      | 392        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 4700      | 472        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 5600      | 562        |                              |         |            |        |                  |                   |           |                     |                              |
|            |           |            |                              |         |            |        |                  |                   |           |                     |                              |
|            | 6800      | 682        |                              |         |            |        |                  |                   |           |                     |                              |
| `an        | 8200      | 822        |                              |         |            |        |                  |                   |           |                     |                              |
| Cap<br>μF) | 0.010     | 103        |                              |         |            |        |                  |                   |           |                     |                              |
| μ.,        | 0.012     | 123        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.015     | 153        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.018     | 183        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.022     | 223        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.027     | 273        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.033     | 333        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.039     | 393        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.047     | 473        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.056     | _          |                              |         |            |        |                  |                   |           |                     |                              |
|            | _         | 563        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.068     | 683        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.082     | 823        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.100     | 104        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.120     | 124        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.150     | 154        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.180     | 184        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.220     | 224        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.270     | 274        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.330     | 334        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.390     | 394        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.470     | 474        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.560     | 564        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.680     | 684        |                              |         |            |        |                  |                   |           |                     |                              |
|            | 0.820     | 824        |                              |         |            |        |                  |                   |           |                     |                              |
|            |           | _          |                              |         |            |        |                  | $\vdash$          |           |                     |                              |
| _          | 1.000     | 105        | 0.5                          | 0.5     | F0         | 0.5    | F^               | 0.5               | F^        | F0                  | F0                           |
|            | Voltage   |            | 25                           | 25      | 50         | 25     | 50               | 25                | 50        | 50                  | 50                           |
| Ra         | ted Temp  | p. (°C)    | 200                          |         | 00         |        | 00               | 20                |           | 200                 | 200                          |
| (          | Case S    | ize        | AT03 =<br>0603               |         | )5 =<br>05 |        | )6 =<br>:06      | AT1               | 0 =<br>10 | AT12 =<br>1812      | AT14 =<br>2225               |

|                 | Case       | Size        | AT03 = 0603                | AT(<br>08 | )5 =<br>05 |         | 06 =<br>106      | AT1      |            | AT12 =<br>1812               | AT14 = 2225                  |
|-----------------|------------|-------------|----------------------------|-----------|------------|---------|------------------|----------|------------|------------------------------|------------------------------|
|                 | Solde      | rina        | Reflow/Wave                |           | /Wave      |         | //Wave           |          | v Only     | Reflow Only                  | Reflow Only                  |
| (L) I           | Length     | mm          | 1.60±0.15                  | 2.01:     | ±0.20      | 3.20    | ±0.20            | 3.20:    |            | 4.50±0.30                    | 5.72±0.25                    |
|                 | -          | (in.)       | (0.063±0.006)              | (0.079    | ±0.008)    | (0.126: | ±0.008)          | (0.126±  | £0.008)    | (0.177±0.012)                | (0.225±0.010                 |
| W)              | Width      | mm          | 0.81 ± 0.15                |           | ±0.20      | 1.60    | ±0.20            | 2.50:    | £0.20      | 3.20±0.20                    | 6.35±0.25                    |
|                 |            | (in.)       | (0.032±0.006)              | (0.049:   |            |         | ±0.008)          | (0.098±  |            | (0.126±0.008)                | (0.250±0.010                 |
| T)1             | Thickness  | mm<br>(in ) | 1.02                       | 1.        |            |         | 52               | 1.       |            | 2.54                         | 2.54                         |
| (4) T           | Farmain al | (in.)       | (0.040)                    |           | )51)       |         | 060)             | (0.0     |            | (0.100)                      | (0.100)                      |
| (1)             | Terminal   | min<br>max  | 0.25(0.010)<br>0.75(0.030) | 0.25(     |            |         | 0.010)<br>0.030) | 0.25(0   |            | 0.25 (0.010)<br>1.02 (0.040) | 0.25 (0.010)<br>1.02 (0.040) |
| _               | Rated Ter  |             | 250                        | 2.        |            |         | 50               | -        | 50         | 250                          | 250                          |
|                 | Temp. Co   |             | T                          | -         |            | _       |                  |          |            | T                            | T                            |
| _               |            |             |                            |           |            | T       |                  |          |            |                              |                              |
| Сар             | Voltag     |             | 16                         | 16        | 25         | 16      | 25               | 16       | 25         | 25                           | 25                           |
| pF)             | 1000       | 102         |                            |           |            |         |                  | _        |            |                              |                              |
| . /             | 1200       | 122         |                            |           |            |         |                  | $\vdash$ |            |                              |                              |
|                 | 1500       | 152         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 1800       | 182         |                            |           |            |         |                  | igspace  |            |                              |                              |
|                 | 2200       | 222         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 2700       | 272         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 3300       | 332         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 3900       | 392         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 4700       | 472         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 5600       | 562         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 6800       | 682         |                            |           |            |         |                  |          |            |                              |                              |
|                 |            |             |                            |           |            |         |                  |          |            |                              |                              |
| <sup>2</sup> on | 8200       | 822         |                            |           |            |         |                  |          |            |                              |                              |
| Cap<br>(µF)     | 0.010      | 103         |                            |           |            |         |                  |          |            |                              |                              |
| ۲۰ /            | 0.012      | 123         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.015      | 153         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.018      | 183         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.022      | 223         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.027      | 273         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.033      | 333         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.039      | 393         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.047      | 473         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.056      | 563         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.068      | 683         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.000      | 823         |                            |           |            |         |                  |          |            |                              |                              |
|                 |            |             |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.100      | 104         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.120      | 124         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.150      | 154         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.180      | 184         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.220      | 224         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.270      | 274         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.330      | 334         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.390      | 394         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.470      | 474         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.560      | 564         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.680      | 684         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 0.820      | 824         |                            |           |            |         |                  |          |            |                              |                              |
|                 | 1.000      | 105         |                            |           |            |         |                  |          |            |                              |                              |
| ۲               | Voltag     |             | 16                         | 16        | 25         | 16      | 25               | 16       | 25         | 25                           | 25                           |
| -               | Rated Ter  |             | 250                        |           | 50         | _       | 50               |          | 50         | 250                          | 250                          |
| _'              | nateu rei  | np. (*C)    | AT03 =                     |           | )5 =       |         | )6 =             |          | 0 =        | AT12 =                       | AT14 =                       |
|                 | Case       | Size        | 0603                       |           | )5 =<br>05 |         | .06<br>.06       | I        | 10 =<br>10 | 1812 =                       | 2225                         |

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

### AT Series - 200°C & 250°C Rated



# CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

| יום    | ME (               | CU            | G Temp             | o. Coefficie | nt: 4 | 200             | °C Rated |       |                  |
|--------|--------------------|---------------|--------------------|--------------|-------|-----------------|----------|-------|------------------|
| Ca     | se Siz             | e             | AT03=              | 0603         | 1     | AT05=           | :0805    | AT06  | =1206            |
| So     | olderin            | g             | Reflow             | Wave         | -     | Reflow          | /Wave    | Reflo | v/Wave           |
| L) Le  |                    | mm            | 1.60±              | 0.15         |       | 2.01±           | 0.20     | 3.20  | ±0.20            |
|        |                    | (in.)         | (0.063±            |              | (     | 0.079±          |          |       | ±0.008)          |
| W) W   |                    | mm<br>(in.)   | 0.81 ±<br>(0.032 ± |              | -     | 1.25±<br>0.049± |          |       | ±0.20<br>±0.008) |
| T) Thi |                    | mm            | 1.0                |              |       | 1.3             |          |       | .52              |
| ,      |                    | (in.)         | (0.04              |              |       | (0.0            |          |       | 060)             |
| t) Ter |                    | min           | 0.25(0             | .010)        |       | 0.25(0          | .010)    |       | (0.010)          |
|        |                    | max           | 0.75(0             |              |       | 0.75(0          |          |       | (0.030)          |
|        | d Temp.            | (°C)          | 20                 | 0            |       | 20              | 10       | 2     | .00              |
|        | Temp.<br>oefficein | .             | 3                  |              |       | 3               |          |       | 3                |
|        | Itage (\           |               | 25                 | 50           | 25    | П               | 50       | 25    | 50               |
| ар     |                    | 390           |                    |              |       |                 |          |       |                  |
| oF)    | 47                 | 470           |                    |              |       |                 |          |       |                  |
| r      | _                  | 560           |                    |              |       |                 |          |       |                  |
| r      | -                  | 680           |                    |              |       |                 |          |       |                  |
| F      |                    | 820           |                    |              |       |                 |          |       |                  |
| ┢      | $\overline{}$      | 101           |                    |              |       |                 |          |       |                  |
| F      | $\overline{}$      | 121           |                    |              |       |                 |          |       |                  |
| F      | $\rightarrow$      | 151           |                    |              |       |                 |          |       |                  |
| F      | -                  | 181           |                    |              |       |                 |          |       |                  |
| F      |                    | 221           |                    |              |       |                 |          |       |                  |
| F      | $\overline{}$      | 271           |                    |              |       | _               |          |       |                  |
| H      | $\overline{}$      | 331           |                    |              |       |                 |          |       |                  |
| F      |                    | 391           |                    |              |       |                 |          |       |                  |
| H      |                    | 471           |                    |              |       |                 |          |       |                  |
| H      |                    | 561           |                    |              |       |                 |          |       |                  |
| H      | -                  | 681           |                    |              |       |                 |          |       |                  |
| H      | -                  | 821           |                    |              |       |                 |          |       |                  |
| H      |                    | 102           |                    |              |       |                 |          |       |                  |
| -      |                    | 122           |                    |              |       |                 |          |       |                  |
| -      |                    | 152           |                    |              |       |                 |          |       |                  |
|        | $\overline{}$      | 182           |                    |              |       |                 |          |       |                  |
| -      | _                  | 222           |                    |              |       |                 |          |       |                  |
| -      |                    | 272           |                    |              |       |                 |          |       |                  |
| -      | $\overline{}$      | 332           |                    |              |       |                 |          |       |                  |
| - ⊢    |                    | 392           |                    |              |       |                 |          |       |                  |
| -      | $\overline{}$      | 472           |                    |              |       |                 |          |       |                  |
| -      | _                  | 562           |                    |              |       |                 |          |       |                  |
| -      | -                  | 682           |                    |              |       |                 |          |       |                  |
| -      | -                  | 822           |                    |              |       |                 |          |       |                  |
| ар     | $\overline{}$      | 103           |                    |              |       |                 |          |       |                  |
| ıF)    |                    | 123           |                    |              |       |                 |          |       |                  |
|        | _                  | 153           |                    |              |       |                 |          |       |                  |
|        | $\rightarrow$      | 183           |                    |              |       |                 |          |       |                  |
| -      | $\overline{}$      | 223           |                    |              |       |                 |          |       |                  |
| -      | $\rightarrow$      | 273           |                    |              |       | T               |          |       |                  |
| T      | 0.033              | 333           |                    |              |       |                 |          |       |                  |
| T      | 0.039              | 393           | j                  |              |       |                 |          |       |                  |
| -      | $\rightarrow$      | 473           |                    |              |       |                 |          |       |                  |
| -      |                    | 563           |                    |              |       |                 |          |       |                  |
| -      | $\rightarrow$      | 683           |                    |              |       | T               |          |       |                  |
| -      |                    | 823           |                    |              |       |                 |          |       |                  |
| -      | 0.100              | $\rightarrow$ |                    |              |       |                 |          |       |                  |
|        |                    | $\rightarrow$ | 25                 | 50           | 25    | i               | 50       | 25    | 50               |
| Vo     | ltage (\           | '/ '          |                    |              |       |                 | 30       | 20    | 00               |

| Case S    | Siza     | AT03=0603     | AT05=0805     | AT06 = 1206   |
|-----------|----------|---------------|---------------|---------------|
|           | -        |               |               |               |
| Solde     | ring     | Reflow/Wave   | Reflow/Wave   | Reflow/Wave   |
| L) Length |          | 1.60±0.15     | 2.01 ± 0.20   | 3.20±0.20     |
|           | (in.)    | (0.063±0.006) | (0.079±0.008) | (0.126±0.008) |
| W) Width  |          | 0.81 ± 0.15   | 1.25±0.20     | 1.60±0.20     |
|           | (in.)    | (0.032±0.006) | (0.049±0.008) | (0.063±0.008) |
| T)        | mm       | 1.02          | 1.30          | 1.52          |
| Thickness | (in.)    | (0.040)       | (0.051)       | (0.060)       |
| (t)       | min      | 0.25 (0.010)  | 0.25(0.010)   | 0.25 (0.010)  |
|           | max      | 0.75 (0.030)  | 0.75(0.030)   | 0.75 (0.030)  |
| Rated Ten | np. (°C) | 250           | 250           | 250           |
| Tem       |          | 5             | 5             | 5             |
| Coeffic   |          |               |               |               |
| Voltage   | e (V)    | 25            | 25            | 25            |
| Cap 39    | 390      |               |               |               |
| pF) 47    | 470      |               |               |               |
| 56        | 560      |               |               |               |
| _         | -        |               |               |               |
| 68        | 680      |               |               |               |
| 82        | 820      |               |               |               |
| 100       | 101      |               |               |               |
| 120       | 121      |               |               |               |
| 150       | 151      |               |               |               |
|           | -        |               |               |               |
| 180       | 181      |               |               |               |
| 220       | 221      |               |               |               |
| 270       | 271      |               |               |               |
| 330       | 331      |               |               |               |
| 390       | 391      |               |               |               |
|           |          |               |               |               |
| 470       | 471      |               |               |               |
| 560       | 561      |               |               |               |
| 680       | 681      |               |               |               |
| 820       | 821      |               |               |               |
| 1000      | 102      |               |               |               |
|           |          |               |               |               |
| 1200      | 122      |               |               |               |
| 1500      | 152      |               |               |               |
| 1800      | 182      |               |               |               |
| 2200      | 222      |               |               |               |
| 2700      | 272      |               |               |               |
| _         |          |               | +             | -             |
| 3300      | 332      |               |               |               |
| 3900      | 392      |               |               |               |
| 4700      | 472      |               |               |               |
| 5600      | 562      |               |               |               |
| 6800      | 682      |               |               | 1             |
| 8200      | 822      |               |               | +             |
|           | -        |               |               | +             |
| O.010     |          |               |               |               |
| 0.012     |          |               |               |               |
| 0.015     | 153      |               |               |               |
|           | 183      |               |               |               |
| 0.022     |          |               |               | +             |
| -         | _        |               |               | +             |
| 0.027     |          |               |               |               |
| 0.033     | 333      |               |               |               |
| 0.039     | 393      |               |               |               |
| 0.047     | 473      |               |               |               |
| 0.056     |          |               |               |               |
| -         | _        |               | +             | +             |
|           | 683      |               |               | +             |
|           | 823      |               |               |               |
|           | 104      |               |               |               |
| Voltage   | e (V)    | 25            | 25            | 25            |
| Rated Ten | np. (°C) | 250           | 250           | 250           |
|           |          | AT03=0603     | AT05=0805     | AT06=1206     |

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT06=1206



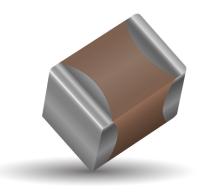
AT05=0805

Case Size

AT03=0603

### AT Series - 200°C & 250°C Rated




# CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

| PI          | ME           | CO          | G Temp.               | Coefficient: 2        | 200°C Ra                                         | ted                                              |                       | PI          | ME           | CO          | G Temp.               | Coefficient: A        | 250°C Ra              | ted                   |                       |
|-------------|--------------|-------------|-----------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|-----------------------|-------------|--------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| C           | ase Si       | ize         | AT05 = 0805           | AT06 = 1206           | AT10 = 1210                                      | AT12 = 1812                                      | AT14 = 2225           | C           | ase S        | ize         | AT05 = 0805           | AT06 = 1206           | AT10 = 1210           | AT12 = 1812           | AT14 = 2225           |
| S           | Solderi      | na          | Reflow/Wave           | Reflow/Wave           | Reflow Only                                      | Reflow Only                                      | Reflow Only           | S           | Solderi      | na          | Reflow/Wave           | Reflow/Wave           | Reflow Only           | Reflow Only           | Reflow Only           |
|             |              | mm          | 2.01 ± 0.20           | 3.20±0.20             | 3.20±0.20                                        | 4.50±0.30                                        | 2.75±0.25             |             |              | mm          | 2.01 ± 0.20           | 3.20±0.20             | 3.20±0.20             | 4.50±0.30             | 2.75±0.25             |
| (L) L       | ength        | (in.)       | (0.079±0.008)         | (0.126±0.008)         | (0.126±0.008)                                    | (0.177±0.012)                                    | (0.225±0.010)         | (L) L       | ength        | (in.)       | (0.079±0.008)         | (0.126±0.008)         | (0.126±0.008)         | (0.177±0.012)         | (0.225±0.010)         |
| (w) v       | Width        | mm          | 1.25±0.20             | 1.60±0.20             | 2.50±0.20                                        | 3.20±0.20                                        | 6.35±0.25             | (W) \       | Width        | mm          | 1.25±0.20             | 1.60±0.20             | 2.50±0.20             | 3.20±0.20             | 6.35±0.25             |
| (,          |              | (in.)<br>mm | (0.049±0.008)<br>1.30 | (0.063±0.008)<br>1.52 | (0.098±0.008)<br>1.70                            | (0.126±0.008)<br>2.54                            | (0.250±0.010)<br>2.54 | (,          |              | (in.)<br>mm | (0.049±0.008)<br>1.30 | (0.063±0.008)<br>1.52 | (0.098±0.008)<br>1.70 | (0.126±0.008)<br>2.54 | (0.250±0.010)<br>2.54 |
| (T)Th       | hickness     | (in.)       | (0.051)               | (0.060)               | (0.067)                                          | (0.100)                                          | (0.100)               | (T) Th      | hickness     | (in.)       | (0.051)               | (0.060)               | (0.067)               | (0.100)               | (0.100)               |
| (+) T.      | erminal      | min         | 0.25 (0.010)          | 0.25 (0.010)          | 0.25 (0.010)                                     | 0.25(0.010)                                      | 0.25 (0.010)          | (+) T.      | erminal      | min         | 0.25 (0.010)          | 0.25 (0.010)          | 0.25 (0.010)          | 0.25 (0.010)          | 0.25 (0.010)          |
| ٠,          |              | max         | 0.75 (0.030)          | 0.75 (0.030)          | 0.75 (0.030)                                     | 1.02 (0.040)                                     | 1.02 (0.040)          | . ,         |              | max         | 0.75 (0.030)          | 0.75 (0.030)          | 0.75 (0.030)          | 1.02 (0.040)          | 1.02 (0.040)          |
|             | ted Temp     |             | 200                   | 200                   | 200                                              | 200                                              | 200                   |             | ted Temp     |             | 250                   | 250                   | 250                   | 250                   | 250                   |
|             | mp. Coeff    |             | 2                     | 2                     | 2                                                | 2                                                | 2                     |             | mp. Coef     |             | A                     | Α                     | A                     | A                     | Α                     |
| <u> </u>    | Voltage (    |             | 50                    | 50                    | 50                                               | 50                                               | 50                    | \           | Voltage      |             | 25                    | 25                    | 25                    | 25                    | 25                    |
| l           |              | 101         |                       |                       |                                                  |                                                  |                       |             | 100          | 101         |                       |                       |                       |                       | ļ                     |
|             | 120          |             |                       |                       |                                                  |                                                  |                       |             | 120          | 121         |                       |                       |                       |                       |                       |
|             | 150          | 151         |                       |                       |                                                  |                                                  |                       |             | 150          | 151         |                       |                       |                       |                       |                       |
|             | 180          | 181         |                       |                       |                                                  |                                                  |                       |             | 180          | 181         |                       |                       |                       |                       |                       |
|             | 220          | 221         |                       |                       |                                                  |                                                  |                       |             | 220          | 221         |                       |                       |                       |                       |                       |
|             | 270          | 271         |                       |                       |                                                  |                                                  |                       |             | 270          | 271         |                       |                       |                       |                       |                       |
|             | 330          | 331         |                       |                       |                                                  |                                                  |                       |             | 330          | 331         |                       |                       |                       |                       |                       |
|             | 390          | 391         |                       |                       |                                                  |                                                  |                       |             | 390          | 391         |                       |                       |                       |                       |                       |
|             | 470          | 471         |                       |                       |                                                  |                                                  |                       |             | 470          | 471         |                       |                       |                       |                       |                       |
|             | 560          | 561         |                       |                       |                                                  |                                                  |                       |             | 560          | 561         |                       |                       |                       |                       |                       |
| ,           | 680          | 681         |                       |                       |                                                  |                                                  |                       | _           | 680          | 681         |                       |                       |                       |                       |                       |
| Cap<br>(pF) | 820          | 821         |                       |                       |                                                  |                                                  |                       | Cap<br>(pF) | 820          | 821         |                       |                       |                       |                       |                       |
| (pr)        | 1000         | 102         |                       |                       |                                                  |                                                  |                       | (pr)        | 1000         | 102         |                       |                       |                       |                       |                       |
|             | 1200         | 122         |                       |                       |                                                  |                                                  |                       |             | 1200         | 122         |                       |                       |                       |                       |                       |
|             | 1500         | 152         |                       |                       |                                                  |                                                  |                       |             | 1500         | 152         |                       |                       |                       |                       |                       |
| 1           | 1800         |             |                       |                       |                                                  |                                                  |                       |             | 1800         |             |                       |                       |                       |                       |                       |
| 1           | 2200         | 222         |                       |                       |                                                  |                                                  |                       |             | 2200         | 222         |                       |                       |                       |                       |                       |
|             | 2700         |             |                       |                       |                                                  |                                                  |                       |             | 2700         | 272         |                       |                       |                       |                       |                       |
| 1           | 3300<br>3900 |             |                       |                       |                                                  |                                                  |                       |             | 3300         |             |                       |                       |                       |                       |                       |
|             |              | 392         |                       |                       |                                                  |                                                  |                       |             | 3900         | 392         | <br>                  |                       |                       |                       |                       |
| 1           | 4700<br>5600 |             | ļ                     |                       |                                                  |                                                  |                       |             | 4700         |             |                       |                       |                       |                       |                       |
| 1           | 6800         | 682         |                       |                       |                                                  |                                                  |                       |             | 5600<br>6800 |             |                       |                       |                       |                       |                       |
| l           | 8200         |             |                       |                       | -                                                |                                                  |                       |             | 8200         |             |                       |                       |                       |                       |                       |
| $\vdash$    | 0.010        |             |                       |                       | <del>                                     </del> |                                                  |                       | _           | 0.010        |             |                       |                       |                       |                       |                       |
| l           | 0.010        |             |                       |                       |                                                  |                                                  |                       |             | 0.010        |             |                       |                       |                       |                       |                       |
| l           | 0.012        |             |                       |                       | <del>                                     </del> |                                                  |                       |             | 0.012        |             |                       |                       |                       |                       |                       |
| l           | 0.013        |             |                       |                       | <del>                                     </del> |                                                  |                       |             | 0.013        |             | <br>                  |                       | <br>                  |                       |                       |
| l           | 0.018        |             |                       |                       | <del>                                     </del> | <del>                                     </del> |                       |             | 0.018        |             |                       |                       |                       |                       |                       |
| l           | 0.022        |             |                       |                       | <del>                                     </del> | 1                                                |                       |             | 0.022        | 273         |                       |                       |                       |                       |                       |
| Сар         | 0.027        |             |                       |                       | <del>                                     </del> | 1                                                |                       | Cap         | 0.027        | 333         |                       |                       |                       |                       |                       |
| (μF)        | 0.033        |             |                       |                       |                                                  |                                                  |                       | (µF)        | 0.039        |             |                       |                       |                       |                       |                       |
| ı           | 0.039        |             |                       |                       | <b>†</b>                                         | <u> </u>                                         |                       |             | 0.039        |             | i                     |                       | i                     |                       |                       |
| l           | 0.056        |             |                       |                       | i                                                | i                                                |                       |             | 0.056        |             | i                     |                       | i                     |                       |                       |
| l           | 0.068        |             |                       |                       | <del> </del>                                     | i                                                |                       |             | 0.068        |             | l                     |                       | <b> </b>              |                       |                       |
| ı           | 0.000        |             |                       |                       | <b>-</b>                                         | 1                                                |                       |             | 0.000        |             | 1                     |                       | 1                     |                       |                       |
| l           | 0.100        |             |                       |                       | i                                                | i                                                |                       |             | 0.100        |             | i                     |                       | i                     |                       |                       |
| V           | oltage       |             | 50                    | 50                    | 50                                               | 50                                               | 50                    | V           | oltage       |             | 25                    | 25                    | 25                    | 25                    | 25                    |
|             | ed Temp      |             | 200                   | 200                   | 200                                              | 200                                              | 200                   |             | ed Tem       |             | 250                   | 250                   | 250                   | 250                   | 250                   |
|             |              |             |                       |                       |                                                  |                                                  |                       |             |              |             |                       |                       |                       |                       |                       |
| U           | ase Si       | ze          | A105 = 0805           | AT06 = 1206           | AI IU = 1210                                     | A112 = 1812                                      | A114 = 2225           |             | ase S        | ıze         | A105 = 0805           | AT06 = 1206           | AI 10 = 1210          | A112 = 1812           | A1 14 = 2225          |

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

### For 600V to 5000V Applications



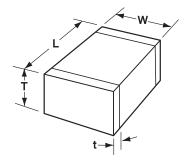


High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)

#### **NEW 630V RANGE**


#### **HOW TO ORDER**

| 1808                                                                                 | <b>A</b><br>                                                                                                        | <b>A</b><br>                                           | <u>271</u>                                                                                                                                                                      | <u>M</u>                                                                                                           | <u>A</u> | <b>1</b>                                                             | <u>2</u>                                | <u>A</u>                        |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------|-----------------------------------------|---------------------------------|
| AVX<br>Style<br>0805<br>1206<br>1210<br>1808<br>1812<br>1825<br>2220<br>2225<br>3640 | Voltage<br>600V/630V = C<br>1000V = A<br>1500V = S<br>2000V = G<br>2500V = W<br>3000V = H<br>4000V = J<br>5000V = K | Temperature<br>Coefficient<br>NPO (COG) = A<br>X7R = C | Capacitance Code<br>(2 significant digits<br>+ no. of zeros)<br>Examples:<br>10 pF = 100<br>100 pF = 101<br>1,000 pF = 102<br>22,000 pF = 223<br>220,000 pF = 224<br>1 µF = 105 | Capacitance<br>Tolerance<br>C0G: J = ±5%<br>K = ±10%<br>M = ±20%<br>X7R: K = ±10%<br>M = ±20%<br>Z = +80%,<br>-20% |          | Termination <sup>2</sup> 1 = Pd/Ag T = Plated Ni and Sn (RoHS Compli | 1 or 2 = 7" Reel**<br>3 or 4 = 13" Reel | Special<br>Code<br>A = Standard |

\*Note: Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

<sup>\*\*\*</sup> AVX offers nonstandard chip sizes. Contact factory for details.





#### **DIMENSIONS**

#### **MILLIMETERS (INCHES)**

| SIZE              | 0805            | 1206            | 1210*           | 1808*           | 1812*           | 1825*           | 2220*           | 2225*           | 3640*           |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (L) Length        | 2.10 ± 0.20     | 3.30 ± 0.30     | 3.30 ± 0.40     | 4.60 ± 0.50     | 4.60 ± 0.50     | 4.60 ± 0.50     | 5.70 ± 0.50     | 5.72 ± 0.25     | 9.14 ± 0.25     |
|                   | (0.083 ± 0.008) | (0.130 ± 0.012) | (0.130 ± 0.016) | (0.181 ± 0.020) | (0.181 ± 0.020) | (0.181 ± 0.020) | (0.224 ± 0.020) | (0.225 ± 0.010) | (0.360 ± 0.010) |
| (W) Width         | 1.25 ± 0.20     | 1.60 ± 0.20     | 2.50 ± 0.30     | 2.00 ± 0.20     | 3.20 ± 0.30     | 6.30 ± 0.40     | 5.00 ± 0.40     | 6.35 ± 0.25     | 10.2 ± 0.25     |
|                   | (0.049 ±0.008)  | (0.063 ± 0.008) | (0.098 ± 0.012) | (0.079 ± 0.008) | (0.126 ± 0.012) | (0.248 ± 0.016) | (0.197 ± 0.016) | (0.250 ± 0.010) | (0.400 ± 0.010) |
| (T) Thickness     | 1.35            | 1.80            | 2.80            | 2.20            | 2.80            | 3.40            | 3.40            | 2.54            | 2.54            |
| Max.              | (0.053)         | (0.071)         | (0.110)         | (0.087)         | (0.110)         | (0.134)         | (0.134)         | (0.100)         | (0.100)         |
| (t) terminal min. | 0.50 ± 0.20     | 0.60 ± 0.20     | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.85 ± 0.35     | 0.85 ± 0.35     | 0.76 (0.030)    |
| max.              | (0.020 ± 0.008) | (0.024 ± 0.008) | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.033 ± 0.014) | (0.033 ± 0.014) | 1.52 (0.060)    |

<sup>\*</sup>Reflow Soldering Only

<sup>\*\*</sup>The 3640 Style is not available on 7" Reels.

## For 600V to 5000V Applications



### NPO (COG) DIELECTRIC - PERFORMANCE CHARACTERISTICS

| Capacitance Range                          | 10 pF to 0.100 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) |
|--------------------------------------------|--------------------------------------------------------------------------|
| Capacitance Tolerances                     | ±5%, ±10%, ±20%                                                          |
| Dissipation Factor                         | 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)          |
| Operating Temperature Range                | -55°C to +125°C                                                          |
| Temperature Characteristic                 | 0 ±30 ppm/°C (0 VDC)                                                     |
| Voltage Ratings                            | 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)         |
| Insulation Resistance (+25°C, at 500 VDC)  | 100K MΩ min. or 1000 MΩ - μF min., whichever is less                     |
| Insulation Resistance (+125°C, at 500 VDC) | 10K MΩ min. or 100 MΩ - μF min., whichever is less                       |
| Dielectric Strength                        | Minimum 120% rated voltage for 5 seconds at 50 mA max, current           |

### NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

| Case S            | ize                    | ĺ     | 0805                     | i .      | ĺ        |         | 1206              |          |          |          |        | 12       | 10                  |          |          |             |          |          | 18                | 808                 |      |          |        |          |        |          | 18                           | 12       |                                               |               |      |
|-------------------|------------------------|-------|--------------------------|----------|----------|---------|-------------------|----------|----------|----------|--------|----------|---------------------|----------|----------|-------------|----------|----------|-------------------|---------------------|------|----------|--------|----------|--------|----------|------------------------------|----------|-----------------------------------------------|---------------|------|
| Solderi           |                        | Ref   | low/V                    |          |          |         | ow/W              | ave      |          |          |        | Reflo    |                     | У        |          |             |          |          | Reflo             |                     | /    |          |        |          |        |          | Reflov                       |          |                                               |               |      |
| (L) Length        | mm                     | 2.    | 10 ± 0                   | .20      |          |         | 30 + 0.           |          |          |          |        |          | + 0.40              |          |          |             |          | (6       | 4.60              | + 0.50              | ٥)   |          |        |          |        |          | 4.60 +                       |          | .,                                            |               |      |
| W) Width          | (in.)<br>mm            |       | 35 ± 0<br>25 ± 0         |          |          |         | 30 + 0.<br>+0.30/ |          |          |          | ((     | 2.50     | + 0.01<br>+ 0.30    |          |          |             |          | ((       | ).181 ·<br>2.00 · | + 0.02<br>+ 0.20    | 0)   |          |        |          |        |          | ).177 <del>+</del><br>3.20 + |          | <u>/)                                    </u> | —             |      |
| W) Width          | (in.)                  |       | 49 ± 0                   |          | (0       | ).063 + |                   |          | 4)       |          | ((     | ).098 ·  |                     |          |          |             |          |          | 2.00<br>).079 ·   |                     |      |          |        |          |        |          | 0.126 +                      |          | 3)                                            |               |      |
| (T) Thickness     | mm                     |       | 1.35                     | ,,       |          |         | 1.80              | `        |          |          |        |          | 80                  |          |          |             |          |          | 2.                | 20                  |      |          |        |          |        |          | 2.8                          | 30       |                                               |               |      |
| (t) Terminal      | (in.)<br>mm            |       | ( <u>0.053</u><br>50 + 0 |          |          |         | 0.071<br>0 + 0.   |          |          |          |        |          | 110)<br>+ 0.35      |          |          |             |          |          | 0.75              | )87)<br>+ 0 35      |      |          |        |          |        |          | 0.75                         |          |                                               | _             |      |
|                   | (in.)                  | (0.02 | 20 + 0                   | .008)    |          | (0.0)   | 4 + 0.0           | (800     |          |          |        | (.030    | 0.014               | )        |          |             |          |          | (.030             | 0.014               | )    |          |        |          |        |          | (.030 (                      | 0.014)   |                                               |               |      |
| Voltage           |                        | 600   |                          | 1000     | 600      | 630     | 1000              | 1500     | 2000     | 600      | 630    | 1000     | 1500                | 2000     | 3000     | 600         | 630      | 1000     | 1500              | 2000                | 2500 | 3000     | 4000   | 600      | 630    | 1000     | 1500                         | 2000     | 2500                                          | 3000          | 4000 |
| Cap (pF)          | .5 0R5<br>1.0 1R0      |       | A                        | C        |          |         |                   |          |          |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        |          |        |          |                              |          |                                               | $\vdash$      |      |
| -                 | 1.0 1R0                |       | A                        | C        |          |         |                   |          |          |          |        |          |                     |          |          | _           |          |          |                   |                     |      |          |        |          |        |          |                              |          |                                               | $\vdash$      |      |
|                   | 1.5 1R5                | Α     | Α                        | C        | Х        | Х       | Χ                 | Χ        | Χ        |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        |          |        |          |                              |          |                                               |               |      |
|                   | 1.8 1R8                | Α     | Α                        | С        | Х        | Х       | Х                 | Х        | Х        |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        |          |        |          |                              |          |                                               | $\square$     |      |
|                   | 2.2 2R2<br>2.7 2R7     | A     | A                        | C        | X        | X       | X                 | X        | X        |          |        |          |                     |          |          |             | C        | C        | _                 | C                   | С    | C        | C      |          |        |          |                              |          |                                               | $\vdash$      |      |
|                   | 3.3 3R3                | A     | A                        | C        | X        | X       | X                 | X        | X        |          |        |          |                     |          |          |             | C        | C        | C                 | C                   | C    | C        | C      |          |        |          |                              |          |                                               | $\vdash$      |      |
|                   | 3.9 3R9                | A     | A                        | Č        | X        | X       | X                 | X        | X        |          |        |          |                     |          |          |             | C        | Č        | Č                 | Č                   | Č    | Č        | Č      |          |        |          |                              |          |                                               |               |      |
|                   | 4.7 4R7                | Α     | Α                        | С        | Χ        | Х       | Χ                 | Χ        | Χ        |          |        |          |                     |          |          |             | С        | С        | С                 | С                   | С    | С        | С      |          |        |          |                              |          |                                               |               |      |
| <u> </u>          | 5.6 5R6                | Α     | Α                        | С        | X        | X       | X                 | X        | X        |          |        |          | <u> </u>            | _        | -        |             | С        | С        | С                 | С                   | С    | С        | С      |          |        | _        |                              | _        |                                               | ,             |      |
|                   | 6.8 6R8<br>8.2 8R2     | A     | A                        | C        | X        | X       | X                 | X        | X        | $\vdash$ |        | -        | $\vdash$            | -        | <b>-</b> | <del></del> | C        | C        | C                 | C                   | C    | C        | C      | $\vdash$ |        | -        | -                            | $\vdash$ | <u> </u>                                      | $\overline{}$ |      |
|                   | 10 100                 | A     | A                        | C        | X        | X       | X                 | X        | X        | С        | М      | М        | D                   | М        | F        | С           | C        | C        | С                 | C                   | C    | С        | C      | С        | С      | С        | С                            | С        | С                                             | С             | E    |
|                   | 12 120                 | Α     | Α                        | С        | Х        | Х       | Х                 | X        | X        | Č        | M      | М        | D                   | М        | F        | Ċ           | С        | С        | С                 | С                   | C    | C        | C      | Č        | C      | C        | Č                            | Č        | C                                             | Č             | Ē    |
|                   | 15 150                 | Α     | Α                        | С        | X        | X       | X                 | Х        | Х        | С        | М      | М        | D                   | М        | F        | С           | С        | С        | С                 | С                   | C    | С        | С      | С        | С      | С        | С                            | С        | С                                             | С             | E    |
| -                 | 18 180<br>22 220       | A     | A                        | C        | X        | X       | X                 | X        | X        | C        | M      | M        | D<br>D              | M        | F        | С           | C        | C        | C                 | C                   | C    | С        | C<br>E | C        | C      | C        | C                            | C        | C                                             | C             | E    |
|                   | 27 270                 | A     | A                        | C        | X        | X       | X                 | X        | X        | C        | M      | M        | D                   | M        | F        | C           | C        | C        | C                 | C                   | C    | C        | E      | С        | С      | C        | C                            | F        | C                                             | C             | E    |
|                   | 33 330                 | Α     | Α                        | С        | Х        | Х       | Х                 | D        | М        | С        | М      | М        | D                   | М        | F        | С           | С        | С        | С                 | С                   | С    | С        | F      | С        | С      | С        | С                            | F        | С                                             | С             | Ē    |
|                   | 39 390                 | Α     | Α                        | С        | Х        | Х       | Х                 | D        | М        | С        | М      | М        | D                   | М        | F        | С           | С        | С        | С                 | С                   | С    | С        | F      | С        | С      | С        | С                            | F        | С                                             | С             | Е    |
|                   | 47 470                 | Α     | A                        | C        | X        | X       | C                 | D<br>C   | M        | C        | M      | M        | D<br>C              | M<br>C   | F        | СС          | C        | C        | C                 | C                   | С    | C        | С      | C        | C      | C        | C                            | F        | C                                             | C             | E    |
|                   | 56 560<br>68 680       | A     | A                        | C        | X        | X       | C                 | C        | C        | С        | M      | M        | C                   | C        | F        | С           | C        | C        | C                 | C                   | C    | C        |        | С        | С      | C        | C                            | F        | C                                             | C             | F    |
|                   | 82 820                 | X     | X                        | X        | X        | X       | Č                 | C        | Č        | Č        | M      | M        | Č                   | č        | F        | C           | C        | C        | Č                 | Č                   | Č    | C        |        | Č        | C      | č        | Č                            | F        | Č                                             | Č             | F    |
|                   | 100 101                | Χ     | Χ                        | Х        | Χ        | Х       | С                 | С        | С        | С        | М      | С        | С                   | С        | F        | С           | С        | С        | С                 | С                   | F    | F        |        | С        | С      | С        | С                            | F        | С                                             | С             | F    |
|                   | 120 121                | С     | C                        | C        | X        | X       | С                 | E        | E        | С        | M      | C        | C                   | C        | F        | С           | C        | С        | C                 | C<br>F              | F    | F        |        | С        | С      | C        | C                            | F        | С                                             | С             | G    |
|                   | 150 151<br>180 181     | C     | C                        | C        | X        | X       | C<br>E            | E        | E        | C        | M      | C<br>E   | E                   | E        | F        | C           | C        | C        | F                 | F                   | F    | F        |        | C        | C      | C        | C                            | F        | C<br>F                                        | C<br>F        | G    |
| -                 | 220 221                | C     | C                        | C        | X        | X       | Ē                 | Ē        | Ē        | C        | M      | Ē        | Ē                   | Ē        | F        | C           | C        | C        | F                 | F                   | F    | F        |        | C        | C      | C        | C                            | F        | F                                             | F             |      |
|                   | 270 271                | С     | С                        | С        | С        | М       | Е                 | Е        | Е        | С        | М      | Е        | Е                   | Е        | G        | С           | F        | С        | F                 | F                   | F    | F        |        | С        | С      | С        | С                            | F        | F                                             | F             |      |
|                   | 330 331                | С     | C                        | C        | C        | M       | E                 | E        | E        | С        | M      | E        | E                   | E        |          | С           | F        | F        | F                 | F                   | F    | F        |        | С        | С      | C        | F                            | F        | F                                             | F             |      |
|                   | 390 391<br>470 471     | C     | C                        | С        | C        | M       | E                 | E        | E<br>F   | C        | M      | E        | E                   | E        |          | СС          | F        | F        | F                 | F                   | F    | F        |        | C        | C      | C<br>F   | F                            | F        | F                                             | F             |      |
|                   | 560 561                | C     | Č                        |          | C        | C       | Ē                 | _        |          | Č        | M      | Ē        | Ē                   | Ē        |          | Č           | F        | F        | F                 | F                   |      | F        |        | C        | C      | F        | F                            | F        | F                                             | F             |      |
|                   | 680 681                | С     | С                        |          | С        | С       | E                 |          |          | С        | М      | E        | F                   | E        |          | С           | F        | F        | F                 | F                   |      |          |        | С        | С      | F        | F                            | F        | G                                             | G             |      |
|                   | 750 751<br>820 821     | C     | C                        |          | E        | E       | E                 |          |          | C        | M      | E        | G                   | E        |          | C           | F        | F        | F                 | F                   |      |          |        | C        | C      | F        | F                            | F        | G<br>G                                        | G             |      |
| -                 | 1000 102               | U     | C                        |          | E        | E       | E                 |          |          | C        | C      | E        | F                   | F        |          | C           | F        | F        | E                 | F                   |      |          |        | C        | C      | F        | F                            | F        | G                                             | G             |      |
|                   | 1200 122               |       | C                        |          | Е        | E       | E                 |          |          | С        | С      | E        |                     | F        |          | С           | F        | F        | E                 | F                   |      |          |        | C        | С      | F        | E                            | E        |                                               |               |      |
|                   | 1500 152               |       | С                        |          | Е        | E       |                   |          |          | С        | С      | F        |                     | G        |          | E           | F        | F        |                   | F                   |      |          |        | С        | С      | F        | F                            | F        |                                               | $\Box$        |      |
|                   | 1800 182<br>2200 222   | -     | C                        |          | E        | E       |                   |          |          | C<br>E   | C      | G        | -                   | G        |          | E           | F        | F        | -                 | F                   |      | H        |        | C        | C      | F        | G                            | F<br>G   | -                                             | $\square$     |      |
| -                 | 2700 272               |       |                          |          | Ē        | Ē       |                   |          |          | E        | U C    | G        |                     |          |          | Ē           | F        | F        |                   |                     |      |          |        | C        | С      | Ē        | G                            | G        |                                               | $\vdash$      |      |
|                   | 3300 332               |       |                          |          | E        | E       |                   |          |          | Ē        | Č      | G        |                     |          |          | Ē           | F        | F        |                   |                     |      |          |        | С        | Č      | F        |                              | Ğ        |                                               |               |      |
|                   | 3900 392               |       |                          |          |          | E       |                   |          |          | E        | С      | G        |                     |          |          | E           | F        |          |                   |                     |      |          |        | С        | С      | F        |                              |          |                                               | 口             |      |
|                   | 4700 472<br>5600 562   | -     | _                        | -        | -        | E       |                   | -        |          | E<br>F   | C<br>E |          |                     |          | -        | E           | F        |          |                   |                     |      |          |        | C        | C      | G        |                              |          |                                               | $\overline{}$ |      |
|                   | 6800 682               |       | $\vdash$                 | $\vdash$ | $\vdash$ | _       | $\vdash$          | $\vdash$ |          |          | E      | $\vdash$ | $\vdash$            | $\vdash$ |          | F           | F        | $\vdash$ |                   |                     |      |          |        | C        | C      | 9        |                              |          |                                               | $\rightarrow$ |      |
|                   | 8200 822               |       |                          |          |          |         |                   |          |          |          | F      |          |                     |          |          |             | F        |          |                   |                     |      |          |        | Е        | С      |          |                              |          |                                               |               |      |
|                   | 0.010 103              |       |                          |          |          |         |                   |          |          |          | F      |          |                     |          |          |             | F        |          |                   |                     |      |          |        | E        | С      |          |                              |          |                                               | لتر           |      |
|                   | 0.012 123<br>0.015 153 | -     | <u> </u>                 | -        | $\vdash$ | -       | <u> </u>          | $\vdash$ | $\vdash$ |          | G      | <u> </u> | <u> </u>            | -        | -        | -           | <u> </u> | -        | -                 | _                   |      | $\vdash$ |        | F<br>G   | F<br>G | _        | -                            | -        | _                                             | $\overline{}$ |      |
|                   | 0.013 133              |       |                          |          |          |         |                   |          |          |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        | G        | G      |          |                              |          |                                               | $\vdash$      |      |
|                   | 0.022 223              |       |                          |          |          |         |                   |          |          |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        |          | F      |          |                              |          |                                               |               |      |
|                   | 0.027 273              |       |                          |          |          |         |                   |          |          |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        |          | G      |          |                              |          |                                               | 二             |      |
|                   | 0.033 333<br>0.047 473 |       | -                        | $\vdash$ | $\vdash$ | -       | <u> </u>          | <u> </u> |          |          |        |          |                     | -        | -        |             | -        |          |                   |                     |      |          |        | $\vdash$ | G      |          |                              |          |                                               | $\vdash$      |      |
|                   | 0.047 473              |       | $\vdash$                 | $\vdash$ | $\vdash$ |         | $\vdash$          | $\vdash$ |          |          |        |          |                     | $\vdash$ | $\vdash$ |             | $\vdash$ |          |                   |                     |      |          |        |          |        | $\vdash$ |                              |          |                                               | $\rightarrow$ |      |
|                   | 0.068 683              |       |                          |          |          |         |                   |          |          |          |        |          |                     |          |          |             |          |          |                   |                     |      |          |        |          |        |          |                              |          |                                               |               |      |
|                   | 0.100 104              | 45-   | 45.                      | 45-      |          |         |                   |          |          | 46.      | 45-    |          |                     |          |          | 45-         | 45.      |          |                   |                     |      |          |        | 45-      | 45-    |          | 45-                          |          |                                               |               |      |
| Voltage<br>Case S | (V)                    | 600   | 630<br>0805              |          | 600      |         | 1206              | 1500     | 2000     | 600      | 630    |          | <u> 1500</u><br> 10 | 2000     | 3000     | 600         | 630      | 1000     |                   | <u>2000</u><br>  08 | 2500 | 3000     | 4000   | 600      | 630    | 1000     | 1500<br> <br> 18             |          | 2500                                          | 3000          | 4000 |
| Uase 3            | nrc                    |       | 5505                     |          | _        |         | 1200              |          |          |          |        | 12       | . 10                |          |          |             |          |          | 10                | -50                 |      |          |        |          |        |          | 10                           | 14       |                                               | _             |      |

| Letter    | Α       | С       | E       | F       | G       | Х       | 7       |
|-----------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.813   | 1.448   | 1.8034  | 2.2098  | 2.794   | 0.940   | 3.30    |
| Thickness | (0.032) | (0.057) | (0.071) | (0.087) | (0.110) | (0.037) | (0.130) |







# NP0 (C0G) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

| Soldering  (L) Length (in.)  W) Width (in.) |     |               |          | R        | eflov          | v Onl             | ·        |          |          |          |        |        |          | _                |        |        |      |        |        |        |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        |                      |
|---------------------------------------------|-----|---------------|----------|----------|----------------|-------------------|----------|----------|----------|----------|--------|--------|----------|------------------|--------|--------|------|--------|--------|--------|----------|--------|--------------------|--------|----------|-------|--------|--------|--------|----------|----------|-------------------|----------|--------|--------|----------------------|
| (L) Length (in.)                            |     |               |          |          |                |                   | <u>y</u> |          |          |          |        |        |          | ow C             |        |        |      |        |        |        |          |        | low (              |        |          |       |        |        |        |          |          | flow (            |          |        |        |                      |
| W) Width mm                                 |     |               |          |          | 4.60 ±         | £ 0.50<br>£ 0.020 | 0)       |          |          |          |        |        |          | 70 0.5<br>24 0.0 |        |        |      |        |        |        |          |        | 70 ± 0.<br>25 ± 0. |        |          |       |        |        |        |          |          | 14 ± 0<br>60 ± 0  |          |        |        |                      |
|                                             |     |               |          |          | 6.30 ±         |                   |          |          |          |          |        |        | 5.0      | 00 0.4<br>97 0.0 | -0     |        |      |        |        |        |          | 6.     | .30 0.4<br>50 ± 0. | 40     |          |       |        |        |        |          | 1        | 0.2 ± 0<br>00 ± 0 | .25      |        |        |                      |
| (T) mm                                      |     |               |          | (0       | 3.4            | 40                | 0)       |          |          |          |        |        |          | 3.40             | 110)   |        |      |        |        |        |          |        | 3.40               |        |          |       |        |        |        |          | (0.4     | 2.54              |          |        |        |                      |
| Thickness (in.)                             | ╁   |               |          | _        | (0.1<br>0.75 ± | £ 0.35            |          |          |          |          |        |        | 0.       | 0.134)<br>85 0.3 | 5      |        |      |        |        |        |          | 0.8    | (0.100<br>35 ± 0.  | .35    |          |       |        | 1      |        |          | 0.       | (0.100<br>76 (0.0 | 30)      |        |        | =                    |
| (t) Terminal mm max Voltage (V)             | 60  | 0   6'        | 20 I 1   | 0)       | 1500           | 0.014             | 4)       | Ianno    | 14000    | 600      | 620    | 1000   | (0.03    | 3 ± 0.           | 014)   | 2000   | 4000 | Ennn   | 600    | 1 620  | 1000     | (0.03  | 33 ± 0.            | .014)  | Isono    | 14000 | 5000   | 600    | 620    | I 1000   | 1.       | 52 (0.0           | 160)     | 2000   | 4000   | E000                 |
| Cap (pF) 1.5 1R5                            | 001 | 0 0           | 30       | 1000     | 1300           | 2000              | 2300     | 3000     | 4000     | 000      | 030    | 1000   | 1300     | 2000             | 2300   | 3000   | 4000 | 3000   | 000    | 030    | 1000     | 1300   | 2000               | 2300   | 3000     | 4000  | 3000   | 000    | 0.00   | 1000     | 1300     | 2000              | 2500     | 3000   | 4000   | 3000                 |
| 1.8 1R8                                     |     | $\perp$       | 4        | $\Box$   |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        |        |        |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        |                      |
| 22 2R2<br>27 2R7                            |     | +             | +        | $\dashv$ |                |                   | -        |          | -        |          |        |        |          |                  |        |        |      |        |        | -      |          |        | Н                  |        |          |       |        |        |        |          |          |                   |          |        |        | $\vdash\vdash\vdash$ |
| 3.3 3R3                                     |     |               | コ        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        |        |        |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        |                      |
| 3.9 3R9<br>4.7 4R7                          |     | +             | +        | $\dashv$ |                |                   | _        | -        | -        |          |        |        |          |                  |        |        |      |        |        | _      |          |        | Н                  |        | _        | _     |        | -      |        |          |          |                   | _        |        |        | $\vdash \vdash$      |
| 5.6 5R6                                     |     | +             | $\dashv$ | $\dashv$ |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        |        |        |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        | H                    |
| 6.8 6R8                                     | -   |               | 4        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        |        |        |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        |                      |
| 82 8R2<br>10 100                            |     |               | F        | G        | F              | F                 | F        | F        | F        | F        | F      | F      | F        | F                | F      | F      | F    | F      | F      | F      | F        | F      | F                  | F      | F        | F     | F      |        |        |          |          |                   |          |        |        | $\vdash\vdash\vdash$ |
| 12 120                                      | Е   |               | E        | G        | Ē              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | E    | E      | E      | E      | E        | E      | E                  | E      | E        | F     | F      |        |        |          |          |                   |          |        |        |                      |
| 15 150<br>18 180                            |     | _             | E        | G        | Е              | F                 | E        | F        | F        | E<br>F   | Е      | E<br>F | П        | E<br>F           | E<br>F | E<br>F | П    | E<br>F | E      | E      | E        | E      | п                  | E<br>F | E        | F     | F      |        |        |          |          |                   |          |        |        | $\Box$               |
| 22 220                                      |     |               | E        | G<br>G   | E              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | E    | E      | E      | E      | E        | E      | E                  | E      | E        | F     | F      |        |        |          |          |                   | $\vdash$ |        |        | H                    |
| 27 270                                      | Е   |               | E        | G        | Е              | F                 | Е        | F        | F        | Е        | E      | Е      | E        | E                | Ε      | E      | Е    | Е      | E      | Е      | Е        | Е      | Е                  | Е      | Е        | F     | F      |        |        |          |          |                   |          |        |        |                      |
| 33 330<br>39 390                            |     | _             | E E      | G<br>G   | E              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | E    | E      | E      | E<br>F | E        | E      | E                  | E      | E        | F     | F      |        |        |          |          |                   |          |        |        | $\vdash\vdash$       |
| 47 470                                      |     |               | E        | G        | E              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | E    | E      | E      | E      | E        | E      | E                  | E      | E        | F     | G      |        |        |          |          |                   |          |        |        | G                    |
| 56 560                                      |     |               |          | G        | E              | F                 | Е        | F        | F        | E        | Е      | Е      | E        | E                | Е      | E      | Е    | Е      | Е      | E      | E        | E      | Е                  | Е      | E        | F     | G      |        |        |          |          |                   |          |        |        | G                    |
| 68 680<br>82 820                            |     |               | E E      | G<br>G   | E              | F                 | E        | F        | F        | E        | E<br>F | E      | E        | E                | E      | E      | E    | E      | E<br>F | E<br>F | E<br>F   | E      | E                  | E<br>F | E        | F     | G<br>G |        |        |          |          |                   |          |        |        | G<br>G               |
| 100 101                                     | Е   |               | E        | G        | E              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | E    | E      | E      | E      | E        | Е      | E                  | E      | Е        | G     | G      |        |        |          | G        | G                 | G        | G      | G      | G                    |
| 120 121<br>150 151                          |     |               | E        | G        | E              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | E    | E      | E      | E      | E<br>F   | E      | E                  | E      | E        | G     | G      |        |        |          | G        | G                 | G        | G      | G      | G                    |
| 180 181                                     |     |               | E E      | G<br>G   | E              | F                 | E        | F        | F        | E        | E      | E      | E        | E                | E      | E      | F    | F      | E      | E      | E        | E      | E                  | E      | E        | G     | G<br>G |        |        |          | G        | G                 | G        | G<br>G | G<br>G | G<br>G               |
| 220 221                                     |     |               | E        | G        | Е              | F                 | Е        | F        | F        | Е        | Е      | Е      | Е        | Е                | Е      | Е      | F    | F      | Е      | Е      | Ε        | Е      | Е                  | Е      | Е        | G     | G      |        |        |          | G        | G                 | G        | G      | G      | G                    |
| 270 271<br>330 331                          |     |               | E        | G<br>G   | E              | F                 | E        | F        | F        | E        | E      | E<br>F | E        | E                | E<br>F | E<br>F |      |        | E      | E      | E<br>F   | E<br>F | E                  | E      | E        | G     | G      |        |        |          | G        | G                 | G        | G<br>G | G<br>G | G<br>G               |
| 390 391                                     | Е   |               | E        | G        | E              | F                 | E        | F        | _        | E        | E      | E      | E        | E                | E      | E      |      |        | E      | E      | E        | E      | E                  | E      | E        | G     |        |        |        |          | G        | G                 | G        | G      | G      | G                    |
| 470 471                                     |     |               |          | G        | E              | F                 | Е        | F        |          | Е        | Е      | E      | Е        | E                | E      | E      |      |        | Е      | Е      | E        | E      | E                  | Е      | Е        | G     |        |        |        |          | G        | G                 | G        | G      | G      | G                    |
| 560 561<br>680 681                          |     |               | E E      | G<br>G   | E              | F                 | E<br>F   | G        |          | E        | E      | E      | E        | E                | E<br>F | E<br>F |      |        | E      | E      | E        | E      | E                  | E      | E        | G     |        |        |        |          | G        | G                 | G        | G<br>G | G<br>G | G<br>G               |
| 750 751                                     | Е   |               | E        | G        | Е              | F                 | F        | G        |          | Е        | Е      | Е      | Е        | Е                | F      | F      |      |        | Е      | Е      | Е        | Е      | Е                  | Е      | Е        |       |        |        |        |          | G        | G                 | G        | G      | G      | G                    |
| 820 821<br>1000 102                         |     |               | E  <br>E | G<br>G   | E              | F                 | F        | G        |          | E        | E      | E      | E        | E                | F      | F      |      |        | E      | E      | E        | E      | E                  | F<br>E | E        |       |        | G      | G      | G        | G        | G<br>G            | G        | G      | G<br>G | G                    |
| 1200 122                                    |     |               | E        | G        | E              | F                 | G        | G        |          | E        | E      | E      | E        | E                | G      | G      |      |        | E      | E      | E        | E      | E                  | F      | F        |       |        | G      | G      | G        | G        | G                 | G        | G      | G      | М                    |
| 1500 152                                    |     | _             |          | G        | F              | G                 | G        | G        |          | Е        | E      | E      | F        | F                | G      | G      |      |        | Е      | E      | Е        | E      | E                  | F      | F        |       |        | G      | G      | G        | G        | G                 | G        | G      |        |                      |
| 1800 182<br>2200 222                        |     | -             | E  <br>E | G<br>G   | F<br>G         | G<br>G            | G        | G        |          | E        | E      | E      | F<br>G   | F<br>G           | G      | G      |      |        | E      | E<br>F | E        | E      | E                  | G      | G        |       |        | G      | G      | G        | G        | G<br>G            | G        | G<br>G |        | $\vdash\vdash\vdash$ |
| 2700 272                                    | Е   | _             | E        | G        | G              | G                 |          | G        |          | Е        | Е      | Е      | G        | G                |        |        |      |        | Е      | Е      | Е        | F      | F                  |        |          |       |        | G      | G      | G        | G        | G                 | G        | G      |        |                      |
| 3300 332                                    |     | $\overline{}$ | E        | G        | G              | G<br>G            |          | -        | -        | E<br>F   | E<br>F | E      | G        | G                |        |        |      |        | E<br>F | E      | E<br>F   | F      | F<br>G             |        |          |       |        | G      | G      | G        | G        | G                 | G        |        |        | $\vdash\vdash$       |
| 3900 392<br>4700 472                        |     | -             | E  <br>E | G<br>G   | G<br>G         | G                 |          |          |          | E        | E      | E      | G        | G<br>G           |        |        |      |        | F      | F      | F        | G<br>G | G                  |        |          |       |        | G      | G      | G        | G        | G                 | G        |        |        | $\vdash\vdash\vdash$ |
| 5600 562                                    |     | _             | _        | G        | G              | G                 |          |          |          | F        | F      | F      | G        | G                |        |        |      |        | F      | F      | F        | G      | G                  |        |          |       |        | G      | G      | G        | G        | G                 |          |        |        |                      |
| 6800 682<br>8200 822                        |     |               | G G      | G<br>G   |                | G<br>G            |          |          | $\vdash$ | F<br>G   | F<br>G | F<br>G |          |                  |        |        |      |        | F<br>G | F<br>G | F<br>G   | G      | G                  |        |          |       |        | G<br>G | G<br>G | G        | G        | G                 |          |        |        | $\vdash\vdash\vdash$ |
| Cap (µF) 0.010 103                          |     |               | E        | G        |                |                   |          |          |          | 7        | 7      | 7      |          |                  |        |        |      |        | G      | G      | G        |        | П                  |        |          |       |        | G      | G      | G        | G        |                   |          |        |        | Г                    |
| 0.012 123                                   |     |               | E        | G        |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        | G      | G      |          |        |                    |        |          |       |        | G      | G      | G        |          |                   |          |        |        |                      |
| 0.015 153                                   |     | _             | E        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        | G      | G      |          |        |                    |        |          |       |        | G      | G      | G        |          |                   |          |        |        |                      |
| 0.018 183                                   | -   | _             | E        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        | G      | G      |          |        |                    |        |          |       |        | G      | G      | G        |          |                   |          |        |        | oxdot                |
| 0.022 223                                   | -   | _             | E        | _        |                |                   |          | -        | -        |          |        |        |          |                  |        |        |      |        | G      | G      | _        |        | Н                  | _      |          |       |        | G      | G      | G        |          | _                 |          |        |        | $\vdash \vdash$      |
| 0.027 273                                   | _   |               | F        | $\dashv$ |                |                   | -        | $\vdash$ | $\vdash$ | H        |        |        | $\vdash$ |                  |        |        |      |        | G      | G      | -        |        | Н                  |        |          |       |        | G      | G      | $\vdash$ |          |                   |          |        |        | $\vdash\vdash$       |
| 0.039 393                                   | +   |               | G        | $\dashv$ |                |                   | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ |        |        |          |                  |        |        |      |        | G      | G      | $\vdash$ |        | $\vdash$           |        | $\vdash$ |       |        | U      | 0      |          | $\vdash$ |                   |          |        |        | $\vdash\vdash\vdash$ |
| 0.047 473                                   | -   |               | G        |          |                |                   |          | $\vdash$ | $\vdash$ |          |        |        |          |                  |        |        |      |        | G      | G      |          |        |                    |        |          |       |        | G      | G      |          |          |                   |          |        |        | $\vdash$             |
| 0.056 563                                   | -   | _             | 3        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        | G      | G      |          |        | П                  |        |          |       |        |        |        |          |          |                   |          |        |        | $\Box$               |
| 0.068 683                                   |     | (             | G        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        | G      | G      |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        |                      |
| 0.100 104                                   |     | T             | I        |          |                |                   |          |          |          |          |        |        |          |                  |        |        |      |        |        |        |          |        |                    |        |          |       |        |        |        |          |          |                   |          |        |        |                      |
| Voltage (V)                                 | 60  | 0 63          | 30 1     | 1000     | _              |                   | 2500     | 3000     | 4000     | 600      | 630    | 1000   | 1500     |                  | 2500   | 3000   | 4000 | 5000   | 600    | 630    | 1000     |        |                    |        | 3000     | 4000  | 5000   | 600    | 630    | 1000     | 1500     |                   |          | 3000   | 4000   | 5000                 |
| Case Size                                   |     |               |          |          | 18             | 25                |          |          |          |          |        |        |          | 2220             |        |        |      |        |        |        |          |        | 2225               |        |          |       | fied c |        |        |          |          | 3640              | )        |        |        |                      |

| Letter    | A       | С       | E       | F       | G       | Χ       | 7       |
|-----------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.813   | 1.448   | 1.8034  | 2.2098  | 2.794   | 0.940   | 3.30    |
| Thickness | (0.032) | (0.057) | (0.071) | (0.087) | (0.110) | (0.037) | (0.130) |

# For 600V to 5000V Applications



### **X7R Dielectric**

#### **Performance Characteristics**

| Capacitance Range                          | 10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)                   |
|--------------------------------------------|------------------------------------------------------------------|
| Capacitance Tolerances                     | ±10%; ±20%; +80%, -20%                                           |
| Dissipation Factor                         | 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)                           |
| Operating Temperature Range                | -55°C to +125°C                                                  |
| Temperature Characteristic                 | ±15% (0 VDC)                                                     |
| Voltage Ratings                            | 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) |
| Insulation Resistance (+25°C, at 500 VDC)  | 100K MΩ min. or 1000 MΩ - μF min., whichever is less             |
| Insulation Resistance (+125°C, at 500 VDC) | 10K MΩ min. or 100 MΩ - μF min., whichever is less               |
| Dielectric Strength                        | Minimum 120% rated voltage for 5 seconds at 50 mA max. current   |

### X7R CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

| Case Siz                   | e           |          | 0805                |           |          |          | 1206               |           |           |          |          | 1210               |           |           |        |     |        | 18      | 808               |          |          |          | 1812   |       |          |                |                   |          |        |       |
|----------------------------|-------------|----------|---------------------|-----------|----------|----------|--------------------|-----------|-----------|----------|----------|--------------------|-----------|-----------|--------|-----|--------|---------|-------------------|----------|----------|----------|--------|-------|----------|----------------|-------------------|----------|--------|-------|
| Solderin                   | _           | Ref      | low/W               | ave       |          | Ref      | low/W              | lave      |           |          |          | flow O             | nly       |           |        |     |        |         | w Only            | ,        |          |          |        |       |          | Reflo          |                   |          |        |       |
| (L) Length                 | mm<br>(in.) | 2        | .10 0.2<br>85 ± 0.  | .0        |          | 3.       | 30 ± 0.<br>30 ± 0. | 30        |           |          | (0.1     | .30 0.4<br>130 0.0 | 0<br>16)  |           |        |     |        | 4.60    | ± 0.50<br>± 0.020 | 1)       |          |          |        |       |          | 4.60<br>(0.177 | ± 0.50<br>± 0.012 | 2)       |        |       |
| W) Width                   | mm          | 1.3      | 25 ± 0.:<br>49 ± 0. | 20        |          |          | +0.30/             | -0.10     | )         |          | 2        | .50 0.3<br>098 0.0 | 0         |           |        |     |        | 2.00    | 0.20<br>± 0.008   |          |          |          |        |       |          |                | ± 0.30            |          |        |       |
| (T) Thickness              | (in.)<br>mm |          | 1.35                |           |          |          | 1.80               |           | .)        |          |          | 2.80               | 12)       |           |        |     |        | 2.      | 20                | )        |          |          |        |       |          | 2.             | 80                | )        |        |       |
| . ,                        | (in.)<br>mm |          | (0.053)<br>50 ± 0.  |           |          |          | (0.071)<br>60 ± 0. |           |           |          |          | (0.110)<br>.75 0.3 | 5         |           |        |     |        |         | 087)<br>± 0.35    |          |          |          |        |       |          | 0.75           | 00)<br>± 0.35     |          |        |       |
| (t) Terminal               | max         | (0.0     | 20 ± 0.             | 008)      |          | (0.0     | 24 ± 0.            | 008)      | 0005      |          | (0.0     | 30 ± 0.0           | 014)      | Loons     |        |     |        | (0.030) | ± 0.014           |          | 1 000-   | 400-     |        | 1     |          | (0.030)        | ± 0.014           |          |        | 1405- |
| Voltage (V<br>Cap (pF) 100 |             | 600<br>X | 630<br>X            | 1000<br>C | 600<br>C | 630<br>C | 1000<br>F          | 1500<br>F | 2000<br>F | 600<br>F | 630<br>F | 1000<br>F          | 1500<br>F | 2000<br>E | 600    | 630 | 1000   | 1500    | 2000              | 2500     | 3000     | 4000     | 600    | 630   | 1000     | 1500           | 2000              | 2500     | 3000   | 4000  |
| 120                        | 121         | X        | X                   | С         | С        | С        | E                  | E         | E         | E        | E        | E                  | E         | E         |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |
| 150                        | 151         | Х        | Х                   | С         | С        | С        | E                  | Е         | E         | E        | E        | Е                  | E         | E         |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |
| 180                        | 181         | Х        | Х                   | С         | С        | С        | Е                  | Е         | Е         | Е        | Е        | Е                  | Е         | Е         |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |
| 220                        | 221         | Х        | Х                   | С         | С        | С        | Е                  | Е         | Е         | Е        | Е        | Е                  | Е         | Е         |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |
| 270<br>330                 | 271<br>331  | Х        | X                   | С         | С        | С        | E                  | E         | E         | E        | E        | E                  | E         | E         | _      |     |        |         |                   |          |          |          | E      | E     | E        | E              | E                 |          |        |       |
| 390                        | 391         | X        | X                   | C         | C        | C        | E                  | E<br>E    | E         | E        | E<br>E   | E                  | E         | E         | E<br>E | E   | E      | E       | E                 | E        | F        |          | E<br>E | E     | E        | E              | E                 |          |        |       |
| 470                        | 471         | X        | X                   | С         | С        | С        | E                  | E         | E         | E        | E        | E                  | E         | E         | E      | E   | E      | E       | E                 | E        | F        |          | E      | E     | E        | E              | E                 | Е        | E      |       |
| 560                        | 561         | X        | X                   | С         | С        | С        | E                  | E         | E         | E        | E        | E                  | E         | E         | E      | E   | E      | E       | E                 | F        | F        |          | E      | E     | E        | E              | E                 | E        | E      |       |
| 680                        | 681         | Х        | X                   | С         | С        | С        | E                  | E         | E         | E        | E        | E                  | E         | E         | E      | E   | E      | E       | E                 | F        | F        |          | E      | E     | E        | E              | E                 | F        | F      |       |
| 750                        | 751         | Х        | Х                   | С         | С        | С        | Е                  | Е         | Е         | Е        | Е        | Е                  | Е         | Е         | Е      | Е   | Е      | Е       | Е                 | F        | F        |          | Е      | Е     | Е        | Е              | Е                 | F        | F      |       |
| 820                        | 821         | Χ        | Х                   | С         | С        | С        | Е                  | Е         | Е         | Е        | Е        | Е                  | Е         | Е         | Е      | Е   | Е      | Е       | Е                 | F        | F        |          | Е      | Е     | Е        | Е              | Е                 | F        | F      |       |
| 1000                       | 102         | Х        | Х                   | Х         | С        | С        | Е                  | Е         | Е         | Е        | E        | Е                  | Е         | E         | E      | Е   | E      | Е       | E                 | F        | F        |          | Е      | Е     | E        | E              | E                 | F        | F      |       |
| 1200<br>1500               | 122<br>152  | X        | X                   | X         | C        | C        | E                  | E         | E         | E        | E<br>E   | E                  | E         | E         | E<br>E | E   | E<br>E | E       | E                 | F        | F        |          | E<br>E | E     | E        | E              | E                 | F        | F<br>G |       |
| 1800                       | 182         | X        | X                   | X         | С        | C        | E                  | E         | E         | E        | E        | E                  | E         | E         | E      | E   | E      | E       | E                 | F        | F        |          | E      | E     | E        | E              | E                 | G        | G      |       |
| 2200                       | 222         | X        | X                   | X         | С        | С        | E                  | E         | E         | E        | E        | E                  | F         | E         | E      | E   | E      | F       | F                 | F        | •        |          | E      | E     | E        | E              | E                 | G        | G      |       |
| 2700                       | 272         | С        | С                   |           | С        | С        | E                  | Е         |           | E        | E        | Е                  | F         | E         | E      | Е   | E      | F       | F                 |          |          |          | E      | E     | E        | E              | E                 | G        | G      |       |
| 3300                       | 332         | С        | С                   |           | С        | С        | Е                  |           |           | Е        | Е        | Е                  | F         | Е         | Е      | Е   | Е      | F       | F                 |          |          |          | Е      | Е     | Е        | F              | F                 | G        | G      |       |
| 3900                       | 392         | С        | С                   |           | С        | С        | Е                  |           |           | Е        | Е        | Е                  | F         |           | Е      | Е   | Е      | F       |                   |          |          |          | Е      | Е     | Е        | F              | F                 | G        | G      |       |
| 4700                       | 472         | С        | С                   |           | С        | С        | Е                  |           |           | Е        | Е        | Е                  | F         |           | Е      | Е   | Е      | F       |                   |          |          |          | Е      | Е     | Е        | F              | F                 | G        | G      |       |
| 5600<br>6800               | 562<br>682  | C<br>C   | C                   |           | C        | C        | E                  |           |           | E<br>E   | E<br>E   | E                  | F         |           | E<br>E | E   | E      | F       |                   |          | -        |          | E<br>E | E     | E        | G              | G                 | G        |        |       |
| 8200                       | 822         | C        | С                   |           | С        | С        | E                  |           |           | E        | E        | E                  |           |           | E      | E   | E      | Г       |                   |          | 1        |          | E      | E     | E        | G              | G                 |          |        |       |
| Cap (µF) 0.010             | 103         | C        | С                   |           | С        | С        | E                  |           |           | E        | E        | E                  |           |           | E      | E   | E      |         |                   |          |          |          | E      | E     | F        | G              | G                 |          |        |       |
| 0.015                      | 153         | С        | С                   |           | Е        | Е        | Е                  |           |           | Е        | Е        | Е                  |           |           | F      | F   | F      |         |                   |          |          |          | Е      | Е     | F        | G              |                   |          |        |       |
| 0.018                      | 183         | С        | С                   |           | Е        | Е        |                    |           |           | Е        | Е        | Е                  |           |           | F      | F   | F      |         |                   |          |          |          | Е      | Е     | G        |                |                   |          |        |       |
| 0.022                      | 223         | С        | С                   |           | Е        | Е        |                    |           |           | Е        | Е        | F                  |           |           | F      | F   |        |         |                   |          |          |          | Е      | Е     | G        |                |                   |          |        |       |
| 0.027                      | 273<br>333  |          |                     |           | E        | E        |                    |           |           | E<br>F   | E        |                    |           |           | F      | F   |        |         | -                 |          | -        |          | E      | E     | G        |                |                   | -        |        |       |
| 0.039                      | 393         |          |                     |           | Е        | Е        |                    |           |           | E        | E<br>E   |                    |           |           | F<br>F | F   |        |         |                   |          |          |          | E<br>E | E     | G        |                |                   |          |        |       |
| 0.039                      | 473         |          |                     |           |          |          |                    |           |           | E        | E        |                    |           |           | F      | F   |        |         |                   |          | $\vdash$ |          | E      | E     | G        |                |                   |          |        |       |
| 0.056                      | 563         |          |                     |           |          |          |                    |           |           | F        | F        |                    |           |           | F      | F   |        | t       |                   |          | t        |          | F      | F     |          |                |                   | İ        |        |       |
| 0.068                      | 683         |          |                     |           |          |          |                    |           |           | F        | F        |                    |           |           | F      | F   |        |         |                   |          |          |          | F      | F     |          |                |                   |          |        |       |
| 0.082                      | 823         |          |                     |           |          |          |                    |           |           | F        | F        |                    |           |           |        |     |        |         |                   |          |          |          | F      | F     |          |                |                   |          |        |       |
| 0.100                      | 104         |          |                     |           |          |          |                    |           |           | F        | F        |                    |           |           |        |     |        | _       | ļ                 | <u> </u> | ₩        | <u> </u> | F      | F     |          | <u> </u>       |                   | <u> </u> |        |       |
| 0.150                      | 154         |          | _                   |           |          | _        |                    | -         |           |          | <u> </u> | -                  |           |           |        | -   | -      | -       | -                 | -        | ₩        | $\vdash$ | G<br>G | G     |          |                | -                 | -        |        | -     |
| 0.220<br>0.270             | 224<br>274  |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        |         |                   |          | $\vdash$ | $\vdash$ | G      | G     |          |                |                   | <u> </u> |        | -     |
| 0.270                      | 334         |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |
| 0.390                      | 394         |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        | İ       | Ì                 | Ì        |          |          |        | İ     |          | İ              |                   | i –      |        | İ     |
| 0.470                      | 474         |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |
| 0.560                      | 564         |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        |         |                   |          | _        |          |        |       | _        |                |                   | _        |        |       |
| 0.680                      | 684         |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        | 1       |                   | -        | 1        |          |        |       | 1        | -              |                   | <u> </u> |        |       |
| 0.820<br>1.000             | 824<br>105  |          |                     | -         | -        |          | -                  |           |           |          | -        |                    |           |           |        | -   | -      | -       | -                 | -        | $\vdash$ | -        |        | -     | $\vdash$ | -              | -                 | -        | -      | -     |
| Voltage (V                 |             | 600      | 630                 | 1000      | 600      | 630      | 1000               | 1500      | 2000      | 600      | 630      | 1000               | 1500      | 2000      | 600    | 630 | 1000   | 1500    | 2000              | 2500     | 3000     | 4000     | 600    | 630   | 1000     | 1500           | 2000              | 2500     | 3000   | 4000  |
| Case Size                  | _           | 555      | 0805                | ,         | 000      | , 000    | 1206               | ,,,,,,    |           | 000      | 000      | 1210               | ,,,,,,    |           | 000    |     | ,      |         | 808               | , 2000   | ,0000    |          | 000    | , 000 | ,        |                | 12                | 12000    | 3000   | ,     |
| - 300 012                  |             |          |                     |           |          |          |                    |           |           |          |          |                    |           |           |        |     |        |         |                   |          |          |          |        |       |          |                |                   |          |        |       |

| Letter    | l A     | С       | E       | F       | G       | Х       | 7       |
|-----------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.813   | 1.448   | 1.8034  | 2.2098  | 2.794   | 0.940   | 3.30    |
| Thickness | (0.032) | (0.057) | (0.071) | (0.087) | (0.110) | (0.037) | (0.130) |



## For 600V to 5000V Applications



### **X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED**

| Case Size                       |     |     |      | 18                | 25               |          |          |          | 2220<br>Reflow Only |      |      |          |                    |      |          |      |      |     |     |      |          | 222              | 5     |      |      |      |      |       |          |      | 364                | )        |      |                |                 |
|---------------------------------|-----|-----|------|-------------------|------------------|----------|----------|----------|---------------------|------|------|----------|--------------------|------|----------|------|------|-----|-----|------|----------|------------------|-------|------|------|------|------|-------|----------|------|--------------------|----------|------|----------------|-----------------|
| Soldering                       |     |     |      | Reflo             |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          | flow (           |       |      |      |      |      |       |          |      | eflow (            |          |      |                |                 |
| (L) Length mm (in.)             |     |     | ((   | 4.60 :<br>0.181 : | ± 0.50<br>+ 0.02 | 0)       |          |          |                     |      |      |          | 70 ± 0.<br>24 ± 0. |      |          |      |      |     |     |      |          | 70 ± 0<br>25 ± 0 |       |      |      |      |      |       |          |      | .14 ± 0            |          |      |                |                 |
| W) Width mm                     |     |     |      | 6.30 :            | ± 0.40           |          |          |          |                     |      |      | 5.0      | 00 ± 0.            | 40   |          |      |      |     |     |      | 6.       | 30 ± 0           | .40   |      |      |      |      |       |          | 1    | $0.2 \pm 0$        | .25      |      |                |                 |
| (T) (in.)                       |     |     | ((   | 0.248 :<br>3.     |                  | 6)       |          |          |                     |      |      |          | 7 ± 0.<br>3.40     |      |          |      |      |     |     |      |          | 50 ± 0<br>3.40   |       |      |      |      |      |       |          | (0.4 | 2.54               |          |      |                |                 |
| Thickness (in.)                 |     |     |      | (0.1              | 134)             |          |          |          |                     |      |      | (        | 0.134              | )    |          |      |      |     |     |      | 0        | (0.100)          | ))    |      |      |      |      |       |          |      | (0.100)            | ))       |      |                |                 |
| (t) Terminal mm<br>max          |     |     | ((   | 0.030 :           | ± 0.35<br>± 0.01 | 4)       |          |          |                     |      |      | (0.03    | 35 ± 0.<br>33 ± 0. | 014) |          |      |      |     |     |      | (0.0     | 85 ± 0<br>33 ± 0 | .014) |      |      |      |      |       |          | 1.   | 76 (0.0<br>52 (0.0 | )60)     |      |                |                 |
| Voltage (V)<br>Cap (pF) 100 101 | 600 | 630 | 1000 | 1500              | 2000             | 2500     | 3000     | 4000     | 600                 | 630  | 1000 | 1500     | 2000               | 2500 | 3000     | 4000 | 5000 | 600 | 630 | 1000 | 1500     | 2000             | 2500  | 3000 | 4000 | 5000 | 600  | 630   | 1000     | 1500 | 2000               | 2500     | 3000 | 4000           | 5000            |
| 120 121                         |     |     |      | -                 | -                | -        |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       | <u> </u> | -    |                    | -        |      | $\square$      | $\vdash$        |
| 150 151                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    |          |      | $\vdash\vdash$ | $\vdash$        |
| 180 181                         |     |     |      | -                 | -                | -        |          |          |                     |      |      |          |                    |      |          |      | _    |     |     |      |          |                  |       |      |      |      |      |       | -        | -    |                    | -        |      | H              | $\vdash$        |
| 220 221                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       | -        |      |                    |          |      | $\vdash\vdash$ | $\vdash$        |
| 270 271                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    |          |      | H              | H               |
| 330 331                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    |          |      | $\vdash$       |                 |
| 390 391                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    |          |      | $\vdash$       |                 |
| 470 471                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          | $\vdash$         |       |      |      |      |      |       |          |      |                    |          |      | $\Box$         |                 |
| 560 561                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      | <u> </u> | T                |       |      |      |      |      |       | 1        |      |                    |          |      | М              |                 |
| 680 681                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    |          |      | П              |                 |
| 750 751                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    | İ        |      | М              | П               |
| 820 821                         |     |     |      |                   |                  |          |          |          |                     |      |      |          |                    |      |          |      |      |     |     |      |          |                  |       |      |      |      |      |       |          |      |                    |          |      |                |                 |
| 1000 102                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 1200 122                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 1500 152                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 1800 182                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 2200 222                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 2700 272                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 3300 332                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | G               |
| 3900 392<br>4700 472            | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              |                 |
| 5600 562                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | $\vdash$        |
| 6800 682                        | F   | F   | F    | F                 | F                | F        | F        |          | F                   | F    | F    | F        | F                  | F    | G        |      |      | F   | F   | F    | F        | F                | F     | F    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | $\vdash$        |
| 8200 822                        | F   | F   | F    | G                 | G                | G        | G        |          | F                   | F    | F    | F        | F                  | G    | G<br>G   |      |      | F   | F   | F    | F        | F                | G     | G    |      |      | G    | G     | G        | G    | G                  | G        | G    | G              | $\vdash$        |
| Cap (µF) 0.010 103              | F   | F   | F    | G                 | G                | G        | G        |          | F                   | F    | F    | G        | G                  | G    | G        |      |      | F   | F   | F    | F        | F                | G     | G    |      |      | G    | G     | G        | G    | G                  | G        | G    | H              | $\vdash$        |
| 0.015 153                       | F   | F   | F    | G                 | G                | G        | G        |          | F                   | F    | F    | G        | G                  | G    | G        |      | _    | F   | F   | F    | G        | G                | G     | G    |      |      | G    | G     | G        | G    | G                  | G        | G    | H              | $\vdash$        |
| 0.018 183                       | F   | F   | F    | G                 | G                |          |          | <u> </u> | F                   | F    | F    | G        | G                  | G    |          |      |      | F   | F   | F    | G        | G                | G     | 0    |      |      | G    | G     | G        | G    | G                  | G        | G    | $\vdash$       |                 |
| 0.022 223                       | F   | F   | F    | G                 | G                |          |          |          | F                   | F    | F    | G        | G                  | _    |          |      |      | F   | F   | F    | G        | G                | G     |      |      |      | G    | G     | G        | G    | G                  | G        |      | $\vdash$       |                 |
| 0.027 273                       | F   | F   | F    | G                 |                  |          |          |          | F                   | F    | F    | G        | G                  |      |          |      | _    | F   | F   | F    | G        | G                |       |      |      |      | G    | G     | G        | G    | G                  | Ť        |      | $\vdash$       |                 |
| 0.033 333                       | F   | F   | F    | G                 |                  |          |          |          | F                   | F    | F    | G        |                    |      |          |      |      | F   | F   | F    | G        | G                |       |      |      |      | G    | G     | G        | G    | _                  |          |      | $\vdash$       |                 |
| 0.039 393                       | F   | F   | F    | G                 |                  |          |          |          | F                   | F    | F    | G        |                    |      |          |      |      | F   | F   | F    | G        |                  |       |      |      |      | G    | G     | G        | G    |                    |          |      | $\Box$         |                 |
| 0.047 473                       | F   | F   | F    | Р                 |                  |          |          |          | F                   | F    | F    | G        |                    |      |          |      |      | F   | F   | F    | G        |                  |       |      |      |      | G    | G     | G        | G    |                    |          |      | М              |                 |
| 0.056 563                       | F   | F   | F    | G                 |                  |          |          |          | F                   | F    | F    | G        |                    |      |          |      |      | F   | F   | F    | G        |                  |       |      |      |      | G    | G     | G        | G    |                    |          |      |                |                 |
| 0.068 683                       | F   | F   | G    |                   |                  |          |          |          | F                   | F    | G    |          |                    |      |          |      |      | F   | F   | F    | G        |                  |       |      |      |      | G    | G     | G        | G    |                    |          |      |                |                 |
| 0.082 823                       | F   | F   | G    |                   |                  |          |          |          | F                   | F    | G    |          |                    |      |          |      |      | F   | F   | G    |          |                  |       |      |      |      | G    | G     |          |      |                    |          |      |                |                 |
| 0.100 104                       | F   | F   | G    |                   |                  |          |          |          | F                   | F    | G    |          |                    |      |          |      |      | F   | F   | G    |          |                  |       |      |      |      | G    | G     |          |      |                    |          |      |                |                 |
| 0.150 154                       | F   | F   |      |                   |                  |          |          |          | F                   | F    | G    |          |                    |      |          |      |      | F   | F   | G    |          |                  |       |      |      |      | G    | G     |          |      |                    |          |      |                |                 |
| 0.220 224                       | F   | F   |      |                   |                  |          |          |          | F                   | F    | G    |          |                    |      |          |      |      | F   | F   |      |          |                  |       |      |      |      | G    | G     |          |      |                    |          |      | $\square$      |                 |
| 0.270 274                       | F   | F   |      |                   |                  |          |          |          | F                   | F    |      |          | _                  |      |          |      |      | F   | F   |      |          |                  |       |      |      |      | G    | G     |          |      | _                  |          |      | $\sqcup$       | $\square$       |
| 0.330 334                       | F   | F   |      | _                 | _                | _        |          |          | F                   | F    |      |          |                    |      | Ш        |      |      | F   | F   |      |          | lacksquare       |       |      |      |      | G    | G     |          | _    |                    | _        |      | igspace        | $\bigsqcup$     |
| 0.390 394                       | F   | F   |      | _                 | _                | _        |          |          | F                   | F    |      | <u> </u> | <u> </u>           |      |          |      |      | F   | F   | _    |          | _                |       |      |      |      | G    | G     |          | _    | _                  | <u> </u> | _    | igspace        | $\square$       |
| 0.470 474                       | F   | F   |      | <u> </u>          | <u> </u>         | <u> </u> |          |          | F                   | F    |      |          | <u> </u>           |      |          |      |      | F   | F   |      |          | <u> </u>         |       |      |      |      | G    | G     |          | _    | _                  |          |      | igspace        |                 |
| 0.560 564                       | G   | G   |      | -                 | -                | -        | <u> </u> | <u> </u> | G                   | G    |      | -        | _                  | _    |          |      |      | F   | F   |      | _        | <u> </u>         | _     | _    |      |      | G    | G     |          | -    | -                  | <u> </u> | _    | igspace        | $\vdash \vdash$ |
| 0.680 684                       |     |     |      | -                 | -                | -        |          |          | G                   | G    |      | <u> </u> | <u> </u>           |      |          |      |      | G   | G   | _    |          | $\vdash$         |       | _    |      |      |      |       | -        | -    | -                  | -        |      | igspace        | $\vdash$        |
| 0.820 824                       |     |     | -    | -                 | -                | -        |          |          |                     | _    |      | -        | _                  |      | $\vdash$ |      |      | G   | G   |      |          | -                |       | -    | -    |      | _    |       | 1        | -    | _                  | -        | -    | ш              | $\vdash$        |
| 1.000 105                       | 600 | 620 | 1000 | 1500              | 2000             | 2500     | 2000     | 4000     | 600                 | 620  | 1000 | 1500     | 2000               | 2500 | 2000     | 4000 | 5000 | 600 | 620 | 1000 | 1500     | 2000             | 2500  | 2000 | 4000 | 5000 | 600  | 620   | 1000     | 1500 | 2000               | 2500     | 2000 | 4000           | 5000            |
| Voltage (V)  Case Size          | 000 | 030 | 1000 | 18                |                  | 12300    | 3000     | 4000     | 000                 | 030  | 1000 |          |                    |      | 3000     | +000 | 3000 | 000 | 030 | 1000 |          | 2225             |       | 3000 | 4000 | 3000 | 000  | 1 000 | 1000     | 1300 | 3640               |          | 3000 | 4000           | 3000            |
| 0496 3176                       |     |     |      | 10                | 23               |          |          |          |                     | 2220 |      |          |                    |      |          |      |      | 222 | ,   |      |          |                  |       |      |      |      | 3041 | _     |          |      |                    |          |      |                |                 |

| Letter    | Α       | С       | E       | F       | G       | Χ       | 7       |
|-----------|---------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.813   | 1.448   | 1.8034  | 2.2098  | 2.794   | 0.940   | 3.30    |
| Thickness | (0.032) | (0.057) | (0.071) | (0.087) | (0.110) | (0.037) | (0.130) |

## Tin/Lead Termination "B" - 600V to 5000V Applications





**NEW 630V RANGE** 

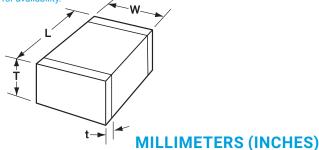
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

#### **HOW TO ORDER**


| LD08        | Α             | Α           | 271                   | K                  | Α               | В              | 1             | Α            |
|-------------|---------------|-------------|-----------------------|--------------------|-----------------|----------------|---------------|--------------|
| $\top$      | T             | Ţ           | T                     | T                  | T               | Ţ              | T             | T            |
| AVX         | Voltage       | Temperature | Capacitance           | Capacitance        | Test Level      | Termination*   | Packaging     | Special      |
|             | 600V/630V = C | Coefficient | Code                  | Tolerance          | A = Standard    | B = 5% Min Pb  | 2 = 7" Reel** | Code         |
| LD05 - 0805 | 1000V = A     | COG = A     | (2 significant digits | COG: $J = \pm 5\%$ | 4 = Automotive* | X = FLEXITERM® | 4 = 13" Reel  | A = Standard |
| LD06 - 1206 | 1500V = S     | X7R = C     | + no. of zeros)       | $K = \pm 10\%$     |                 | 5% min. Pb*    |               |              |
| LD10 - 1210 | 2000V = G     |             | Examples:             | $M = \pm 20\%$     |                 |                |               |              |
| LD08 - 1808 | 2500V = W     |             | 10 pF = 100           | X7R: K = ±10%      |                 |                |               |              |
| LD12 - 1812 | 3000V = H     |             | 100 pF = 100          | $M = \pm 20\%$     |                 |                |               |              |
| LD13 - 1825 | 4000V = J     |             | 1.000 pF = 101        | Z = +80%, -2       | 20%             |                |               |              |
| LD20 - 2220 | 5000V = K     |             | , p                   | , -                |                 |                |               |              |
| LD14 - 2225 | 22301 10      |             | 22,000 pF = 223       |                    |                 |                |               |              |
| LD40 - 3640 |               |             | 220,000 pF = 224      |                    |                 |                |               |              |
| ***         |               |             | 1 μF =105             |                    |                 |                |               |              |

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

- \* FLEXITERM is not available in the LD40 Style
- \*\* The LD40 Style is not available on 7" Reels.
- \*\*\* AVX offers nonstandard chip sizes. Contact factory for details...

\* Not all values are supported in Automotive grade. Please contact factory for availability.





#### **DIMENSIONS**

| SIZE                   | LD05 (0805)     | LD06 (1206)     | LD10* (1210)     | LD08* (1808)    | LD12* (1812)    | LD13* (1825)    | LD20* (2220)    | LD14* (2225)    | LD40* (3640)    |
|------------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (L) Length             | 2.10 ± 0.20     | 3.30 ± 0.30     | 3.30 ± 0.40      | 4.60 ± 0.50     | 4.60 ± 0.50     | 4.60 ± 0.50     | 5.70 ± 0.50     | 5.70 ± 0.50     | 9.14 ± 0.25     |
|                        | (0.083 ± 0.008) | (0.130 ± 0.012) | (0.130 ± 0.016)  | (0.181 ± 0.020) | (0.181 ± 0.020) | (0.181 ± 0.020) | (0.224 ± 0.020) | (0.224 ± 0.020) | (0.360 ± 0.010) |
| (W) Width              | 1.25 ± 0.20     | 1.60 ± 0.20     | 2.50 ± 0.30      | 2.00 ± 0.20     | 3.20 ± 0.30     | 6.30 ± 0.40     | 5.00 ± 0.40     | 6.30 ± 0.40     | 10.2 ± 0.25     |
|                        | (0.049 ± 0.008) | (0.063 ± 0.008) | ( 0.098 ± 0.012) | (0.079 ± 0.008) | (0.126 ± 0.012) | (0.248 ± 0.016) | (0.197 ± 0.016) | (0.248 ± 0.016) | (0.400 ± 0.010) |
| (T) Thickness Max.     | 1.35            | 1.80            | 2.80             | 2.20            | 2.80            | 3.40            | 3.40            | 3.40            | 2.54            |
|                        | (0.053)         | (0.071)         | (0.110)          | (0.087)         | (0.110)         | (0.134)         | (0.134)         | (0.134)         | (0.100)         |
| (t) terminal min. max. | 0.50 ± 0.20     | 0.60 ± 0.20     | 0.75 ± 0.35      | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.85 ± 0.35     | 0.85 ± 0.35     | 0.76 (0.030)    |
|                        | (0.020 ± 0.008) | (0.024 ± 0.008) | (0.030 ± 0.014)  | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.033 ± 0.014) | (0.033 ± 0.014) | 1.52 (0.060)    |

<sup>\*</sup>Reflow Soldering Only

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.





# Tin/Lead Termination "B" - 600V to 5000V Applications

### NP0 (C0G) Dielectric

#### Performance Characteristics

| Capacitance Range                          | 10 pF to 0.047 μF                                                         |
|--------------------------------------------|---------------------------------------------------------------------------|
| Сараспансе кануе                           | (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)                    |
| Capacitance Tolerances                     | ±5%, ±10%, ±20%                                                           |
| Dissipation Factor                         | 0.1% max. (+25°C, 1.0 $\pm$ 0.2 Vrms, 1kHz, for $\leq$ 1000 pF use 1 MHz) |
| Operating Temperature Range                | -55°C to +125°C                                                           |
| Temperature Characteristic                 | 0 ±30 ppm/°C (0 VDC)                                                      |
| Voltage Ratings                            | 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)          |
| Insulation Resistance (+25°C, at 500 VDC)  | 100K MΩ min. or 1000 MΩ - μF min., whichever is less                      |
| Insulation Resistance (+125°C, at 500 VDC) | 10K MΩ min. or 100 MΩ - μF min., whichever is less                        |
| Dielectric Strength                        | Minimum 120% rated voltage for 5 seconds at 50 mA max. current            |

#### **HIGH VOLTAGE COG CAPACITANCE VALUES**

| VOLTA   | <b>IGE</b> | LD05 (0805) | LD06 (1206) | LD10 (1210) | LD08 (1808) | LD12 (1812) | LD13 (1825) | LD20 (2220) | LD14 (2225) | LD40 (3640) |
|---------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 600/630 | min.       | 10 pF       | 10 pF       | 100 pF      | 100 pF      | 100 pF      | 1000 pF     | 1000 pF     | 1000 pF     | 1000 pF     |
| 000/030 | max.       | 330 pF      | 1200 pF     | 2700 pF     | 3300 pF     | 5600 pF     | 0.012 μF    | 0.012 pF    | 0.018 μF    | 0.047 μF    |
| 1000    | min.       | 10 pF       | 10 pF       | 10 pF       | 100 pF      | 100 pF      | 100 pF      | 1000 pF     | 1000 pF     | 1000 pF     |
| 1000    | max.       | 180 pF      | 560 pF      | 1500 pF     | 2200 pF     | 3300 pF     | 8200 pF     | 0.010 pF    | 0.010 μF    | 0.022 μF    |
| 1500    | min.       | _           | 10 pF       | 10 pF       | 10 pF       | 10 pF       | 100 pF      | 100 pF      | 100 pF      | 100 pF      |
| 1300    | max.       | _           | 270 pF      | 680 pF      | 820 pF      | 1800 pF     | 4700 pF     | 4700 pF     | 5600 pF     | 0.010 μF    |
| 2000    | min.       | _           | 10 pF       | 10 pF       | 10 pF       | 10 pF       | 100 pF      | 100 pF      | 100 pF      | 100 pF      |
| 2000    | max.       | _           | 120 pF      | 270 pF      | 330 pF      | 1000 pF     | 1800 pF     | 2200 pF     | 2700 pF     | 6800 pF     |
| 2500    | min.       | _           | _           | _           | 10 pF       | 10 pF       | 10 pF       | 100 pF      | 100 pF      | 100 pF      |
| 2300    | max.       | _           | _           | _           | 180 pF      | 470 pF      | 1200 pF     | 1500 pF     | 1800 pF     | 3900 pF     |
| 3000    | min.       | _           | _           | _           | 10 pF       | 10 pF       | 10 pF       | 10 pF       | 10 pF       | 100 pF      |
| 3000    | max.       | _           | _           | _           | 120 pF      | 330 pF      | 820 pF      | 1000 pF     | 1200 pF     | 2700 pF     |
| 4000    | min.       | _           | _           | _           | 10 pF       | 10 pF       | 10 pF       | 10 pF       | 10 pF       | 100 pF      |
| 4000    | max.       | _           | _           | _           | 47 pF       | 150 pF      | 330 pF      | 470 pF      | 560 pF      | 1200 pF     |
| 5000    | min.       | _           |             |             | _           | _           | _           | 10 pF       | 10 pF       | 10 pF       |
| 3000    | max.       | _           |             |             | _           | _           | _           | 220 pF      | 270 pF      | 820 pF      |

#### **X7R Dielectric**

#### **Performance Characteristics**

| Capacitance Range                          | 10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)                     |
|--------------------------------------------|--------------------------------------------------------------------|
| Capacitance Tolerances                     | ±10%; ±20%; +80%, -20%                                             |
| Dissipation Factor                         | 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)                             |
| Operating Temperature Range                | -55°C to +125°C                                                    |
| Temperature Characteristic                 | ±15% (0 VDC)                                                       |
| Voltage Ratings                            | 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)   |
| Insulation Resistance (+25°C, at 500 VDC)  | 100K MΩ min. or 1000 MΩ - μF min., whichever is less               |
| Insulation Resistance (+125°C, at 500 VDC) | 10K M $\Omega$ min. or 100 M $\Omega$ - μF min., whichever is less |
| Dielectric Strength                        | Minimum 120% rated voltage for 5 seconds at 50 mA max. current     |

#### **HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES**

| VOLTA   | <b>IGE</b> | 0805    | 1206     | 1210     | 1808     | 1812     | 1825     | 2220     | 2225     | 3640     |
|---------|------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|
| 600/630 | min.       | 100 pF  | 1000 pF  | 1000 pF  | 1000 pF  | 1000 pF  | 0.010 µF | 0.010 μF | 0.010 µF | 0.010 μF |
| 000/030 | max.       | 6800 pF | 0.022 μF | 0.056 μF | 0.068 µF | 0.120 µF | 0.390 µF | 0.270 μF | 0.330 μF | 0.560 μF |
| 1000    | min.       | 100 pF  | 100 pF   | 1000 pF  | 1000 pF  | 1000 pF  | 1000 pF  | 1000 pF  | 1000 pF  | 0.010 μF |
| 1000    | max.       | 1500 pF | 6800 pF  | 0.015 µF | 0.018 µF | 0.039 µF | 0.100 µF | 0.120 μF | 0.150 μF | 0.220 µF |
| 1500    | min.       | _       | 100 pF   | 100 pF   | 100 pF   | 100 pF   | 1000 pF  | 1000 pF  | 1000 pF  | 1000 pF  |
| 1500    | max.       | _       | 2700 pF  | 5600 pF  | 6800 pF  | 0.015 µF | 0.056 µF | 0.056 μF | 0.068 µF | 0.100 µF |
| 2000    | min.       | _       | 10 pF    | 100 pF   | 100 pF   | 100 pF   | 100 pF   | 1000 pF  | 1000 pF  | 1000 pF  |
| 2000    | max.       | _       | 1500 pF  | 3300 pF  | 3300 pF  | 8200 pF  | 0.022 µF | 0.027 µF | 0.033 µF | 0.027 µF |
| 2500    | min.       | _       | _        | _        | 10 pF    | 10 pF    | 100 pF   | 100 pF   | 100 pF   | 1000 pF  |
| 2500    | max.       | _       | _        | _        | 2200 pF  | 5600 pF  | 0.015 µF | 0.018 μF | 0.022 µF | 0.022 μF |
| 3000    | min.       | _       | -        | -        | 10 pF    | 10 pF    | 100 pF   | 100 pF   | 100 pF   | 1000 pF  |
| 3000    | max.       | _       | _        | _        | 1800 pF  | 3900 pF  | 0.010 µF | 0.012 µF | 0.015 µF | 0.018 µF |
| 4000    | min.       | -       | -        | -        | -        | -        | -        | -        | -        | 100 pF   |
| 4000    | max.       | _       | _        | _        | _        | _        | _        | _        | _        | 6800 pF  |
| 5000    | min.       | _       |          |          | _        | -        | -        | -        | -        | 100 pF   |
| 5000    | max.       | _       | _        | _        | _        | _        | _        | _        | _        | 3300 pF  |



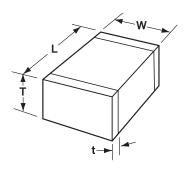
### FLEXITERM® - 600V to 5000V Applications





High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

#### **HOW TO ORDER**

| 1808                                                                         | <b>A</b><br>                                                                                                        | <u>C</u>                                         | <u>272</u>                                                                                                                                                                     | <u>K</u>                                                                                                           | <u>A</u>   | <b>z</b><br>                                     | 1                                               | <u>A</u>                        |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|-------------------------------------------------|---------------------------------|
| AVX<br>Style<br>0805<br>1206<br>1210<br>1808<br>1812<br>1825<br>2220<br>2225 | Voltage<br>600V/630V = C<br>1000V = A<br>1500V = S<br>2000V = G<br>2500V = W<br>3000V = H<br>4000V = J<br>5000V = K | Temperature<br>Coefficient<br>COG = A<br>X7R = C | Capacitance Code<br>(2 significant digits<br>+ no. of zeros)<br>Examples:<br>10 pF = 100<br>100 pF = 101<br>1,000 pF = 102<br>22,000 pF = 223<br>220,000 pF = 224<br>1 µF =105 | Capacitance<br>Tolerance<br>COG: J = ±5%<br>K = ±10%<br>M = ±20%<br>X7R: K = ±10%<br>M = ±20%<br>Z = +80%,<br>-20% | Test Level | Termination* Z=FLEXITERM® 100%Tin (RoHS Complian | Packaging<br>2 = 7" Reel<br>4 = 13" Reel<br>nt) | Special<br>Code<br>A = Standard |

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

<sup>\*\*\*</sup> AVX offers nonstandard chip sizes. Contact factory for details.





#### **DIMENSIONS**

#### **MILLIMETERS (INCHES)**

| SIZE              | 0805            | 1206                                         | 1210*           | 1808*           | 1812*           | 1825*           | 2220*           | 2225*           |
|-------------------|-----------------|----------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (L) Length        | 2.10 ± 0.20     | 3.30 ± 0.30                                  | 3.30 ± 0.40     | 4.60 ± 0.50     | 4.60 ± 0.50     | 4.60 ± 0.50     | 5.70 ± 0.50     | 5.70 ± 0.50     |
|                   | (0.083 ± 0.008) | (0.130 ± 0.012)                              | (0.130 ± 0.016) | (0.181 ± 0.020) | (0.181 ± 0.020) | (0.181 ± 0.020) | (0.224 ± 0.020) | (0.224 ± 0.020) |
| (W) Width         | 1.25 ± 0.20     | 1.60 <sup>+0.30</sup>                        | 2.50 ± 0.30     | 2.00 ± 0.20     | 3.20 ± 0.30     | 6.30 ± 0.40     | 5.00 ± 0.40     | 6.30 ± 0.40     |
|                   | (0.049 ±0.008)  | (0.063 <sup>+0.012</sup> <sub>-0.004</sub> ) | (0.098 ± 0.012) | (0.079 ± 0.008) | (0.126 ± 0.012) | (0.248 ± 0.016) | (0.197 ± 0.016) | (0.248 ± 0.016) |
| (T) Thickness     | 1.35            | 1.80                                         | 2.80            | 2.20            | 2.80            | 3.40            | 3.40            | 3.40            |
| Max.              | (0.053)         | (0.071)                                      | (0.110)         | (0.087)         | (0.110)         | (0.134)         | (0.134)         | (0.134)         |
| (t) terminal min. | 0.50 ± 0.20     | 0.60 ± 0.20                                  | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.75 ± 0.35     | 0.85 ± 0.35     | 0.85 ± 0.35     |
|                   | (0.020 ± 0.008) | (0.024 ± 0.008)                              | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.030 ± 0.014) | (0.033 ± 0.014) | (0.033 ± 0.014) |

<sup>\*</sup>Reflow Soldering Only



Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci
Custom values, ratings and configurations are also available.

# FLEXITERM® - 600V to 5000V Applications

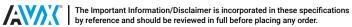


# NP0 (COG) Dielectric Performance Characteristics

| Capacitance Range                          | 10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)                   |
|--------------------------------------------|------------------------------------------------------------------|
| Capacitance Tolerances                     | ±5%, ±10%, ±20%                                                  |
| Dissipation Factor                         | 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)                           |
| Operating Temperature Range                | -55°C to +125°C                                                  |
| Temperature Characteristic                 | 0 ±30 ppm/°C (0 VDC)                                             |
| Voltage Ratings                            | 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) |
| Insulation Resistance (+25°C, at 500 VDC)  | 100K MΩ min. or 1000 MΩ - μF min., whichever is less             |
| Insulation Resistance (+125°C, at 500 VDC) | 10K MΩ min. or 100 MΩ - μF min., whichever is less               |
| Dielectric Strength                        | Minimum 120% rated voltage for 5 seconds at 50 mA max. current   |

### **NP0 (C0G) CAPACITANCE RANGE** PREFERRED SIZES ARE SHADED

| LFERRED                      | <u>J</u>                               | ZLJ                      | AI         | 1206 1210 |          |                     |            |        |          |             |                    |            |        | 1000     |        |        |        |                   |        |                                                  |      |        |        |      |                       |                   |       |      |                 |  |
|------------------------------|----------------------------------------|--------------------------|------------|-----------|----------|---------------------|------------|--------|----------|-------------|--------------------|------------|--------|----------|--------|--------|--------|-------------------|--------|--------------------------------------------------|------|--------|--------|------|-----------------------|-------------------|-------|------|-----------------|--|
| Case Size                    |                                        | 0805                     |            |           |          | 1206                |            |        |          |             | 1210               |            |        |          |        |        | 18     | 308               |        |                                                  |      |        |        |      | 18                    | 12                |       |      |                 |  |
| Soldering                    |                                        | eflow/W                  |            |           |          | low/W               |            |        |          |             | flow 0             |            |        |          |        |        |        | w Only            |        |                                                  |      |        |        |      | Reflov                |                   |       |      |                 |  |
| (L) Length mm (in.)          | (0                                     | 2.10 ± 0.1<br>.083 ± 0.1 | 20         | ł         |          | 30 ± 0.<br>30 ± 0.  |            |        |          | 3.1<br>(0.1 | 30 ± 0.<br>30 ± 0. | 40<br>016) |        |          |        |        | 4.60   | ± 0.50<br>± 0.020 | ))     |                                                  |      |        |        | ,    | 4.60 ± 0.181 ±        |                   | )     |      |                 |  |
| W) Width mm                  | $\mathbf{T}$                           | 1.25 ± 0.3               | 20         |           | 1.60     | ± 0.30/             | /-0.10     |        | ļ        | 2.          | 50 ± 0.            | 30         |        |          |        |        | 2.00   | ± 0.20            |        |                                                  |      |        |        |      | 3.20 ±                | ₹ 0.30            |       |      |                 |  |
| / (In.)                      | (0                                     | 1.35                     | 008)       | (         | 0.063 :  | ± 0.012<br>1.80     | /-0.004    | 1)     | -        | (0.0        | 98 ± 0.<br>2.80    | 012)       |        |          |        | - (    |        | ± 0.008           | 3)     |                                                  |      |        |        | (    | 0.126 <u>±</u><br>2.8 |                   | )     |      |                 |  |
| (in.)                        | ــــــــــــــــــــــــــــــــــــــ | (0.053)                  |            |           |          | (0.071)             |            |        | <u> </u> |             | (0.110)            |            |        |          |        |        | (0.0   | 087)              |        |                                                  |      |        |        |      | (0.1                  | 10)               |       |      |                 |  |
| (t) Terminal mm<br>max       | (0                                     | 0.50 ± 0.<br>.020 ± 0.   | 20<br>008) |           | (0.0     | .60 ± 0.<br>24 ± 0. | 20<br>008) |        |          |             | 75 ± 0.<br>30 ± 0. |            |        |          |        |        |        | ± 0.35<br>± 0.014 | 1)     |                                                  |      |        |        | (    | 0.75 ±<br>0.030 ±     | E 0.35<br>E 0.014 | )     |      |                 |  |
| Voltage (V)                  | 600                                    | 0 630                    |            | 600       | 630      | 1000                | 1500       |        | 600      | 630         | 1000               | 1500       | 2000   | 600      | 630    | 1000   | 1500   | 2000              | 2500   | 3000                                             | 4000 | 600    | 630    | 1000 | 1500                  | 2000              | 2500  | 3000 | 4000            |  |
| Cap (pF) 1.5 1R<br>1.8 1R    |                                        |                          |            | X         | X        | X                   | X          | X      | -        |             |                    |            |        |          |        |        |        |                   |        |                                                  |      |        |        |      |                       |                   |       |      | $\vdash$        |  |
| 2.2 2R                       |                                        |                          |            | X         | X        | X                   | X          | X      |          |             |                    |            |        |          |        |        |        |                   |        |                                                  |      |        |        |      |                       |                   |       |      |                 |  |
| 2.7 2R                       |                                        |                          | _          | X         | X        | X                   | X          | X      |          |             |                    |            |        |          |        | С      | С      | С                 | С      | C                                                |      |        |        |      |                       |                   |       |      | $\vdash$        |  |
| 3.3 3R<br>3.9 3R             |                                        |                          |            | X         | X        | X                   | X          | X      | <u> </u> |             |                    |            |        |          |        | C      | C      | C                 | C      | C                                                |      |        |        |      |                       |                   |       |      | $\vdash$        |  |
| 4.7 4R                       | 7 A                                    | Α                        |            | Х         | Х        | Х                   | Х          | Х      |          |             |                    |            |        |          |        | С      | С      | С                 | С      | С                                                |      |        |        |      |                       |                   |       |      |                 |  |
| 5.6 5R<br>6.8 6R             |                                        |                          |            | X         | X        | X                   | X          | X      | <u> </u> |             |                    |            |        |          |        | С      | С      | С                 | С      | С                                                |      |        |        |      |                       |                   |       |      | $\vdash$        |  |
| 6.8 6R<br>8.2 8R             |                                        |                          |            | X         | X        | X                   | X          | X      | -        |             |                    |            |        |          |        | C      | C      | C                 | C      | C                                                |      |        |        |      |                       |                   |       |      | $\vdash$        |  |
| 10 10                        | 0 A                                    | Α                        | Α          | Х         | Х        | Х                   | Χ          | Х      | С        | С           | D                  | D          | D      | С        | С      | С      | С      | С                 | С      | С                                                | С    | С      | С      | С    | С                     | С                 | С     | С    | Е               |  |
| 12 12<br>15 15               |                                        |                          | A          | X         | X        | X                   | X          | X      | C        | C           | D<br>D             | D<br>D     | D<br>D | C<br>C   | C      | C      | C      | C                 | C      | C                                                | C    | C      | C      | C    | C                     | C                 | C     | C    | E               |  |
| 18 18                        |                                        |                          | A          | X         | X        | X                   | X          | X      | C        | С           | D                  | D          | D      | C        | С      | C      | C      | C                 | C      | C                                                | C    | С      | C      | C    | С                     | С                 | C     | C    | E               |  |
| 22 22                        |                                        |                          | Α          | Х         | Х        | Х                   | Х          | Х      | С        | С           | D                  | D          | D      | С        | С      | С      | С      | С                 | С      | С                                                | С    | С      | С      | С    | С                     | С                 | С     | С    | Е               |  |
| 27 27<br>33 33               |                                        |                          | A          | X         | X        | X                   | X<br>D     | X<br>D | C        | C           | D<br>D             | D<br>D     | D<br>D | C        | C      | C      | C      | C                 | C      | C                                                | C    | C      | C      | C    | C                     | C                 | C     | C    | E               |  |
| 39 39                        | 0 A                                    |                          | A          | X         | X        | Х                   | D          | D      | С        | С           | D                  | D          | D      | С        | C      | C      | C      | С                 | С      | C                                                | С    | С      | C      | C    | С                     | С                 | C     | C    | E               |  |
| 47 47                        |                                        |                          | Α          | Х         | Х        | М                   | D          | D      | С        | С           | D                  | D          | D      | С        | С      | С      | С      | С                 | С      | С                                                | С    | С      | С      | С    | С                     | С                 | С     | С    | Е               |  |
| 56 56<br>68 68               |                                        |                          | A          | X         | X        | M                   | C          | C      | C        | C           | D<br>D             | C          | C      | C        | C      | C      | C      | C                 | C      | C                                                |      | C      | C      | C    | C                     | C                 | C     | C    | F               |  |
| 82 82                        | 0 X                                    |                          | X          | X         | X        | C                   | С          | C      | C        | С           | D                  | C          | C      | С        | O      | C      | C      | C                 | C      | C                                                |      | С      | C      | C    | С                     | C                 | C     | C    | F               |  |
| 100 10<br>120 12             |                                        |                          | X          | X         | X        | C                   | С          | C      | С        | С           | C                  | C          | C      | С        | С      | C      | C      | C                 | F      | F                                                |      | С      | C      | С    | С                     | C                 | C     | С    | F               |  |
| 120 12<br>150 15             |                                        |                          | C          | X         | X        | C                   | E          | E      | C        | C           | C                  | C<br>E     | C<br>E | C        | C      | C      | C<br>F | C                 | F      | F                                                |      | C      | C      | C    | C                     | C                 | C     | C    | G<br>G          |  |
| 180 18                       | 1 C                                    | С                        | С          | Х         | Χ        | Е                   | Е          | E      | С        | С           | E                  | Е          | Е      | С        | С      | С      | F      | F                 | F      | F                                                |      | С      | С      | С    | С                     | С                 | F     | F    |                 |  |
| 220 22<br>270 27             | _                                      |                          | _          | C         | X        | E                   | E          | E      | С        | С           | E                  | E          | E      | С        | С      | С      | F      | F                 | F      | F                                                |      | С      | С      | С    | С                     | С                 | F     | F    | Ш               |  |
| 330 33                       |                                        |                          |            | C         | C        | E                   | E          | E      | C        | C           | E                  | E          | E      | C        | C      | C<br>F | F      | F                 | F      | F                                                |      | C      | C      | C    | C<br>F                | C<br>F            | F     | F    | $\vdash$        |  |
| 390 39                       | 1 C                                    | С                        |            | С         | С        | Е                   | Е          | Е      | С        | С           | Е                  | Е          | Е      | С        | С      | F      | F      | F                 | F      | F                                                |      | С      | С      | С    | F                     | F                 | F     | F    |                 |  |
| 470 47<br>560 56             |                                        |                          |            | C         | С        | E                   | Е          | Е      | C        | С           | E<br>F             | E          | E      | С        | С      | F      | F      | F                 | F      | F                                                |      | С      | C      | F    | F                     | F                 | F     | F    | $\vdash$        |  |
| 680 68                       |                                        |                          |            | С         | C        | E                   |            |        | C        | C           | E                  | F          | F      | C<br>C   | C      | F      | F      | F                 |        |                                                  |      | C      | C      | F    | F                     | F                 | G     | G    | $\vdash$        |  |
| 750 75                       | 1 C                                    | С                        |            | Е         | Е        | Е                   |            |        | С        | С           | Е                  | G          | G      | С        | С      | F      | F      | F                 |        |                                                  |      | С      | С      | F    | F                     | F                 | G     | G    |                 |  |
| 820 82<br>1000 10            |                                        | С                        |            | E<br>F    | E        | E                   |            |        | C        | C           | E<br>F             | G          | G      | C        | C      | F      | E<br>F | E                 |        |                                                  |      | C      | C      | F    | F                     | F                 | G     | G    | $\vdash$        |  |
| 1200 12                      |                                        |                          |            | E         | E        |                     |            |        | C        | С           | E                  |            |        | E        | E      | F      | E      | E                 |        |                                                  |      | С      | C      | F    | E                     | E                 |       |      |                 |  |
| 1500 15                      |                                        |                          |            | Е         | Е        |                     |            |        | С        | С           | G                  |            |        | Е        | Е      | F      |        |                   |        |                                                  |      | С      | С      | F    | F                     | F                 |       |      |                 |  |
| 1800 18<br>2200 22           | 2                                      | _                        |            | F         | E        |                     |            |        | C<br>F   | C<br>E      | G                  |            |        | E        | E      | F      |        |                   |        | -                                                |      | C      | C      | F    | G                     | G                 |       |      | $\vdash$        |  |
| 2700 27                      | 2                                      |                          |            | Ē         | E        |                     |            |        | E        | E           |                    |            |        | E        | E      |        |        |                   |        |                                                  |      | С      | C      | E    | G                     | G                 |       |      |                 |  |
| 3300 33                      | 2                                      | _                        |            | Е         | Е        |                     |            |        | E        | E           |                    |            |        | E        | E      |        |        | $\vdash$          |        | $\vdash$                                         |      | С      | С      | F    |                       |                   |       |      | Щ               |  |
| 3900 39<br>4700 47           |                                        |                          |            |           |          |                     |            |        | E        | E           |                    |            |        | E<br>E   | E<br>E |        |        | 1                 | 1      | 1                                                |      | C      | C      | G    |                       |                   |       |      | $\vdash$        |  |
| 5600 56                      | 2                                      |                          |            |           |          |                     |            |        | Е        | Е           |                    |            |        | Ē        | Ē      |        |        |                   |        |                                                  |      | С      | C      |      |                       |                   |       |      |                 |  |
| 6800 68<br>8200 82           |                                        |                          |            |           |          |                     |            |        | <u> </u> |             |                    |            |        | F        | F      |        |        | -                 | -      | -                                                |      | C<br>F | C<br>E |      |                       |                   |       |      | $\vdash\vdash$  |  |
| 8200 82<br>Cap (µF) 0.010 10 |                                        | +                        |            | l —       | $\vdash$ |                     |            |        | $\vdash$ |             |                    |            |        | <u> </u> |        |        |        |                   |        | <del>                                     </del> |      | E      | E      |      |                       |                   |       |      | $\vdash \vdash$ |  |
| 0.012 12                     | _                                      | +                        |            |           |          |                     |            |        |          |             |                    |            |        |          |        |        |        |                   |        |                                                  |      | F      | F      |      |                       |                   |       |      | H               |  |
| 0.015 15                     | _                                      |                          |            |           |          | t                   |            |        |          |             |                    |            |        |          |        | t      | t      | t                 |        | İ                                                |      | G      | G      |      |                       |                   | l –   |      | Н               |  |
| 0.018 18                     | _                                      |                          |            |           |          |                     |            |        |          |             |                    |            |        |          |        |        |        |                   |        |                                                  |      | G      | G      |      |                       |                   |       |      |                 |  |
| 0.022 22                     | _                                      |                          |            |           |          |                     |            |        |          |             |                    |            |        |          |        |        |        |                   |        |                                                  |      |        |        |      |                       |                   |       |      |                 |  |
| 0.033 33                     | _                                      |                          |            |           |          |                     |            |        |          |             |                    |            |        |          |        |        |        |                   |        |                                                  |      |        |        |      |                       |                   |       |      |                 |  |
| 0.047 47                     | _                                      |                          |            |           |          |                     |            |        |          |             |                    |            |        |          |        |        |        |                   | _      | ļ                                                |      |        |        | _    |                       |                   |       |      | $\sqcup$        |  |
| 0.056 56                     | _                                      | _                        |            | <u> </u>  | _        | _                   |            |        |          |             | _                  |            |        |          |        | _      | _      |                   |        |                                                  |      |        |        |      |                       |                   |       |      | $\sqcup$        |  |
| 0.068 68                     | _                                      | +                        |            | <u> </u>  | -        | -                   | <u> </u>   |        | <u> </u> |             | -                  |            |        |          | -      | -      | -      |                   | -      | -                                                |      |        | -      | -    |                       |                   | -     |      | $\vdash\vdash$  |  |
| 0.100 10<br>Voltage (V)      | 600                                    | 0 630                    | 1000       | 600       | 630      | 1000                | 1500       | 2000   | 600      | 630         | 1000               | 1500       | 2000   | 600      | 630    | 1000   | 1500   | 2000              | 2500   | 3000                                             | 4000 | 600    | 630    | 1000 | 1500                  | 2000              | 2500  | 3000 | 4000            |  |
| Case Size                    | 1                                      | 0805                     | 1000       | 000       | , 000    | 1206                | 1000       | 2000   | 000      | 000         | 1210               | 1000       | 12000  | 000      | 000    | 1000   |        | 308               | _ 2000 | 10000                                            | 1000 | 000    | , 000  | 1000 | 18                    |                   | 12000 | 3000 | , 1000          |  |
|                              |                                        |                          |            |           |          |                     |            |        |          |             |                    |            |        |          |        |        |        |                   |        |                                                  |      |        |        |      |                       |                   |       |      |                 |  |






# NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

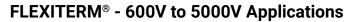
| PERKED 3       | -          | _3        | _        | \ <u>_</u> |          |                     | LU   |          |                                                  | 2220     |     |      |          |             |      |      |                                                  |               | 2225     |              |        |          |         |                                                  |          |                                                  |      |
|----------------|------------|-----------|----------|------------|----------|---------------------|------|----------|--------------------------------------------------|----------|-----|------|----------|-------------|------|------|--------------------------------------------------|---------------|----------|--------------|--------|----------|---------|--------------------------------------------------|----------|--------------------------------------------------|------|
| Case Size      |            |           |          |            |          | 825                 |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         |                                                  |          |                                                  |      |
| Soldering      | nm         |           |          |            |          | ow Only<br>0 ± 0.50 |      |          |                                                  |          |     |      |          | eflow (     |      |      |                                                  |               |          |              |        |          | eflow ( |                                                  |          |                                                  |      |
| (I) Longth     | in.)       |           |          |            |          | 1 ± 0.02            |      |          |                                                  |          |     |      |          | 224 ± 0     |      |      |                                                  |               | ł        |              |        |          | .72 ± 0 |                                                  |          |                                                  |      |
| m              | nm         |           |          |            |          | ) ± 0.40            |      |          |                                                  | l        |     |      |          | .00 ± 0     |      |      |                                                  |               |          |              |        |          | .35 ± 0 |                                                  |          |                                                  |      |
| W) Width (ii   | in.)       |           |          |            |          | 3 ± 0.01            |      |          |                                                  |          |     |      |          | 197 ± 0     |      |      |                                                  |               |          |              |        |          | 250 ± 0 |                                                  |          |                                                  |      |
| (T) Thickness  | nm         |           |          |            | ` ;      | 3.40                |      |          |                                                  |          |     |      |          | 3.40        |      |      |                                                  |               |          |              |        |          | 3.40    |                                                  |          |                                                  |      |
| ` ′ (II        | in.)       |           |          |            |          | .134)               |      |          |                                                  |          |     |      |          | (0.134      |      |      |                                                  |               |          |              |        |          | (0.13   | 4)                                               |          |                                                  |      |
| I (T) Terminal | nm         |           |          |            |          | 5 ± 0.35            |      |          |                                                  |          |     |      |          | $.85 \pm 0$ |      |      |                                                  |               |          |              |        | 0.       | .85 ± 0 | ).35                                             |          |                                                  |      |
| Voltage (V)    | nax        | 600       | 620      | 1000       |          | ± 0.01              | 2500 | 2000     | 4000                                             | 600      | 620 | 1000 |          | )33 ± 0     |      | 2000 | 4000                                             | 5000          | 600      | 630          | 1000   |          |         |                                                  | 3000     | 4000                                             | 5000 |
|                | 1R5        | 000       | 030      | 1000       | 1300     | 2000                | 2300 | 3000     | 4000                                             | 000      | 030 | 1000 | 1300     | 2000        | 2300 | 3000 | 4000                                             | 3000          | 000      | 030          | 1000   | 1300     | 2000    | 2300                                             | 3000     | 4000                                             | 3000 |
|                | 1R8        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         |                                                  |          |                                                  |      |
| 2.2            | 2R2        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         |                                                  |          |                                                  |      |
|                | 2R7        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         |                                                  |          |                                                  |      |
|                | 3R3        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         | <u> </u>                                         |          | <u> </u>                                         |      |
|                | 3R9<br>4R7 | $\vdash$  |          |            |          | -                   |      |          | <u> </u>                                         | ├        |     |      |          |             |      |      |                                                  |               | -        | _            |        | -        |         | ├─                                               |          | <del> </del>                                     |      |
|                | 5R6        | $\vdash$  |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         | $\vdash$                                         |          |                                                  |      |
|                | 6R8        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         | <del>                                     </del> |          |                                                  |      |
|                | 8R2        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               |          |              |        |          |         |                                                  |          |                                                  |      |
|                | 100        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        | Е                                                | Е        | Е   | Е    | Е        | Е           | Е    | Е    | Е                                                | Е             | Е        | Е            | Е      | Е        | Е       | Е                                                | Е        | F                                                | F    |
| 12             | 120        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        | Е                                                | Е        | Е   | Е    | Е        | Е           | Е    | Е    | Е                                                | Е             | Е        | Е            | Е      | Е        | E       | Е                                                | Е        | F                                                | F    |
| 15<br>18       | 150<br>180 | E         | Е        | E          | E        | E                   | E    | E        | E                                                | E        | E   | E    | E        | E           | E    | E    | E                                                | E             | E        | E            | E      | E        | E       | E                                                | E        | F                                                | F    |
|                | 220        | E         | E        | E          | E        | E                   | E    | E        | E                                                | E        | E   | E    | E        | E           | E    | E    | E                                                | E             | E        | E            | E      | E        | E       | E                                                | E        | F                                                | F    |
|                | 270        | E         | E        | E          | E        | E                   | E    | E        | E                                                | E        | Ē   | Ē    | Ē        | E           | Ē    | E    | Ē                                                | E             | E        | Ē            | Ē      | E        | E       | E                                                | Ē        | F                                                | F    |
|                | 330        | E         | E        | E          | E        | E                   | E    | E        | E                                                | Ē        | E   | E    | E        | Е           | E    | E    | E                                                | E             | E        | E            | E      | E        | E       | E                                                | E        | F                                                | F    |
|                | 390        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        | Е                                                | Е        | Е   | Е    | Е        | Е           | Е    | Е    | Е                                                | E E E E E E E |          |              |        |          |         |                                                  | F        | F                                                |      |
|                | 470        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        | F                                                | Е        | Е   | E    | Е        | Е           | Е    | Е    | Е                                                | Е             | Е        | Е            | Е      | Е        | Е       | Е                                                | Е        | F                                                | G    |
|                | 560        | E         | E        | E          | E        | E                   | E    | E        | F                                                | E        | E   | E    | E        | E           | E    | E    | E                                                | E             | E        | E            | E      | E        | E       | E                                                | E        | F                                                | G    |
|                | 680<br>820 | E         | E        | E          | E        | E                   | E    | E        | F                                                | E        | E   | E    | E        | E           | E    | E    | E                                                | E             | E        | E            | E      | E        | E       | E                                                | E        | F                                                | G    |
| 100            | 101        | E         | E        | E          | E        | E                   | E    | E        | F                                                | E        | E   | E    | E        | E           | E    | E    | E                                                | E             | E        | E            | E      | E        | E       | E                                                | E        | G                                                | G    |
| 120            | 121        | E         | E        | E          | Ē        | E                   | E    | E        | F                                                | Ē        | E   | E    | Ē        | Ē           | Ē    | Ē    | Ē                                                | E             | E        | Ē            | Ē      | E        | Ē       | Ē                                                | E        | G                                                | G    |
| 150            | 151        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        | F                                                | Е        | Е   | Е    | Е        | Е           | Е    | Е    | Е                                                | Е             | Е        | Е            | Е      | Е        | Е       | Е                                                | Е        | G                                                | G    |
|                | 181        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        | F                                                | Е        | Е   | Е    | Е        | Е           | Е    | Е    | F                                                | F             | Е        | Е            | Е      | Е        | Е       | Е                                                | Е        | G                                                | G    |
|                | 221        | E         | E        | E          | E        | E                   | E    | E        | F                                                | E        | E   | E    | E        | E           | E    | E    | F                                                | F             | E        | E            | E      | E        | E       | E                                                | E        | G                                                | G    |
|                | 271<br>331 | E         | E        | E          | E        | E                   | E    | E        | F                                                | E        | E   | E    | E        | E           | E    | E    |                                                  |               | E        | E            | E      | E        | E       | E                                                | E        | G                                                | G    |
|                | 391        | E         | E        | E          | E        | Ē                   | E    | Ē        | -                                                | E        | Ē   | Ē    | Ē        | Ē           | Ē    | E    |                                                  |               | E        | Ē            | Ē      | E        | E       | E                                                | Ē        | G                                                |      |
|                | 471        | E         | E        | Ē          | Ē        | Ē                   | Ē    | Ē        |                                                  | Ē        | Ē   | Ē    | Ē        | Ē           | Ē    | Ē    |                                                  |               | E        | Ē            | Ē      | Ē        | Ē       | Ē                                                | Ē        | G                                                |      |
| 560            | 561        | Е         | Е        | Е          | Е        | Е                   | Е    | Е        |                                                  | Е        | Е   | Е    | Е        | Е           | Е    | Е    |                                                  |               | Е        | Е            | Е      | Е        | Е       | Е                                                | Е        | G                                                |      |
|                | 681        | Е         | Е        | Е          | Е        | Е                   | F    | F        |                                                  | Е        | Е   | E    | Е        | Е           | F    | F    |                                                  |               | Е        | Е            | E      | Е        | Е       | Е                                                | Е        |                                                  |      |
|                | 751        | E         | E        | E          | E        | E                   | F    | F        |                                                  | E        | E   | E    | E        | E           | F    | F    |                                                  |               | E        | E            | E      | E        | E       | E                                                | E        |                                                  |      |
|                | 821<br>102 | E         | E        | E          | E        | E                   | F    | F        |                                                  | E        | E   | E    | E        | E           | F    | F    |                                                  |               | E        | E            | E      | E        | E       | F<br>E                                           | E        |                                                  |      |
|                | 122        | E         | E        | E          | E        | E                   | G    | G        |                                                  | E        | Ë   | Ē    | Ē        | E           | G    | G    |                                                  |               | E        | Ē            | E      | E        | E       | F                                                | F        |                                                  |      |
|                | 152        | E         | E        | E          | F        | F                   | G    | G        |                                                  | E        | Ē   | Ē    | F        | F           | G    | G    |                                                  |               | E        | E            | Ē      | Ē        | E       | F                                                | F        |                                                  |      |
| 1800           | 182        | Е         | Е        | Е          | F        | F                   | G    | G        |                                                  | Е        | Е   | Е    | F        | F           | G    | G    |                                                  |               | Е        | Е            | Е      | Е        | Е       | G                                                | G        |                                                  |      |
|                | 222        | E         | Е        | E          | G        | G                   |      |          |                                                  | E        | E   | E    | G        | G           |      |      |                                                  |               | E        | E            | E      | E        | E       | _                                                |          | <u> </u>                                         |      |
|                | 272        | Е         | E        | E          | G        | G                   |      | -        | <u> </u>                                         | E        | E   | E    | G        | G           |      |      |                                                  |               | E        | E            | E      | F        | F       | _                                                |          | ₩                                                |      |
|                | 332<br>392 | E         | E        | E          | G        | G                   |      | $\vdash$ | -                                                | E        | E   | E    | G<br>G   | G<br>G      |      |      | <del>                                     </del> |               | E        | E            | E      | G        | F<br>G  | -                                                |          | <del>                                     </del> | -    |
|                | 472        | E         | E        | E          | G        | G                   |      |          |                                                  | E        | E   | E    | G        | G           |      |      |                                                  |               | F        | F            | F      | G        | G       |                                                  |          |                                                  | 1    |
| 5600           | 562        | F         | F        | F          | G        | G                   |      |          |                                                  | F        | F   | F    |          |             |      |      |                                                  |               | F        | F            | F      | G        | G       |                                                  |          |                                                  |      |
|                | 682        | F         | F        | F          |          |                     |      |          |                                                  | F        | F   | F    |          |             |      |      |                                                  |               | F        | F            | F      | G        | G       |                                                  |          |                                                  |      |
| 8200           |            | G         | G        | Ğ          |          | <u> </u>            |      | _        | ļ                                                | G        | G   | G    |          |             |      |      |                                                  |               | _        | G            | G      | <u> </u> | _       | ₩                                                |          | Ь—                                               |      |
| Cap (μF) 0.010 |            | $\vdash$  | $\vdash$ |            | -        | <u> </u>            | -    | -        | -                                                | $\vdash$ | -   |      |          |             |      |      |                                                  |               | G        | G            | G      | -        | -       | $\vdash$                                         |          | ₩                                                | -    |
| 0.012<br>0.015 |            |           |          |            | $\vdash$ | <b>-</b>            |      | $\vdash$ | <u> </u>                                         | $\vdash$ |     |      | $\vdash$ |             |      |      | $\vdash$                                         |               | G<br>G   | G            | G<br>G | -        |         | <del></del>                                      | $\vdash$ | $\vdash$                                         |      |
| 0.013          |            |           |          |            |          |                     |      |          | <del>                                     </del> | $\vdash$ |     |      |          |             |      |      |                                                  |               | G        | G            | G      |          |         | <u> </u>                                         |          | <del>                                     </del> |      |
| 0.022          |            |           |          |            |          |                     |      |          |                                                  | t        |     |      |          |             |      |      |                                                  |               | G        | G            | G      |          |         | $\vdash$                                         |          |                                                  |      |
| 0.033          | _          |           |          |            |          |                     |      |          |                                                  |          | L   |      |          |             |      |      |                                                  |               | G        | G            | G      |          |         |                                                  |          |                                                  |      |
| 0.047          |            |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               | G        | G            | G      |          |         |                                                  |          |                                                  |      |
| 0.056          |            | $\square$ |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               | G        | G            | G      |          |         | <u> </u>                                         |          | <u> </u>                                         |      |
| 0.068          | 683        |           |          |            |          |                     |      |          |                                                  |          |     |      |          |             |      |      |                                                  |               | G        | G            | G      |          |         |                                                  | l        | oxdot                                            | _    |
|                | 104        | 1 1       |          |            |          |                     | ı    |          |                                                  |          |     |      |          |             | l    |      |                                                  |               |          |              |        |          | ı       |                                                  |          |                                                  |      |
| Voltage (V)    | 104        | 600       | 630      | 1000       | 1500     | 2000                | 2500 | 3000     | 4000                                             | 600      | 630 | 1000 | 1500     | 2000        | 2500 | 3000 | 4000                                             | 5000          | <b>G</b> | <b>G</b> 630 | 1000   | 1500     | 2000    | 2500                                             | 3000     | 4000                                             | 5000 |

| Letter    | A       | C       | E       | F       | G       | X       |
|-----------|---------|---------|---------|---------|---------|---------|
| Max.      | 0.813   | 1.448   | 1.803   | 2.210   | 2.794   | 0.940   |
| Thickness | (0.032) | (0.057) | (0.071) | (0.087) | (0.110) | (0.037) |



# FLEXITERM® - 600V to 5000V Applications

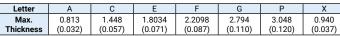



### **X7R Dielectric**

Performance Characteristics

| Capacitance Range                          | 10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)                     |
|--------------------------------------------|--------------------------------------------------------------------|
| Capacitance Tolerances                     | ±10%; ±20%; +80%, -20%                                             |
| Dissipation Factor                         | 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)                             |
| Operating Temperature Range                | -55°C to +125°C                                                    |
| Temperature Characteristic                 | ±15% (0 VDC)                                                       |
| Voltage Ratings                            | 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)   |
| Insulation Resistance (+25°C, at 500 VDC)  | 100K MΩ min. or 1000 MΩ - μF min., whichever is less               |
| Insulation Resistance (+125°C, at 500 VDC) | 10K M $\Omega$ min. or 100 M $\Omega$ - μF min., whichever is less |
| Dielectric Strength                        | Minimum 120% rated voltage for 5 seconds at 50 mA max. current     |

# X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED


| Case Size                   |       | 0805                            |          |          |          | 1206              |           |           |              |          | 1210               |           |           |                                                  |       |      | 10       | 808              |                                                  |          |      |        |       |          | 18                 | 12                |        |        |          |
|-----------------------------|-------|---------------------------------|----------|----------|----------|-------------------|-----------|-----------|--------------|----------|--------------------|-----------|-----------|--------------------------------------------------|-------|------|----------|------------------|--------------------------------------------------|----------|------|--------|-------|----------|--------------------|-------------------|--------|--------|----------|
|                             | -     |                                 |          | -        |          |                   |           |           | <u> </u>     |          |                    |           |           |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |
| Soldering mm                | Re    | eflow/V<br>2.10 0.2             |          |          |          | low/V<br>30 ± 0.  |           |           |              |          | flow 0<br>.30 0.4  |           |           |                                                  |       |      |          | w Only<br>± 0.50 |                                                  |          |      |        |       |          | Reflov<br>4.60     |                   |        |        |          |
| (L) Length (in.)            | (0    | 083 ± 0.                        | (800.    |          | (0.1     | 30 ± 0.           | 012)      |           |              | (0.1     | 30 0.0             | 16)       |           |                                                  |       |      | (0.181   | ± 0.020          | )                                                |          |      |        |       |          | (0.181 :           | ± 0.020           | )      |        |          |
| W) Width mm (in.)           | (0    | 1.25 0.2<br>.049 ± 0.           |          |          |          | +0.30/<br>+0.012  |           | 1)        |              |          | .50 0.3<br>098 0.0 |           |           |                                                  |       |      |          | 0.20<br>± 0.008  | 3)                                               |          |      |        |       |          | : 3.20<br>: 0.126) | ± 0.30<br>+ 0.012 | )      |        |          |
| (T) Thickness mm            |       | 1.35                            |          | T '      |          | 1.80              |           |           |              |          | 2.80               |           |           |                                                  |       |      | 2.       | .20              |                                                  |          |      |        |       |          | 2.                 | 80                | ,      |        |          |
| (III.)                      | +     | (0.053<br>0.50 ± 0.<br>020 ± 0. | 20       |          | 0.       | (0.071<br>60 ± 0. | 20        |           | $\vdash$     | 0        | (0.110)<br>.75 0.3 | 5         |           |                                                  |       |      | 0.75     | 087)<br>± 0.35   |                                                  |          |      |        |       |          | 0.75               | + 0 35            |        |        |          |
| (t) Terrifinal max          |       |                                 |          | 600      | (0.0     | $24 \pm 0$ .      | (800      | 2000      | 600          | (0.0)    | 30 ± 0.0           | J14)      | Inna      | 600                                              | L 600 |      | (0.030)  | ± 0.014          | 2500                                             | 10000    | 1000 | 600    | 1 600 | 11000    | 1500               | ± 0.014           | 10500  |        | 14000    |
| Voltage (V) Cap (pF) 100 10 |       | 630<br>X                        | C        | C        | C        | F                 | 1500<br>E | 2000<br>E | E            | 630<br>E | 1000<br>E          | 1500<br>E | 2000<br>E | 600                                              | 630   | 1000 | 1500     | 2000             | 2500                                             | 3000     | 4000 | 600    | 630   | 1000     | 1500               | 2000              | 2500   | 3000   | 4000     |
| 120 12                      |       | X                               | С        | С        | С        | E                 | E         | E         | E            | E        | E                  | E         | E         |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |
| 150 15                      |       | Х                               | C        | С        | С        | E                 | E         | E         | E            | E        | E                  | E         | E         |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |
| 180 18                      |       | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |
| 220 22                      | 1 X   | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |
| 270 27                      | 1 X   | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         |                                                  |       |      |          |                  |                                                  |          |      | Е      | Е     | Е        | Е                  | Е                 |        |        |          |
| 330 33                      | 1 X   | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | Е                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 |        |        |          |
| 390 39                      | 1 X   | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | Е                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 |        |        |          |
| 470 47                      |       | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | Е                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 | Е      | Е      |          |
| 560 56                      | - ^ - | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 | Е      | Е      |          |
| 680 68                      |       | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 | F      | F      |          |
| 750 75                      |       | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 | F      | F      |          |
| 820 82                      |       | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 | F      | F      |          |
| 1000 10                     |       | Х                               | С        | С        | С        | Е                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | Е                 | F      | F      |          |
| 1200 12                     | - / ( | Х                               | С        | С        | С        | E                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | E                 | F      | F      |          |
| 1500 15                     | - / ( | Х                               | С        | С        | С        | E                 | Е         | Е         | Е            | Е        | Е                  | Е         | Е         | Е                                                | Е     | Е    | Е        | Е                | F                                                | F        |      | Е      | Е     | Е        | Е                  | E                 | G      | G      |          |
| 1800 18<br>2200 22          | _ ^   | X                               |          | С        | С        | E                 | E         | E         | E            | Е        | E                  | E         | E         | Е                                                | E     | E    | E        | E                | F                                                | F        |      | E      | E     | E        | E                  | E                 | G      | G      |          |
| 2700 27                     | - ^ - | X                               |          | С        | С        | E                 | E         | Е         | E            | E        | E                  | F         | E         | E                                                | E     | E    | F        | F                | F                                                |          |      | E      | E     | E        | E                  | E                 | G      | G      |          |
| 3300 33                     |       | X                               |          | С        | С        | E                 | E         |           | E<br>E       | E        | E                  | F         | E         | E                                                | E     | E    | F        | F                |                                                  |          |      | E<br>E | E     | E        | E<br>F             | E                 | G      | G      |          |
| 3900 39                     | - / ( | X                               |          | C        | C        | E                 |           |           | E            | E        | E<br>E             | F<br>G    | E         | E<br>E                                           | E     | E    | F        | -                |                                                  | -        |      | E      | E     | E<br>E   | F                  | F                 | G<br>G | G<br>G |          |
| 4700 47                     | - / ( | X                               |          | С        | С        | E                 |           |           | E            | E        | E                  | G         |           | E                                                | E     | E    | F        |                  |                                                  |          |      | E      | E     | E        | F                  | F                 | G      | G      |          |
| 5600 56                     |       | X                               |          | С        | С        | E                 |           |           | E            | E        | E                  | G         |           | E                                                | E     | E    | F        |                  |                                                  |          |      | E      | E     | E        | G                  | G                 | G      | G      |          |
| 6800 68                     | - / \ | X                               |          | С        | С        | E                 |           |           | E            | E        | E                  | _         |           | F                                                | E     | E    | F        |                  |                                                  |          |      | E      | E     | E        | G                  | G                 |        |        |          |
| 8200 82                     |       | X                               |          | C        | C        | E                 |           |           | E            | E        | E                  |           |           | E                                                | E     | E    |          |                  |                                                  |          |      | E      | E     | E        | G                  | G                 |        |        |          |
| Cap (µF) 0.010 10           |       | С                               |          | С        | С        | E                 |           |           | E            | Е        | E                  |           |           | Е                                                | Е     | E    |          |                  |                                                  |          |      | E      | E     | F        | G                  | G                 |        |        |          |
| 0.015 15                    |       | С                               |          | Е        | Е        | Е                 |           |           | Е            | Е        | Е                  |           |           | F                                                | F     | F    |          |                  |                                                  |          |      | Е      | Е     | F        | G                  |                   |        |        |          |
| 0.018 18                    | 3 C   | С                               |          | Е        | Е        |                   |           |           | Е            | Е        | Е                  |           |           | F                                                | F     | F    |          |                  |                                                  |          |      | Е      | Е     | G        |                    |                   |        |        |          |
| 0.022 22                    | 3 C   | С                               |          | Е        | Е        |                   |           |           | Е            | Е        | Е                  |           |           | F                                                | F     |      |          |                  |                                                  |          |      | Е      | Е     | G        |                    |                   |        |        |          |
| 0.027 27                    |       |                                 |          | Е        | Е        |                   |           |           | Е            | Е        |                    |           |           | F                                                | F     |      |          |                  |                                                  |          |      | Е      | Е     | G        |                    |                   |        |        |          |
| 0.033 33                    | 3     |                                 |          | Е        | Е        |                   |           |           | Е            | Е        |                    |           |           | F                                                | F     |      |          |                  |                                                  |          |      | Е      | Е     | G        |                    |                   |        |        |          |
| 0.039 39                    | 3     |                                 |          |          |          |                   |           |           | Е            | Е        |                    |           |           | F                                                | F     |      |          |                  |                                                  |          |      | Е      | Е     | G        |                    |                   |        |        |          |
| 0.047 47                    | _     |                                 |          |          |          |                   |           |           | Е            | Е        |                    |           |           | F                                                | F     |      |          |                  |                                                  |          |      | Е      | Е     | G        |                    |                   |        |        |          |
| 0.056 56                    | _     | _                               | _        |          | L_       |                   | L_        |           | F            | F        |                    |           |           | F                                                | F     |      |          |                  |                                                  |          |      | F      | F     |          |                    |                   |        |        |          |
| 0.068 68                    | _     |                                 | <u> </u> |          |          |                   |           |           | F            | F        |                    |           |           | F                                                | F     |      | <u> </u> | 1                |                                                  | -        |      | F      | F     |          |                    |                   |        |        | _        |
| 0.082 82                    |       | +                               | <u> </u> | $\vdash$ | _        | _                 | _         |           | F            | F        | ļ                  |           | _         | <u> </u>                                         |       |      | _        | -                | <u> </u>                                         | ļ        |      | F      | F     |          | _                  | _                 | _      |        | <u> </u> |
| 0.100 10                    |       | +                               | <u> </u> | $\vdash$ | <u> </u> |                   | <u> </u>  |           | F            | F        |                    |           | <u> </u>  | <u> </u>                                         |       |      | _        | -                | <u> </u>                                         | <u> </u> |      | F      | F     |          |                    |                   |        |        | <u> </u> |
| 0.150 15                    | -     | +-                              | -        | $\vdash$ | _        | -                 | _         |           | <del> </del> | _        |                    |           |           | <u> </u>                                         |       | -    | -        | -                | -                                                | -        |      | G      | G     |          | -                  | -                 | -      | _      | -        |
| 0.220 22                    | -     | +                               | -        | $\vdash$ | <u> </u> | -                 | <u> </u>  |           | $\vdash$     |          |                    |           | <u> </u>  | <u> </u>                                         |       | -    | -        | -                | -                                                | -        |      | G      | G     |          |                    | -                 | -      |        | -        |
| 0.270 27                    | -     | +                               | -        | $\vdash$ | -        |                   | -         |           | ├            |          |                    |           | <u> </u>  | -                                                |       |      | -        | -                |                                                  | -        |      |        |       | -        |                    |                   |        |        | -        |
| 0.330 33                    | -     | +                               | <u> </u> | $\vdash$ | -        |                   | -         |           | $\vdash$     | -        |                    |           | <u> </u>  | <u> </u>                                         | -     |      | -        | 1                | -                                                | 1        | -    |        | -     | -        |                    |                   |        | -      | -        |
| 0.390 39                    | -     | +                               |          |          |          |                   |           |           | $\vdash$     |          |                    |           |           | <del>                                     </del> |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        | -        |
| 0.560 56                    | _     | +                               |          |          |          |                   |           |           | -            |          |                    |           |           |                                                  |       |      |          | 1                |                                                  | -        |      |        |       | 1        |                    |                   |        |        | $\vdash$ |
| 0.680 68                    | _     | +                               |          |          | <u> </u> |                   | <u> </u>  |           | $\vdash$     |          |                    |           |           |                                                  |       |      |          | $\vdash$         | <del>                                     </del> | -        |      |        |       | $\vdash$ |                    |                   |        |        | 1        |
| 0.820 82                    | _     | +                               |          |          |          |                   |           |           |              |          |                    |           |           |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |
| 1.000 10                    | _     | 1                               |          |          |          |                   |           |           | $\vdash$     |          |                    |           |           |                                                  |       |      |          |                  |                                                  | <u> </u> |      |        |       |          |                    |                   |        |        |          |
| Voltage (V)                 | 600   | 630                             | 1000     | 600      | 630      | 1000              | 1500      | 2000      | 600          | 630      | 1000               | 1500      | 2000      | 600                                              | 630   | 1000 | 1500     | 2000             | 2500                                             | 3000     | 4000 | 600    | 630   | 1000     | 1500               | 2000              | 2500   | 3000   | 4000     |
| Case Size                   |       | 0805                            | 5        |          | 1206     |                   |           |           |              |          | 1210               |           |           |                                                  |       |      | 18       | 808              |                                                  |          |      |        |       |          | 18                 | 12                |        |        |          |
|                             |       |                                 |          |          |          | 1200              |           |           |              |          |                    |           |           |                                                  |       |      |          |                  |                                                  |          |      |        |       |          |                    |                   |        |        |          |





# X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

| Case Size 1825                          |             |                              |                            |        | 2220     |                 |                            |          |                            |     |     | 2225     |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
|-----------------------------------------|-------------|------------------------------|----------------------------|--------|----------|-----------------|----------------------------|----------|----------------------------|-----|-----|----------|------|------------------------------------------------------------|--------------------------------|--------------------------------------------------|----------|--------------------------------|-----|-----|----------|------|------|----------|------|-----------------|------|
| Solderin                                | g           | Reflow Only                  |                            |        |          |                 | Reflow Only                |          |                            |     |     |          |      |                                                            | Reflow Only                    |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| (L) Length                              | mm<br>(in.) |                              | 4.60 0.50<br>(0.181 0.020) |        |          |                 |                            |          | 5.70 0.50<br>(0.224 0.020) |     |     |          |      |                                                            |                                |                                                  |          | 5.72 ± 0.25<br>(0.225 ± 0.010) |     |     |          |      |      |          |      |                 |      |
| W) Width                                | mm<br>(in.) | 6.30 0.40<br>(0.248 ± 0.016) |                            |        |          |                 | 5.00 0.40<br>(0.197 0.016) |          |                            |     |     |          |      |                                                            | 6.35 ± 0.25<br>(0.250 ± 0.010) |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| (T)                                     | mm          | 3.40                         |                            |        |          |                 |                            | 3.40     |                            |     |     |          |      |                                                            |                                | 2.54                                             |          |                                |     |     |          |      |      |          |      |                 |      |
| Thickness                               | (in.)<br>mm | (0.134)<br>0.75 0.35         |                            |        |          | _               | (0.134)<br>0.85 0.35       |          |                            |     |     |          |      |                                                            | (0.100)<br>0.85 ± 0.35         |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| (t) Terminal                            | max         | (0.030 ± 0.014)              |                            |        |          | (0.033 ± 0.014) |                            |          |                            |     |     |          |      | 600   630   1000   1500   2000   2500   3000   4000   5000 |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| Voltage (<br>Cap (pF) 100               | 101         | 600                          | 630                        | 1000   | 1500     | 2000            | 2500                       | 3000     | 4000                       | 600 | 630 | 1000     | 1500 | 2000                                                       | 2500                           | 3000                                             | 4000     | 5000                           | 600 | 630 | 1000     | 1500 | 2000 | 2500     | 3000 | 4000            | 5000 |
| 120                                     |             | $\vdash$                     |                            |        |          |                 |                            |          | _                          |     | _   | _        |      |                                                            |                                |                                                  | $\vdash$ |                                | _   |     |          |      |      |          |      | $\vdash$        |      |
| 150                                     |             | $\vdash$                     |                            |        |          |                 |                            |          | _                          |     |     | _        |      |                                                            |                                |                                                  | $\vdash$ |                                | _   |     |          |      |      |          |      | $\vdash$        |      |
| 180                                     |             |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 220                                     |             |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 270                                     |             |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 330                                     | 331         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      | $\Box$          |      |
| 390                                     | 391         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 470                                     | 471         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 560                                     | 561         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 680                                     | 681         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 750                                     | 751         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 820                                     | 821         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| 1000                                    | 102         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 1200                                    | 122         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 1500                                    | 152         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 1800                                    | 182         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 2200                                    |             | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 2700                                    | 272         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 3300                                    | 332         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 3900                                    | 392         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 4700                                    |             | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 5600                                    | 562         | F                            | F                          | F      | F        | F               | F                          | F        |                            | F   | F   | F        | F    | F                                                          | F                              | G                                                |          |                                | F   | F   | F        | F    | F    | F        | F    |                 |      |
| 6800                                    |             | F                            | F                          | F      | G        | G               | G                          | G        |                            | F   | F   | F        | F    | F                                                          | G                              | G                                                |          |                                | F   | F   | F        | F    | F    | G        | G    |                 |      |
| 8200                                    | 822         | F                            | F                          | F      | G        | G               | G                          | G        |                            | F   | F   | F        | G    | G                                                          | G                              | G                                                |          |                                | F   | F   | F        | F    | F    | G        | G    |                 |      |
| Cap (µF) 0.010                          |             | F                            | F                          | F      | G        | G               | G                          | G        |                            | F   | F   | F        | G    | G                                                          | G                              | G                                                |          |                                | F   | F   | F        | F    | F    | G        | G    |                 |      |
| 0.015                                   | 153         | F                            | F                          | F      | G        | G               | G                          |          |                            | F   | F   | F        | G    | G                                                          | G                              |                                                  |          |                                | F   | F   | F        | G    | G    | G        | G    |                 |      |
| 0.018                                   |             | F                            | F                          | F      | G        | G               |                            |          |                            | F   | F   | F        | G    | G                                                          | G                              |                                                  |          |                                | F   | F   | F        | G    | G    | G        |      | $\vdash \vdash$ |      |
| 0.022                                   |             | F                            | F                          | F      | G        | G               |                            |          |                            | F   | F   | F        | G    | G                                                          |                                |                                                  |          |                                | F   | F   | F        | G    | G    | G        |      | ш               |      |
| 0.027                                   | 273         | F                            | F                          | F      | G        |                 |                            |          |                            | F   | F   | F        | G    | G                                                          |                                |                                                  |          |                                | F   | F   | F        | G    | G    |          |      | $\vdash$        |      |
| 0.033                                   |             | F                            | F                          | F      | G        |                 |                            |          |                            | F   | F   | F        | G    |                                                            |                                |                                                  |          |                                | F   | F   | F        | G    | G    | _        |      | $\vdash \vdash$ |      |
| 0.039                                   | 393         | F                            | F                          | F      | G        |                 |                            | <u> </u> |                            | F   | F   | F        | G    |                                                            |                                | _                                                | _        |                                | F   | F   | F        | G    |      | -        |      | $\vdash \vdash$ |      |
| 0.047                                   | 473         | F                            | F                          | F      | Р        |                 | $\vdash$                   |          |                            | F   | F   | F        | G    | -                                                          |                                | _                                                |          | <u> </u>                       | F   | F   | F        | G    |      | -        |      | $\vdash$        |      |
| 0.056                                   | 563         | F                            | F                          | F      | G        |                 |                            |          |                            | F   | F   | F        | G    |                                                            |                                | -                                                |          | $\vdash$                       | F   | F   | F        | G    |      | -        |      | $\vdash$        |      |
| 0.068                                   | 683         | F                            | F                          | G      | $\vdash$ |                 | $\vdash$                   | <u> </u> |                            | F   | F   | G        |      |                                                            |                                | -                                                |          | $\vdash$                       | F   | F   | F        | G    |      | -        |      | $\vdash$        |      |
| 0.082                                   | 823<br>104  | F                            | F<br>F                     | G<br>G | $\vdash$ |                 |                            |          |                            | F   | F   | G<br>G   |      |                                                            |                                |                                                  |          |                                | F   | F   | G<br>G   | -    |      | -        |      | $\vdash$        |      |
| 0.100                                   |             | F                            | F                          | G      |          |                 | $\vdash$                   |          |                            | F   | F   | G        |      | -                                                          |                                | -                                                |          | $\vdash$                       | F   | F   | G        |      |      | -        |      | $\vdash$        |      |
| 0.130                                   | 224         | F                            | F                          |        |          |                 |                            |          |                            | F   | F   | G        |      |                                                            |                                |                                                  |          |                                | F   | F   | G        |      |      |          |      | $\vdash$        |      |
| 0.220                                   | 274         | F                            | F                          |        |          |                 |                            |          |                            | F   | F   | 9        |      |                                                            |                                |                                                  |          |                                | F   | F   |          |      |      |          |      | $\vdash$        |      |
| 0.330                                   | 334         | F                            | F                          |        |          |                 |                            |          |                            | F   | F   | <u> </u> |      |                                                            |                                | <del>                                     </del> |          |                                | F   | F   |          | -    |      | <u> </u> |      | $\vdash$        |      |
| 0.390                                   | 394         | F                            | F                          |        |          |                 | $\vdash$                   |          |                            | F   | F   | $\vdash$ |      |                                                            |                                |                                                  |          |                                | F   | F   | $\vdash$ |      |      | $\vdash$ |      | $\vdash$        |      |
| 0.470                                   |             | F                            | F                          |        |          |                 |                            |          |                            | F   | F   |          |      |                                                            |                                |                                                  |          |                                | F   | F   |          |      |      |          |      |                 |      |
| 0.560                                   | 564         | G                            | G                          |        |          |                 |                            |          |                            | G   | G   |          |      |                                                            |                                |                                                  |          |                                | F   | F   |          |      |      |          |      |                 |      |
| 0.680                                   |             |                              |                            |        |          |                 |                            |          |                            | G   | G   |          |      |                                                            |                                |                                                  |          |                                | G   | G   |          |      |      |          |      | $\Box$          |      |
| 0.820                                   | 824         |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                | G   | G   | П        |      |      | 1        |      | $\Box$          |      |
| 1.000                                   |             |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |
| Voltage (                               | V)          | 600                          | 630                        | 1000   | 1500     | 2000            | 2500                       | 3000     | 4000                       | 600 | 630 | 1000     | 1500 | 2000                                                       | 2500                           | 3000                                             | 4000     | 5000                           | 600 | 630 | 1000     | 1500 | 2000 | 2500     | 3000 | 4000            | 5000 |
| Case Siz                                |             |                              |                            |        | 18       | 25              |                            |          |                            |     |     |          |      | 2220                                                       |                                |                                                  |          |                                |     |     |          |      | 2225 |          |      |                 |      |
| NOTE: Contact factory for non-specified |             |                              |                            |        |          |                 |                            |          |                            |     |     |          |      |                                                            |                                |                                                  |          |                                |     |     |          |      |      |          |      |                 |      |



NOTE: Contact factory for non-specified capacitance values

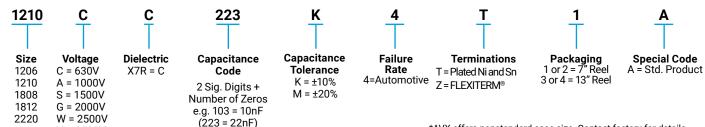
## **High Voltage MLC Chip Capacitors**










Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

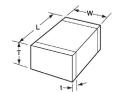
High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, AVX recommend to use flexible terminations system - FLEXITERM®.

#### **HOW TO ORDER**




\*AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact AVX for recommendations

#### CHIP DIMENSIONS DESCRIPTION

H = 3000V

(See capacitance range chart on page 128)



L = Length W = Width T = Thickness t = Terminal

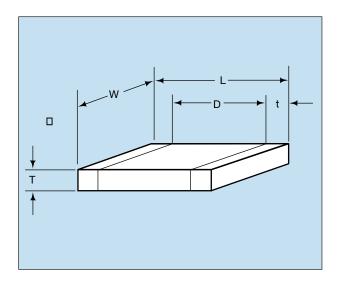
#### X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

| Parameter/Test                                             | Specification Limits                                                                                   | Measuring Conditions                                                       |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Operating Temperature Range                                | -55°C to +125°C                                                                                        | Temperature Cycle Chamber                                                  |  |  |  |  |
| Capacitance<br>Dissipation Factor<br>Capacitance Tolerance | within specified tolerance<br>2.5% max.<br>±5% (J), ±10% (K), ±20% (M)                                 | Freq.: 1kHz ±10%<br>Voltage: 1.0Vrm s ±0.2Vrms<br>T = +25°C, V = 0Vdc      |  |  |  |  |
| Temperature Characteristics                                | X7R = ±15%                                                                                             | Vdc = 0V, T = (-55°C to +125°C)                                            |  |  |  |  |
| Insulation Resistance                                      | 100GΩ min. or 1000MΩ • μF min. (whichever is less)<br>10GΩ min. or 100MΩ • μF min. (whichever is less) | T = +25°C, V = 500Vdc<br>T = +125°C, V = 500Vdc<br>(t ≥ 120 sec, I ≤ 50mA) |  |  |  |  |
| Dielectric Strength                                        | No breakdown or visual defect                                                                          | 120% of rated voltage<br>t ≤ 5 sec, l ≤ 50mA                               |  |  |  |  |

## **High Voltage MLC Chips FLEXITERM®**



## For 600V to 3000V Automotive Applications - AEC-Q200


# X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

| Case S            | Size               |     |          | 1206                 |      |              |          | 12              | 10                |                 |             |      | 18              | 808               |          |          |                 |      |      | 1812               |             |      |       |     |      | 2220               |                 |                 |
|-------------------|--------------------|-----|----------|----------------------|------|--------------|----------|-----------------|-------------------|-----------------|-------------|------|-----------------|-------------------|----------|----------|-----------------|------|------|--------------------|-------------|------|-------|-----|------|--------------------|-----------------|-----------------|
| Solder            | ring               |     | Ref      | flow/V               | Vave |              |          | Reflo           | wOnly             |                 | ReflowOnly  |      |                 |                   |          | Re       | flow0           | nly  |      |                    |             | Re   | flow0 | nly |      |                    |                 |                 |
| (L) Length        | mm                 |     |          | .20 ± 0.             |      |              |          |                 | ± 0.20            |                 | 4.57 ± 0.25 |      |                 |                   |          | 4.       | 50 ± 0.         | .30  |      |                    | 5.70 ± 0.50 |      |       |     |      |                    |                 |                 |
| (L) Length        | (in.)              |     |          | 26 ± 0.              |      |              |          | (0.126 ± 0.008) |                   | (0.180 ± 0.010) |             |      | (0.177 ± 0.012) |                   |          |          | (0.224 ± 0.020) |      |      |                    |             |      |       |     |      |                    |                 |                 |
| W) Width          | mm<br>(in.)        |     |          | .60 ± 0.<br>163 ± 0. |      |              |          |                 | ± 0.20<br>± 0.008 | 6               |             | (    |                 | ± 0.25<br>± 0.010 | )        |          |                 |      |      | 20 ± 0.<br>26 ± 0. |             |      |       |     |      | 00 ± 0.<br>97 ± 0. |                 |                 |
| (T) Thisten       | mm                 |     |          | 1.52                 |      |              |          | 1.70            |                   |                 |             |      | 03              |                   |          | i i      |                 |      | 2.54 | ,                  |             |      |       |     | 3.30 | ,                  |                 |                 |
| (T) Thickness     | (in.)              |     |          | (0.060)              |      |              |          |                 | 067)              |                 |             |      |                 | 080)              |          |          |                 |      |      | (0.100             | )           |      |       |     |      | (0.130)            | )               |                 |
| (t) Terminal      | mm                 |     |          | 25 (0.0              |      |              |          |                 | 0.010)            |                 |             |      |                 | 0.010)            |          |          |                 |      |      | 25 (0.0            |             |      |       |     |      | 25 (0.0            |                 |                 |
| * *               | max                |     |          | 75 (0.0              |      |              |          |                 | 0.030)            |                 |             |      |                 | 0.040)            |          |          |                 |      |      | 0.0                |             |      |       |     |      | 0.0                |                 |                 |
| Voltage           |                    | 630 | 1000     | 1500                 | 2000 | 2500         | 630      | 1000            | 1500              | 2000            | 630         | 1000 | 1500            | 2000              | 2500     | 3000     | 630             | 1000 | 1500 | 2000               | 2500        | 3000 | 4000  | 630 | 1000 | 1500               | 2000            | 3000            |
| Cap (pF)          | 100 101            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash \vdash$ | $\vdash$        |
|                   | 120 121            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 150 151            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 180 181            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    | _           | _    |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 220 221            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 270 271            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 | $\vdash$        |
|                   | 330 331<br>390 391 |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 | _    | _    |                    | _           | _    |       |     | _    |                    | $\vdash$        | $\vdash$        |
|                   |                    |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 470 471<br>560 561 |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 680 681            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 | _    |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 820 821            |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | $\vdash$        | $\vdash$        |
|                   | 1000 102           |     | _        |                      |      | _            |          |                 |                   |                 |             |      |                 |                   |          |          | -               | _    |      |                    | _           | _    |       |     |      |                    |                 |                 |
|                   | 1200 102           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 | _    |      |                    |             |      |       |     |      |                    |                 | -               |
|                   | 1500 152           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 | $\vdash$        |
|                   | 1800 182           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 | _    |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 2200 222           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 | _    |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 2700 272           |     |          |                      |      | <del> </del> |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 3300 332           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          | _        |                 |      |      |                    |             |      |       |     |      |                    |                 | -               |
|                   | 3900 392           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 4700 472           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 5600 562           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 6800 682           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 8200 822           |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
| Cap (µF)          | 0.01 103           |     |          |                      |      | İ            |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.012 123          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.015 153          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.018 183          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.022 223          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.027 273          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.033 333          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.039 393          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    |                 |                 |
|                   | 0.047 473          |     |          |                      |      | <u> </u>     |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | igsquare        | igsquare        |
|                   | 0.056 563          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          | <u> </u>        |      |      |                    |             |      |       |     |      |                    | igspace         |                 |
|                   | 0.068 683          |     |          |                      |      |              |          |                 |                   |                 |             |      |                 |                   |          |          |                 |      |      |                    |             |      |       |     |      |                    | igspace         | $\square$       |
|                   | 0.082 823          |     | <u> </u> |                      |      |              |          |                 |                   |                 |             |      |                 | <u> </u>          | <u> </u> |          |                 |      |      |                    |             |      |       |     |      |                    | igwdapprox      | $\vdash$        |
|                   | 0.100 104          |     | ļ        | _                    | _    |              | _        | _               | <u> </u>          |                 |             |      | <u> </u>        | <u> </u>          | <u> </u> | _        | -               | -    |      | _                  |             |      | _     |     |      | <u> </u>           | $\vdash \vdash$ | $\vdash \vdash$ |
|                   | 0.120 124          |     | 1        | <u> </u>             |      | -            | <u> </u> |                 | <u> </u>          |                 |             |      | <u> </u>        |                   |          | <u> </u> | -               |      |      |                    |             |      |       |     |      | <u> </u>           | $\vdash$        | $\vdash$        |
|                   | 0.150 154          |     | 1000     | 1500                 | 2002 | 2502         | 620      | 1000            | 1500              | 2000            | 620         | 1000 | 1500            | 2000              | 2500     | 2002     | 620             | 1000 | 1500 | 2002               | 2500        | 2002 | 4000  | 620 | 1000 | 1500               | 2000            | 2000            |
| Voltage<br>Case S |                    | 630 | 1000     | 1206                 |      | 2500         | 030      |                 | 1500<br>10        | 2000            | 030         | 1000 |                 | 08                | Z500     | 3000     | 030             | 1000 | 1500 | 1812               |             | 3000 | 4000  | 630 | 1000 | 2220               | 2000            | 3000            |
| Case S            | SIZE               |     |          | 1206                 |      |              |          | 12              | . 10              |                 |             |      | 18              | Uð                |          |          |                 |      |      | 1812               |             |      |       |     |      | 2220               |                 |                 |

NOTE: Contact factory for non-specified capacitance values

# Part Number Example CDR01 thru CDR06





**MILITARY DESIGNATION PER MIL-PRF-55681** 

MIL Style
Voltage-temperature
Limits
Capacitance
Rated Voltage
Capacitance Tolerance

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,

CDR06

#### **Voltage Temperature Limits:**

BP =  $0 \pm 30$  ppm/°C without voltage;  $0 \pm 30$  ppm/°C with rated voltage from -55°C to +125°C

BX = ±15% without voltage; +15 -25% with rated voltage from -55°C to +125°C

**Capacitance:** Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J  $\pm$  5%, K  $\pm$  10%, M  $\pm$  20%

#### **Termination Finish:**

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

T = Silver

Termination Finish
Failure Rate —

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

\*See MIL-PRF-55681 Specification for more details

**Failure Rate Level:** M = 1.0%, P = .1%, R = .01%,

S = .001%

**Packaging:** Bulk is standard packaging. Tape and reel per RS481 is available upon request.

\*Not RoHS Compliant

### CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06\*

| Per           | AVX   | Length (L)                | Width (W)                 | Thickr | ess (T) |      | D    | Termination Band (t) |      |  |
|---------------|-------|---------------------------|---------------------------|--------|---------|------|------|----------------------|------|--|
| MIL-PRF-55681 | Style | Length (L)                | widii (w)                 | Min.   | Max.    | Min. | Max. | Min.                 | Max. |  |
| CDR01         | 0805  | .080 ± .015               | .050 ± .015               | .022   | .055    | .030 | _    | .010                 | _    |  |
| CDR02         | 1805  | .180 ± .015               | .050 ± .015               | .022   | .055    | _    | _    | .010                 | .030 |  |
| CDR03         | 1808  | .180 ± .015               | .080 ± .018               | .022   | .080    | _    | _    | .010                 | .030 |  |
| CDR04         | 1812  | .180 ± .015               | .125 ± .015               | .022   | .080    | _    | _    | .010                 | .030 |  |
| CDR05         | 1825  | .180 <b>+</b> .020<br>015 | .250 <b>+</b> .020<br>015 | .020   | .080    | _    | _    | .010                 | .030 |  |
| CDR06         | 2225  | .225 ± .020               | .250 ± .020               | .020   | .080    | _    | _    | .010                 | .030 |  |

<sup>\*</sup>For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

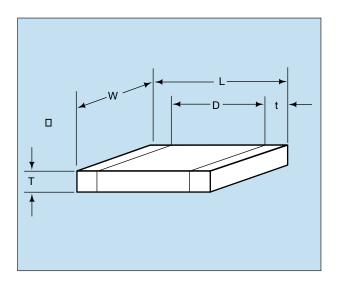
# Military Part Number Identification CDR01 thru CDR06



### CDR01 thru CDR06 to MIL-PRF-55681

| Military Type<br>Designation | Capacitance<br>in pF               | Capacitance tolerance | Rated temperature<br>and voltage-<br>temperature limits | WVDC       |
|------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|------------|
| AVX Style 08                 | 05/CDR01                           |                       |                                                         |            |
| CDR01BP100B                  | 10                                 | J,K                   | BP                                                      | 100        |
| CDR01BP120B                  | 12                                 | J                     | BP                                                      | 100        |
| CDR01BP150B                  | 15                                 | J,K                   | BP                                                      | 100        |
| CDR01BP180B                  | 18                                 | J                     | BP                                                      | 100        |
| CDR01BP220B                  | 22                                 | J,K                   | BP                                                      | 100        |
| CDR01BP270B<br>CDR01BP330B   | 27<br>33                           | J                     | BP<br>BP                                                | 100<br>100 |
| CDR01BP330B                  | 33                                 | J,K<br>J              | BP<br>BP                                                | 100        |
| CDR01BP470B                  | 47                                 | J,K                   | BP BP                                                   | 100        |
| CDR01BP560B                  | 56                                 | J                     | BP                                                      | 100        |
| CDR01BP680B                  | 68                                 | J,K                   | BP                                                      | 100        |
| CDR01BP820B                  | 82                                 | J                     | BP                                                      | 100        |
| CDR01BP101B                  | 100                                | J,K                   | BP                                                      | 100        |
| CDR01B121B                   | 120                                | J,K                   | BP,BX                                                   | 100        |
| CDR01B151B                   | 150                                | J,K                   | BP,BX                                                   | 100        |
| CDR01B181B                   | 180                                | J,K                   | BP,BX                                                   | 100        |
| CDR01BX221B                  | 220                                | K,M                   | BX                                                      | 100        |
| CDR01BX271B                  | 270                                | K                     | BX                                                      | 100        |
| CDR01BX331B<br>CDR01BX391B   | 330<br>390                         | K,M<br>K              | BX<br>BX                                                | 100<br>100 |
| CDR01BX391B                  | 470                                | K,M                   | BX                                                      |            |
| CDR01BX471B                  | 560                                | K,IVI                 | BX                                                      | 100<br>100 |
| CDR01BX681B                  | 680                                | K,M                   | BX                                                      | 100        |
| CDR01BX821B                  | 820                                | K                     | BX                                                      | 100        |
| CDR01BX102B                  | 1000                               | K,M                   | BX                                                      | 100        |
| CDR01BX122B                  | 1200                               | К                     | BX                                                      | 100        |
| CDR01BX152B                  | 1500                               | K,M                   | BX                                                      | 100        |
| CDR01BX182B                  | 1800                               | K                     | BX                                                      | 100        |
| CDR01BX222B                  | 2200                               | K,M                   | BX                                                      | 100        |
| CDR01BX272B                  | 2700                               | K                     | BX                                                      | 100        |
| CDR01BX332B                  | 3300                               | K,M                   | BX                                                      | 100        |
| CDR01BX392A<br>CDR01BX472A   | 3900<br>4700                       | K<br>K,M              | BX<br>BX                                                | 50<br>50   |
|                              |                                    |                       | DA                                                      | 30         |
| AVX Style 18                 |                                    |                       |                                                         | ı          |
| CDR02BP221B                  | 220                                | J,K                   | BP                                                      | 100        |
| CDR02BP271B                  | 270                                | J                     | BP<br>BV                                                | 100<br>100 |
| CDR02BX392B<br>CDR02BX472B   | 3900<br>4700                       | K<br>K,M              | BX<br>BX                                                | 100        |
| CDR02BX472B                  | 5600                               | K,IVI                 | BX                                                      | 100        |
| CDR02BX682B                  | 6800                               | K.M                   | BX                                                      | 100        |
| CDR02BX822B                  | 8200                               | K                     | BX                                                      | 100        |
| CDR02BX103B                  | 10,000                             | K,M                   | BX                                                      | 100        |
| CDR02BX123A                  | 12,000                             | ĸ                     | BX                                                      | 50         |
| CDR02BX153A                  | 15,000                             | K,M                   | BX                                                      | 50         |
| CDR02BX183A                  | 18,000                             | K                     | BX                                                      | 50         |
| CDR02BX223A                  | 22,000                             | K,M                   | BX                                                      | 50         |
|                              | – Add appropriato                  | e termination fi      | nish                                                    |            |
|                              | <ul> <li>Capacitance To</li> </ul> | lerance               |                                                         |            |

| Military Type              | Capacitance          | Capacitance | Rated temperature and voltage- | WVDC       |  |  |  |  |  |  |
|----------------------------|----------------------|-------------|--------------------------------|------------|--|--|--|--|--|--|
| Designation/               | in pF                | tolerance   | temperature limits             |            |  |  |  |  |  |  |
| AVX Style 18               | 308/CDR03            |             |                                |            |  |  |  |  |  |  |
| CDR03BP331B                | 330                  | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR03BP391B<br>CDR03BP471B | 390<br>470           | J<br>J,K    | BP<br>BP                       | 100<br>100 |  |  |  |  |  |  |
| CDR03BP561B                | 560                  | J           | BP BP                          | 100        |  |  |  |  |  |  |
| CDR03BP681B                | 680                  | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR03BP821B                | 820                  | J           | BP                             | 100        |  |  |  |  |  |  |
| CDR03BP102B                | 1000                 | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR03BX123B<br>CDR03BX153B | 12,000<br>15.000     | K<br>K,M    | BX<br>BX                       | 100<br>100 |  |  |  |  |  |  |
| CDR03BX183B                | 18.000               | K,IVI       | BX                             | 100        |  |  |  |  |  |  |
| CDR03BX223B                | 22,000               | K,M         | BX                             | 100        |  |  |  |  |  |  |
| CDR03BX273B                | 27.000               | K           | BX                             | 100        |  |  |  |  |  |  |
| CDR03BX333B                | 33.000               | K,M         | BX                             | 100        |  |  |  |  |  |  |
| CDR03BX393A                | 39.000               | K           | BX                             | 50         |  |  |  |  |  |  |
| CDR03BX473A                | 47.000               | K,M         | BX                             | 50         |  |  |  |  |  |  |
| CDR03BX563A<br>CDR03BX683A | 56.000<br>68.000     | K<br>K,M    | BX<br>BX                       | 50<br>50   |  |  |  |  |  |  |
| AVX Style 18               | AVX Style 1812/CDR04 |             |                                |            |  |  |  |  |  |  |
| CDR04BP122B                | 1200                 | J           | ВР                             | 100        |  |  |  |  |  |  |
| CDR04BP152B                | 1500                 | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR04BP182B                | 1800                 | J           | BP                             | 100        |  |  |  |  |  |  |
| CDR04BP222B<br>CDR04BP272B | 2200<br>2700         | J,K<br>J    | BP<br>BP                       | 100<br>100 |  |  |  |  |  |  |
| CDR04BP332B                | 3300                 | J,K         | BP BP                          | 100        |  |  |  |  |  |  |
| CDR04BX393B                | 39.000               | K           | BX                             | 100        |  |  |  |  |  |  |
| CDR04BX473B                | 47.000               | K,M         | BX                             | 100        |  |  |  |  |  |  |
| CDR04BX563B                | 56.000               | K           | BX                             | 100        |  |  |  |  |  |  |
| CDR04BX823A                | 82.000               | K           | BX                             | 50         |  |  |  |  |  |  |
| CDR04BX104A<br>CDR04BX124A | 100,000<br>120,000   | K,M<br>K    | BX<br>BX                       | 50<br>50   |  |  |  |  |  |  |
| CDR04BX124A<br>CDR04BX154A | 150.000              | K,M         | BX                             | 50         |  |  |  |  |  |  |
| CDR04BX184A                | 180.000              | K           | BX                             | 50         |  |  |  |  |  |  |
| AVX Style 18               | 325/CDR05            |             |                                |            |  |  |  |  |  |  |
| CDR05BP392B                | 3900                 | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR05BP472B-               | 4700                 | J,K         | BP<br>BB                       | 100        |  |  |  |  |  |  |
| CDR05BP562B<br>CDR05BX683B | 5600<br>68,000       | J,K<br>K,M  | BP<br>BX                       | 100<br>100 |  |  |  |  |  |  |
| CDR05BX823B                | 82,000               | K           | BX                             | 100        |  |  |  |  |  |  |
| CDR05BX104B                | 100,000              | K,M         | BX                             | 100        |  |  |  |  |  |  |
| CDR05BX124B                | 120,000              | K           | BX                             | 100        |  |  |  |  |  |  |
| CDR05BX154B                | 150.000              | K,M         | BX                             | 100        |  |  |  |  |  |  |
| CDR05BX224A<br>CDR05BX274A | 220.000              | K,M<br>K    | BX                             | 50<br>50   |  |  |  |  |  |  |
| CDR05BX274A                | 270,000<br>330,000   | K,M         | BX<br>BX                       | 50<br>50   |  |  |  |  |  |  |
| AVX Style 22               |                      |             |                                |            |  |  |  |  |  |  |
| CDR06BP682B                | 6800                 | J,K         | ВР                             | 100        |  |  |  |  |  |  |
| CDR06BP822B                | 8200                 | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR06BP103B                | 10,000               | J,K         | BP                             | 100        |  |  |  |  |  |  |
| CDR06BX394A                | 390.000              | K           | BX                             | 50         |  |  |  |  |  |  |
| CDR06BX474A                | 470.000              | K,M         | BX                             | 50         |  |  |  |  |  |  |


- Add appropriate failure rate

Add appropriate termination finish

- Capacitance Tolerance

### **Part Number Example** CDR31 thru CDR35





#### MILITARY DESIGNATION PER MIL-PRF-55681

**Part Number Example** (example) CDR31 BP 101 MIL Style Voltage-temperature Limits Capacitance Rated Voltage Capacitance Tolerance **Termination Finish** Failure Rate

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

#### **Voltage Temperature Limits:**

BP =  $0 \pm 30$  ppm/°C without voltage;  $0 \pm 30$  ppm/°C with rated voltage from -55°C to +125°C

BX =  $\pm 15\%$  without voltage;  $\pm 15 - 25\%$  with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: B ± .10 pF, C ± .25 pF, D ± .5

pF, F ± 1%, J ± 5%, K ± 10%,

M ± 20%

#### **Termination Finish:**

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

\*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%,

S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

\*Not RoHS Compliant

## CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

| Per           | Per AVX Style |      | Width (W) | Thickness (T) | D         | Termination Band (t) |      |  |
|---------------|---------------|------|-----------|---------------|-----------|----------------------|------|--|
| MIL-PRF-55681 | AVA Style     | (mm) | (mm)      | Max. (mm)     | Max. (mm) | Min. (mm)            | Max. |  |
| CDR31         | 0805          | 2.00 | 1.25      | 1.3           | .50       | .70                  | .30  |  |
| CDR32         | 1206          | 3.20 | 1.60      | 1.3           | _         | .70                  | .30  |  |
| CDR33         | 1210          | 3.20 | 2.50      | 1.5           | _         | .70                  | .30  |  |
| CDR34         | 1812          | 4.50 | 3.20      | 1.5           | _         | .70                  | .30  |  |
| CDR35         | 1825          | 4.50 | 6.40      | 1.5           | _         | .70                  | .30  |  |

## **Military Part Number Identification CDR32**



#### CDR31 to MIL-PRF-55681/7

| AVX Style 08                                                                                                | 205/CDD31                                                          |                                                                                        | temperature limits                                 |                                                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| AVX Style 0805/CDR31 (BP)                                                                                   |                                                                    |                                                                                        |                                                    |                                                             |  |  |  |  |
| CDR31BP1R0B CDR31BP1R2B CDR31BP1R3B CDR31BP1R5B CDR31BP1R6B CDR31BP1R8B CDR31BP2R2B CDR31BP2R2B CDR31BP2R4B | 1.0<br>1.1<br>1.2<br>1.3<br>1.5<br>1.6<br>1.8<br>2.0<br>2.2<br>2.4 | B,C<br>B,C<br>B,C<br>B,C<br>B,C<br>B,C<br>B,C<br>B,C<br>B,C<br>B,C                     | BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |  |  |  |
| CDR31BP2R7B CDR31BP3R0B CDR31BP3R6B CDR31BP3R9B CDR31BP4R3B CDR31BP4R7B CDR31BP5R1B CDR31BP5R6B CDR31BP5R6B | 2.7<br>3.0<br>3.3<br>3.6<br>3.9<br>4.3<br>4.7<br>5.1<br>5.6<br>6.2 | B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>B,C,D | BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP       | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |  |  |  |
| CDR31BP6R8B CDR31BP7R5B CDR31BP8R2B CDR31BP9R1B CDR31BP100B                                                 | 6.8<br>7.5<br>8.2<br>9.1<br>10                                     | B,C,D<br>B,C,D<br>B,C,D<br>B,C,D<br>FJ,K                                               | BP<br>BP<br>BP<br>BP                               | 100<br>100<br>100<br>100<br>100                             |  |  |  |  |
| CDR31BP110B CDR31BP120B CDR31BP130B CDR31BP150B CDR31BP160B                                                 | 11<br>12<br>13<br>15<br>16                                         | FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K                                                   | BP<br>BP<br>BP<br>BP                               | 100<br>100<br>100<br>100<br>100                             |  |  |  |  |
| CDR31BP180B CDR31BP200B CDR31BP220B CDR31BP240B CDR31BP270B CDR31BP300B CDR31BP330B                         | 18<br>20<br>22<br>24<br>27<br>30<br>33                             | FJ,K<br>F,J,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K                                          | BP<br>BP<br>BP<br>BP<br>BP<br>BP                   | 100<br>100<br>100<br>100<br>100<br>100                      |  |  |  |  |
| CDR31BP360B CDR31BP390B CDR31BP430B CDR31BP470B                                                             | 36<br>39<br>43<br>47                                               | FJ,K<br>F,J,K<br>FJ,K<br>FJ,K                                                          | BP<br>BP<br>BP<br>BP                               | 100<br>100<br>100<br>100                                    |  |  |  |  |
| CDR31BP510B CDR31BP560B CDR31BP620B CDR31BP680B CDR31BP750B CDR31BP820B                                     | 51<br>56<br>62<br>68<br>75<br>82                                   | FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K                                           | BP<br>BP<br>BP<br>BP<br>BP<br>BP                   | 100<br>100<br>100<br>100<br>100<br>100                      |  |  |  |  |

| Add appropriate failure rate         |
|--------------------------------------|
| — Add appropriate termination finish |
| — Capacitance Tolerance              |

| Military Type<br>Designation 1/                                                                                                                                                                                              | Capacitance<br>in pF                                                                                         | Capacitance tolerance                                        | Rated temperature<br>and voltage-<br>temperature limits              | WVDC                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| AVX Style 08                                                                                                                                                                                                                 | 05/CDR31                                                                                                     | (BP) con                                                     | t'd                                                                  |                                                                    |
| CDR31BP101B— CDR31BP111B— CDR31BP121B— CDR31BP151B— CDR31BP151B— CDR31BP161B— CDR31BP161B— CDR31BP201B— CDR31BP221B— CDR31BP241B— CDR31BP271B— CDR31BP301B— CDR31BP301B— CDR31BP301B— CDR31BP301B— CDR31BP301B— CDR31BP301B— | 100<br>110<br>120<br>130<br>150<br>160<br>180<br>200<br>220<br>240<br>270<br>300<br>330<br>360<br>390<br>430 | FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K<br>FJ,K | BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |
| CDR31BP471B CDR31BP511A CDR31BP561A CDR31BP621A CDR31BP681A AVX Style 08                                                                                                                                                     | 470<br>510<br>560<br>620<br>680<br><b>805/CDR31</b>                                                          | F,J,K<br>F,J,K<br>F,J,K<br>F,J,K<br>F,J,K                    | BP<br>BP<br>BP<br>BP                                                 | 100<br>50<br>50<br>50<br>50                                        |
| CDR31BX471B—<br>CDR31BX561B—<br>CDR31BX681B—<br>CDR31BX821B—<br>CDR31BX102B—<br>CDR31BX122B—<br>CDR31BX152B—<br>CDR31BX182B—<br>CDR31BX222B—<br>CDR31BX222B—<br>CDR31BX272B—<br>CDR31BX332B—                                 | 470<br>560<br>680<br>820<br>1,000<br>1,200<br>1,500<br>1,800<br>2,200<br>2,700<br>3,300                      | K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M  | BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX       | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100        |
| CDR31BX392B—<br>CDR31BX472B—<br>CDR31BX562A—<br>CDR31BX682A—<br>CDR31BX822A—<br>CDR31BX103A—<br>CDR31BX123A—<br>CDR31BX123A—<br>CDR31BX153A—<br>CDR31BX183A—                                                                 | 3,900<br>4,700<br>5,600<br>6,800<br>8,200<br>10,000<br>12,000<br>15,000<br>18,000                            | K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M         | BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX                   | 100<br>100<br>50<br>50<br>50<br>50<br>50<br>50<br>50               |

Capacitance Tolerance

<sup>1/</sup> The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

## **Military Part Number Identification CDR32**



#### CDR32 to MIL-PRF-55681/8

| Military Type<br>Designation 1/           | Capacitance<br>in pF | Capacitance tolerance | Rated temperature<br>and voltage-<br>temperature limits | WVDC              |
|-------------------------------------------|----------------------|-----------------------|---------------------------------------------------------|-------------------|
| AVX Style 12                              | 06/CDR32             | (BP)                  |                                                         |                   |
| CDR32BP1R0B                               | 1.0                  | B,C                   | BP                                                      | 100               |
| CDR32BP1R1B                               | 1.1                  | B,C                   | BP                                                      | 100               |
| CDR32BP1R2B                               | 1.2                  | B,C                   | BP                                                      | 100               |
| CDR32BP1R3B                               | 1.3                  | B,C                   | BP                                                      | 100               |
| CDR32BP1R5B                               | 1.5                  | B,C                   | BP                                                      | 100               |
| CDR32BP1R6B                               | 1.6                  | B,C                   | BP                                                      | 100               |
| CDR32BP1R8B                               | 1.8                  | B,C                   | BP                                                      | 100               |
| CDR32BP2R0B                               | 2.0                  | B,C                   | BP                                                      | 100               |
| CDR32BP2R2B                               | 2.2                  | B,C                   | BP                                                      | 100               |
| CDR32BP2R4B                               | 2.4                  | B,C                   | BP                                                      | 100               |
| CDR32BP2R7B                               | 2.7                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP3R0B                               | 3.0                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP3R3B                               | 3.3                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP3R6B                               | 3.6                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP3R9B                               | 3.9                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP4R3B<br>CDR32BP4R7B                | 4.3<br>4.7<br>5.1    | B,C,D<br>B,C,D        | BP<br>BP                                                | 100<br>100<br>100 |
| CDR32BP5R1B                               | 5.1                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP5R6B                               | 5.6                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP6R2B                               | 6.2                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP6R8B                               | 6.8                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP7R5B                               | 7.5                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP8R2B                               | 8.2                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP9R1B                               | 9.1                  | B,C,D                 | BP                                                      | 100               |
| CDR32BP100B                               | 10                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP110B                               | 11                   | F.J.K                 | BP                                                      | 100               |
| CDR32BP120B                               | 12                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP130B                               | 13                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP150B                               | 15                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP160B                               | 16                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP180B                               | 18                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP200B                               | 20                   | F,J,K                 | BP                                                      | 100               |
| CDR32BP220B                               | 22                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP240B                               | 24                   | F,J,K                 | BP                                                      | 100               |
| CDR32BP270B                               | 27                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP300B                               | 30                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP330B                               | 33                   | F,J,K                 | BP                                                      | 100               |
| CDR32BP360B                               | 36                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP390B                               | 39                   | F,J,K                 | BP                                                      | 100               |
| CDR32BP430B                               | 43                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP470B                               | 47                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP510B                               | 51                   | F,J,K                 | BP                                                      | 100               |
| CDR32BP560B                               | 56                   | FJ,K                  | BP                                                      | 100               |
| CDR32BP620B<br>CDR32BP680B<br>CDR32BP750B | 62<br>68<br>75       | F,J,K<br>FJ,K         | BP<br>BP<br>BP                                          | 100<br>100<br>100 |
| CDR32BP750B                               | 75                   | FJ,K                  | Bb                                                      | 100               |
| CDR32BP820B                               | 82                   | F,J,K                 | Bb                                                      | 100               |
| CDR32BP910B                               | 91                   | FJ,K                  | Bb                                                      | 100               |

| Add appropriate failure rate         |
|--------------------------------------|
| — Add appropriate termination finish |
| Capacitance Tolerance                |

| Military Type<br>Designation 1/ | Capacitance<br>in pF | Capacitance<br>tolerance | Rated temperature<br>and voltage-<br>temperature limits | WVDC |
|---------------------------------|----------------------|--------------------------|---------------------------------------------------------|------|
| AVX Style 08                    | 05/CDR31             | (BP) con                 | t'd                                                     |      |
| CDR32BP101B                     | 100                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP111B                     | 110                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP121B                     | 120                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP131B                     | 130                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP151B                     | 150                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP161B                     | 160                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP181B                     | 180                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP201B                     | 200                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP221B                     | 220                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP241B                     | 240                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP271B                     | 270                  | FJ.K                     | BP                                                      | 100  |
| CDR32BP301B                     | 300                  | F,J,K                    | BP BP                                                   | 100  |
| CDR32BP331B                     | 330                  | FJ,K                     | BP BP                                                   | 100  |
| CDR32BP361B                     | 360                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP391B                     | 390                  | FJ,K                     | BP                                                      | 100  |
|                                 |                      |                          |                                                         |      |
| CDR32BP431B                     | 430                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP471B                     | 470                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP511B                     | 510                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP561B                     | 560                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP621B                     | 620                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP681B                     | 680                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP751B                     | 750                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP821B                     | 820                  | FJ,K                     | BP                                                      | 100  |
| CDR32BP911B                     | 910                  | F,J,K                    | BP                                                      | 100  |
| CDR32BP102B                     | 1,000                | FJ,K                     | BP                                                      | 100  |
| CDR32BP112A                     | 1,100                | FJ,K                     | BP                                                      | 50   |
| CDR32BP122A                     | 1,200                | F,J,K                    | BP                                                      | 50   |
| CDR32BP132A                     | 1,300                | FJ,K                     | BP                                                      | 50   |
| CDR32BP152A                     | 1,500                | F,J,K                    | BP                                                      | 50   |
| CDR32BP162A                     | 1,600                | FJ,K                     | BP                                                      | 50   |
| CDR32BP182A                     | 1.800                | FJ.K                     | BP                                                      | 50   |
| CDR32BP202A                     | 2,000                | F,J,K                    | BP                                                      | 50   |
| CDR32BP222A                     | 2,200                | FJ,K                     | BP                                                      | 50   |
| AVX Style 12                    | 06/CDR32             | (BX)                     |                                                         |      |
| CDR32BX472B                     | 4,700                | K,M                      | BX                                                      | 100  |
| CDR32BX562B                     | 5,600                | K,M                      | BX                                                      | 100  |
| CDR32BX682B                     | 6,800                | K,M                      | BX                                                      | 100  |
| CDR32BX822B                     | 8,200                | K,M                      | BX                                                      | 100  |
| CDR32BX103B                     | 10,000               | K,M                      | BX                                                      | 100  |
| CDR32BX123B                     | 12,000               | K,M                      | BX                                                      | 100  |
| CDR32BX153B                     | 15.000               | K,M                      | BX                                                      | 100  |
| CDR32BX183A                     | 18.000               | K,M                      | BX                                                      | 50   |
| CDR32BX223A                     | 22,000               | K,M                      | BX                                                      | 50   |
| CDR32BX273A                     | 27,000               | K,M                      | BX                                                      | 50   |
| CDR32BX333A                     | 33.000               | K.M                      | BX                                                      | 50   |
| CDR32BX393A                     | 39.000               | K,M                      | BX                                                      | 50   |

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Add appropriate termination finish

Capacitance Tolerance





#### CDR33/34/35 to MIL-PRF-55681/9/10/11

| Military Type<br>Designation 1 /                            | Capacitance in pF       | Capacitance tolerance | Rated temperature<br>and voltage-<br>temperature limits | WVDC              |  |  |  |  |
|-------------------------------------------------------------|-------------------------|-----------------------|---------------------------------------------------------|-------------------|--|--|--|--|
| AVX Style 12                                                | 210/CDR33               | (BP)                  | , ,                                                     |                   |  |  |  |  |
| CDR33BP102B<br>CDR33BP112B                                  | 1,000<br>1,100          | FJ,K<br>FJ,K<br>FJ.K  | BP<br>BP<br>BP                                          | 100<br>100<br>100 |  |  |  |  |
| CDR33BP122B<br>CDR33BP132B<br>CDR33BP152B                   | 1,200<br>1,300<br>1,500 | FJ,K<br>FJ,K          | BP<br>BP                                                | 100<br>100        |  |  |  |  |
| CDR33BP162B                                                 | 1,600                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR33BP182B                                                 | 1,800                   | F,J,K                 | BP                                                      | 100               |  |  |  |  |
| CDR33BP202B                                                 | 2,000                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR33BP222B                                                 | 2,200                   | F,J,K                 | BP                                                      | 100               |  |  |  |  |
| CDR33BP242A                                                 | 2,400                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR33BP272A                                                 | 2,700                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR33BP302A                                                 | 3,000                   | F,J,K                 | BP                                                      | 50                |  |  |  |  |
| CDR33BP332A                                                 | 3,300                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| AVX Style 1210/CDR33 (BX)                                   |                         |                       |                                                         |                   |  |  |  |  |
| CDR33BX153B CDR33BX183B CDR33BX223B CDR33BX273B CDR33BX393A | 15.000                  | K,M                   | BX                                                      | 100               |  |  |  |  |
|                                                             | 18.000                  | K,M                   | BX                                                      | 100               |  |  |  |  |
|                                                             | 22,000                  | K,M                   | BX                                                      | 100               |  |  |  |  |
|                                                             | 27.000                  | K,M                   | BX                                                      | 100               |  |  |  |  |
|                                                             | 39.000                  | K,M                   | BX                                                      | 50                |  |  |  |  |
| CDR33BX473A                                                 | 47.000                  | K,M                   | BX                                                      | 50                |  |  |  |  |
| CDR33BX563A                                                 | 56.000                  | K,M                   | BX                                                      | 50                |  |  |  |  |
| CDR33BX683A                                                 | 68.000                  | K,M                   | BX                                                      | 50                |  |  |  |  |
| CDR33BX823A                                                 | 82,000                  | K,M                   | BX                                                      | 50                |  |  |  |  |
| CDR33BX104A                                                 | 100,000                 | K,M                   | BX                                                      | 50                |  |  |  |  |
| AVX Style 18                                                | 312/CDR34               | (BP)                  | Į.                                                      |                   |  |  |  |  |
| CDR34BP222B                                                 | 2,200                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR34BP242B                                                 | 2,400                   | F,J,K                 | BP                                                      | 100               |  |  |  |  |
| CDR34BP272B                                                 | 2,700                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR34BP302B                                                 | 3,000                   | F,J,K                 | BP                                                      | 100               |  |  |  |  |
| CDR34BP332B                                                 | 3,300                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR34BP362B                                                 | 3,600                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR34BP392B                                                 | 3,900                   | F,J,K                 | BP                                                      | 100               |  |  |  |  |
| CDR34BP432B                                                 | 4,300                   | FJ,K                  | BP                                                      | 100               |  |  |  |  |
| CDR34BP472B                                                 | 4,700                   | F,J,K                 | BP                                                      | 100               |  |  |  |  |
| CDR34BP512A                                                 | 5,100                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR34BP562A                                                 | 5,600                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR34BP622A                                                 | 6,200                   | F,J,K                 | BP                                                      | 50                |  |  |  |  |
| CDR34BP682A                                                 | 6,800                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR34BP752A                                                 | 7,500                   | F,J,K                 | BP                                                      | 50                |  |  |  |  |
| CDR34BP822A                                                 | 8,200                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR34BP912A                                                 | 9,100                   | FJ,K                  | BP                                                      | 50                |  |  |  |  |
| CDR34BP103A                                                 | 10,000                  | F,J,K                 | BP                                                      | 50                |  |  |  |  |
|                                                             | – Add appropriate       | e failure rate        |                                                         |                   |  |  |  |  |

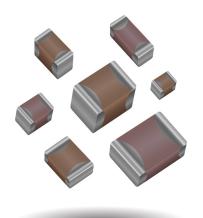
Add appropriate termination finish

Capacitance Tolerance

| Military Type<br>Designation 1/                                                                                                                                                                                                                                                                                                                                                                                               | Capacitance<br>in pF                                                                                                                                 | Capacitance tolerance                                                                                      | Rated temperature<br>and voltage-<br>temperature limits                    | WVDC                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| AVX Style 18                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/CDR34                                                                                                                                             | (BX)                                                                                                       |                                                                            |                                                                                                |
| CDR34BX273B CDR34BX333B CDR34BX393B CDR34BX473B CDR34BX563B CDR34BX104A CDR34BX124A CDR34BX154A CDR34BX184A                                                                                                                                                                                                                                                                                                                   | 27.000<br>33.000<br>39.000<br>47.000<br>56.000<br>100,000<br>120,000<br>150.000<br>180.000                                                           | K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M                                                              | BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX                         | 100<br>100<br>100<br>100<br>100<br>50<br>50<br>50                                              |
| AVX Style 18                                                                                                                                                                                                                                                                                                                                                                                                                  | 25/CDR35                                                                                                                                             | (BP)                                                                                                       |                                                                            |                                                                                                |
| CDR35BP472B— CDR35BP562B— CDR35BP62B— CDR35BP622B— CDR35BP682B— CDR35BP822B— CDR35BP912B— CDR35BP912B— CDR35BP133A— CDR35BP13A— CDR35BP133A— CDR35BP153A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP163A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP183A— | 4,700<br>5,100<br>5,600<br>6,200<br>6,800<br>7,500<br>8,200<br>9,100<br>11,000<br>12,000<br>13,000<br>15,000<br>16,000<br>18,000<br>20,000<br>22,000 | E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K<br>E''' K | BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP<br>BP | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>50<br>50<br>50<br>50<br>50<br>50<br>50 |
| AVX Style 18                                                                                                                                                                                                                                                                                                                                                                                                                  | 25/CDR35                                                                                                                                             | (BX)                                                                                                       |                                                                            |                                                                                                |
| CDR35BX563B—<br>CDR35BX683B—<br>CDR35BX823B—<br>CDR35BX104B—<br>CDR35BX124B—<br>CDR35BX154B—<br>CDR35BX184A—<br>CDR35BX224A—<br>CDR35BX274A—<br>CDR35BX334A—<br>CDR35BX394A—<br>CDR35BX394A—<br>CDR35BX474A—                                                                                                                                                                                                                  | 56.000<br>68.000<br>82,000<br>100,000<br>120,000<br>150.000<br>220,000<br>270.000<br>390.000<br>470.000                                              | K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M<br>K,M                                                | BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX<br>BX                   | 100<br>100<br>100<br>100<br>100<br>100<br>50<br>50<br>50<br>50                                 |

- Add appropriate failure rate

- Add appropriate termination finish


- Capacitance Tolerance

<sup>1/</sup> The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

## **MLCC Medical Applications – MM Series**

### **General Specifications**



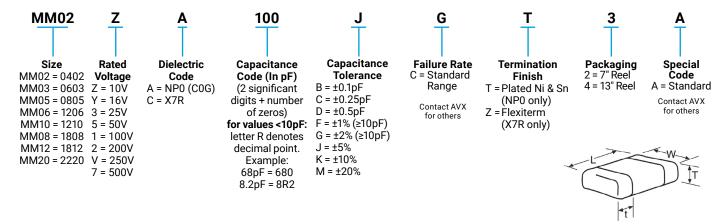


The AVX MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

#### **APPLICATIONS**

#### Implantable, Non-Life Supporting Medical Devices

· e.g. implanted temporary cardiac monitor, insulin pumps


#### **External, Life Supporting Medical Devices**

· e.g. heart pump external controller

#### **External Devices**

· e.g. patient monitoring, diagnostic equipment

#### **HOW TO ORDER**



### COMMERCIAL VS MM SERIES PROCESS COMPARISON

|                                                          | Commercial                                                         | MM Series                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Administrative                                           | Standard part numbers; no restriction on who purchases these parts | Specific series part number, used to control supply of product                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Design                                                   | Minimum ceramic thickness of 0.020" on all X7R product             | Minimum ceramic thickness of 0.029" (0.74mm)                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Dicing                                                   | Side & end margins = 0.003" min                                    | Side & end margins = 0.004" min<br>Cover layers = 0.003" min                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Lot Qualification Destructive<br>Physical Analysis (DPA) | As per EIA RS469                                                   | Increased sample plan – stricter criteria                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Visual/Cosmetic Quality                                  | Standard process and inspection                                    | 100% inspection                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Application Robustness                                   | Standard sampling for accelerated wave solder on X7R dielectrics   | Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing                                                                                                                                                                                                                                                        |  |  |  |  |
| Design/Change Control                                    | Required to inform customer of changes in:                         | AVX will qualify and notify customers before making any change to the following materials or processes:  • Dielectric formulation, type, or supplier  • Metal formulation, type, or supplier  • Termination material formulation, type, or supplier  • Manufacturing equipment type  • Quality testing regime including sample size and accept/ reject criteria |  |  |  |  |





| Parame                       | ter/Test                 | NP0 Specification Limits                                                       | Measuring Conditions                                                                                             |                                                         |  |  |  |
|------------------------------|--------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
|                              | perature Range           | -55°C to +125°C                                                                | Temperature C                                                                                                    |                                                         |  |  |  |
| •                            | itance<br>Q              | Within specified tolerance<br><30 pF: Q≥ 400+20 x Cap Value<br>≥30 pF: Q≥ 1000 | Freq.: 1.0 MHz ± 10%<br>1.0 kHz ± 10% fo<br>Voltage: 1.0'                                                        | r cap > 1000 pF                                         |  |  |  |
| Insulation                   | Resistance               | 100,000MΩ or 1000MΩ - μF,<br>whichever is less                                 | Charge device with<br>60 ± 5 secs @ rooi                                                                         | rated voltage for<br>n temp/humidity                    |  |  |  |
| Dielectric                   | : Strength               | No breakdown or visual defects                                                 | Charge device with 300<br>1-5 seconds, w/charge<br>limited to 50<br>Note: Charge device<br>voltage for 50        | and discharge current<br>mA (max)<br>with 150% of rated |  |  |  |
|                              | Appearance               | No defects                                                                     | Deflectio                                                                                                        | n: 2mm                                                  |  |  |  |
| Resistance to                | Capacitance<br>Variation | ±5% or ±.5 pF, whichever is greater                                            | Test Time: 3                                                                                                     |                                                         |  |  |  |
| Flexure<br>Stresses          | Q                        | Meets Initial Values (As Above)                                                | l                                                                                                                |                                                         |  |  |  |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                          | 90 r                                                                                                             |                                                         |  |  |  |
| Solde                        | rability                 | ≥ 95% of each terminal should be covered with fresh solder                     | Dip device in eutectic solder at 230 ± 5 for 5.0 ± 0.5 seconds                                                   |                                                         |  |  |  |
|                              | Appearance               | No defects, <25% leaching of either end terminal                               |                                                                                                                  |                                                         |  |  |  |
|                              | Capacitance<br>Variation | ≤ ±2.5% or ±.25 pF, whichever is greater                                       |                                                                                                                  |                                                         |  |  |  |
| Resistance to<br>Solder Heat | Q                        | Meets Initial Values (As Above)                                                | Dip device in eutectic s seconds. Store at room                                                                  | temperature for $24 \pm 2$                              |  |  |  |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                | hours before measuring                                                                                           | j electrical properties.                                |  |  |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                |                                                                                                                  |                                                         |  |  |  |
|                              | Appearance               | No visual defects                                                              | Step 1: -55°C ± 2°                                                                                               | 30 ± 3 minutes                                          |  |  |  |
|                              | Capacitance<br>Variation | ≤ ±2.5% or ±.25 pF, whichever is greater                                       | Step 2: Room Temp                                                                                                | ≤ 3 minutes                                             |  |  |  |
| Thermal<br>Shock             | Q                        | Meets Initial Values (As Above)                                                | Step 3: +125°C ± 2°                                                                                              | 30 ± 3 minutes                                          |  |  |  |
|                              | Insulation<br>Resistance | Meets Initial Values (As Above)                                                | Step 4: Room Temp                                                                                                | ≤ 3 minutes                                             |  |  |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                | Repeat for 5 cycles<br>24 hours at roor                                                                          | and measure after<br>n temperature                      |  |  |  |
|                              | Appearance               | No visual defects                                                              |                                                                                                                  |                                                         |  |  |  |
|                              | Capacitance<br>Variation | ≤ ±3.0% or ± .3 pF, whichever is greater                                       | Charge device with twic                                                                                          |                                                         |  |  |  |
| Load Life                    | Q                        | ≥ 30 pF: Q≥ 350<br>≥10 pF, <30 pF: Q≥ 275 +5C/2<br><10 pF: Q≥ 200 +10C         | for 1000 hou  Remove from test cha                                                                               | rs (+48, -0).                                           |  |  |  |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                              | room temperatu<br>before me                                                                                      | re for 24 hours                                         |  |  |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                | before measuring.                                                                                                |                                                         |  |  |  |
|                              | Appearance               | No visual defects                                                              |                                                                                                                  |                                                         |  |  |  |
|                              | Capacitance<br>Variation | ≤ ±5.0% or ± .5 pF, whichever is greater                                       | Store in a test chamber set at 85°C ± 2°C/                                                                       |                                                         |  |  |  |
| Load<br>Humidity             | Q                        | ≥ 30 pF: Q≥ 350<br>≥10 pF, <30 pF: Q≥ 275 +5C/2<br><10 pF: Q≥ 200 +10C         | ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.  Remove from chamber and stabilize a |                                                         |  |  |  |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                              |                                                                                                                  |                                                         |  |  |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                |                                                                                                                  | J                                                       |  |  |  |





### **PREFERRED SIZES ARE SHADED**

| SIZE       |            |    | 06        | 03   |                                                  |    |    | 0805 |     |    |    | 1206 |     |
|------------|------------|----|-----------|------|--------------------------------------------------|----|----|------|-----|----|----|------|-----|
|            | WVDC       | 16 | 25        | 50   | 100                                              | 16 | 25 | 50   | 100 | 16 | 25 | 50   | 100 |
| Cap 0.5    | 0R5        |    |           | - 00 | 100                                              |    |    |      | 100 |    |    | - 00 | .00 |
| (pF) 1.0   | 1R0        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 1.2        | 1R2        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 1.5        | 1R5        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 1.8        | 1R8        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 2.2        | 2R2        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 2.7        | 2R7        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 3.3        | 3R3        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 3.9        | 3R9        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 4.7        | 4R7        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 5.6        | 5R6        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 6.8        | 6R8        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 8.2        | 8R2        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 10         | 100        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 12         | 120        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 15         | 150        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 18         | 180        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 22         | 220        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 27         | 270        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 33         | 330        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 39         | 390        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 47         | 470        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 56         | 560        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 68         | 680        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 82         | 820        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 100        | 101        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 120        | 121        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 150        | 151        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 180<br>220 | 181<br>221 |    |           |      | -                                                |    |    |      |     |    |    |      |     |
| 270        | 271        |    |           |      | -                                                |    |    |      |     |    |    |      |     |
| 330        | 331        |    |           |      | <del>                                     </del> |    |    |      |     |    |    |      |     |
| 390        | 391        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 470        | 471        |    |           |      | <b>-</b>                                         |    |    |      |     |    |    |      |     |
| 560        | 561        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 680        | 681        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 820        | 821        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 1000       | 102        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 1200       | 122        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| 1500       | 152        |    |           |      |                                                  |    |    |      |     |    |    |      |     |
| WVD        |            | 16 | 25 50 100 |      |                                                  | 16 | 25 | 50   | 16  | 25 | 50 | 100  |     |
| SIZE       |            |    |           | 03   |                                                  |    |    | 0805 | 100 |    |    | 1206 |     |





| Parame                       | ter/Test                 | X7R Specification Limits                                                                                                   | Measuring (                                                                                               | Conditions                                              |  |
|------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| Operating Tem                | perature Range           | -55°C to +125°C                                                                                                            | Temperature C                                                                                             | ycle Chamber                                            |  |
| Capac                        | itance                   | Within specified tolerance                                                                                                 |                                                                                                           |                                                         |  |
| (                            | Ď                        | ≤ 10% for ≥ 50V DC rating<br>≤ 12.5% for 25V DC rating<br>≤ 12.5% for 25V and 16V DC rating<br>≤ 12.5% for ≤ 10V DC rating | Freq.: 1.0 k<br>Voltage: 1.0'                                                                             |                                                         |  |
| Insulation                   | Resistance               | 100,000MΩ or 1000MΩ - μF,<br>whichever is less                                                                             | Charge device with rate secs @ room to                                                                    |                                                         |  |
| Dielectric                   | : Strength               | No breakdown or visual defects                                                                                             | Charge device with 300<br>1-5 seconds, w/charge<br>limited to 50<br>Note: Charge device<br>voltage for 50 | and discharge current<br>mA (max)<br>with 150% of rated |  |
|                              | Appearance               | No defects                                                                                                                 | Deflectio                                                                                                 |                                                         |  |
| Resistance to                | Capacitance<br>Variation | ≤ ±12%                                                                                                                     | Test Time: 3                                                                                              |                                                         |  |
| Flexure<br>Stresses          | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                            | V                                                                                                         |                                                         |  |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3                                                                                                      | 90 r                                                                                                      | nm —                                                    |  |
| Solde                        | rability                 | ≥ 95% of each terminal should be covered with fresh solder                                                                 | Dip device in eutectic<br>for 5.0 ± 0.5                                                                   |                                                         |  |
|                              | Appearance               | No defects, <25% leaching of either end terminal                                                                           |                                                                                                           |                                                         |  |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                    |                                                                                                           |                                                         |  |
| Resistance to<br>Solder Heat | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                            | Dip device in eutectic solder at 260°C fo seconds. Store at room temperature for 2                        |                                                         |  |
| Joidel Heat                  | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                            | hours before measuring                                                                                    | g electrical properties.                                |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                            |                                                                                                           |                                                         |  |
|                              | Appearance               | No visual defects                                                                                                          | Step 1: -55°C ± 2°                                                                                        | 30 ± 3 minutes                                          |  |
|                              | Capacitance<br>Variation | ≤ ±7.5%                                                                                                                    | Step 2: Room Temp                                                                                         | ≤ 3 minutes                                             |  |
| Thermal<br>Shock             | Dissipation<br>Factor    | Meets Initial Values (As Above)                                                                                            | Step 3: +125°C ± 2°                                                                                       | 30 ± 3 minutes                                          |  |
| OHOCK                        | Insulation<br>Resistance | Meets Initial Values (As Above)                                                                                            | Step 4: Room Temp                                                                                         | ≤ 3 minutes                                             |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                            | Repeat for 5 cycles<br>24 ± 2 hours at ro                                                                 |                                                         |  |
|                              | Appearance               | No visual defects                                                                                                          |                                                                                                           |                                                         |  |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                   | Charge device with 1.5 r<br>test chamber set                                                              |                                                         |  |
| Load Life                    | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                          | for 1000 hou                                                                                              | ,                                                       |  |
|                              | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                          | Remove from test cha room temperature for                                                                 | 24 ± 2 hours before                                     |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                            | meası                                                                                                     | iring.                                                  |  |
|                              | Appearance               | No visual defects                                                                                                          |                                                                                                           |                                                         |  |
|                              | Capacitance<br>Variation | ≤ ±12.5%                                                                                                                   | Store in a test chamber :<br>± 5% relative humid                                                          |                                                         |  |
| Load                         | Dissipation<br>Factor    | ≤ Initial Value x 2.0 (See Above)                                                                                          | (+48, -0) with rated                                                                                      | l voltage applied.                                      |  |
| Humidity                     | Insulation<br>Resistance | ≥ Initial Value x 0.3 (See Above)                                                                                          | Remove from chamber<br>temperature an                                                                     | d humidity for                                          |  |
|                              | Dielectric<br>Strength   | Meets Initial Values (As Above)                                                                                            | 24 ± 2 hours before measuring.                                                                            |                                                         |  |



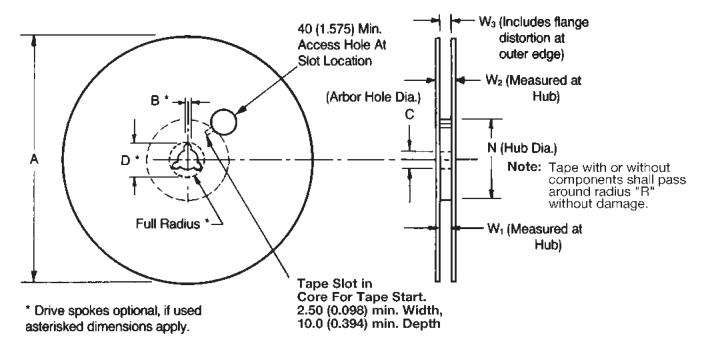


### **PREFERRED SIZES ARE SHADED**

|               | SIZE  | •          | (  | 040          | 12                                     |          |         | 0  | 603     | }       |         |    |    | (        | 080          | 5   |          |                           |          |          |          | 12 | 06       |     |          |     |    |          |          | 12       | 10       |               |          |          | 18            | 808      | 3               |    | 18       | 12       |          |          | 222      | 0        |
|---------------|-------|------------|----|--------------|----------------------------------------|----------|---------|----|---------|---------|---------|----|----|----------|--------------|-----|----------|---------------------------|----------|----------|----------|----|----------|-----|----------|-----|----|----------|----------|----------|----------|---------------|----------|----------|---------------|----------|-----------------|----|----------|----------|----------|----------|----------|----------|
|               |       | WVDC       | 16 | 25           | 50                                     | 10       | 16      | 25 | 50      | 10      | 0 200   | 10 | 16 | 25       | 50           | 100 | 200      | 250                       | 10       | 16       | 25       | 50 | 100      | 200 | 250      | 500 | 10 | 16       | 25       | 50       | 100      | 200 2         | 250 5    | 00       | 50            | 100      | 200             | 50 | 100      | 200      | 250      | 25       | 50       | 100      |
| Сар           | 220   | 221        |    |              |                                        |          |         |    | i i     |         |         |    |    |          |              | İ   |          |                           |          |          |          |    |          |     | П        |     |    |          |          |          | П        | $\neg$        |          | T        |               |          | $\Box$          |    | П        | П        |          | Г        | -        |          |
| (pF)          | 270   | 271        |    |              | T                                      |          | $\top$  | T  | 1       | 1       | 1       | 1  | T  | т        |              | T   |          |                           |          |          |          |    |          |     | П        |     |    |          |          |          | П        | 十             | $\neg$   | 寸        | $\neg$        |          | П               |    | т        | г        | г        | $\Box$   | $\vdash$ | Г        |
| u /           | 330   | 331        |    |              | T                                      |          | $\top$  | T  | 1       | 1       | 1       | 1  | т  | т        |              |     |          |                           |          |          |          |    |          |     | П        |     |    |          |          |          | П        | 一十            | $\neg$   | 寸        | $\neg$        |          | П               |    | т        | г        | г        | $\Box$   | $\vdash$ | Г        |
| $\neg$        | 390   | 391        |    |              |                                        |          |         |    | 1       | +       | +       | 1  | 1  |          |              |     |          |                           |          |          | <u> </u> |    | t        |     |          |     |    |          |          |          | Ħ        | 一             |          | $\neg$   | $\neg$        |          | П               |    | т        | г        | т        | $\Box$   | -        |          |
| $\neg$        | 470   | 471        |    |              |                                        |          |         |    | 1       | +       | +       | 1  |    |          |              |     |          |                           |          |          |          |    | t        |     |          |     |    |          | t        |          | Ħ        | 一             |          | $\neg$   | $\neg$        |          | H               |    | т        | г        |          | П        | -        |          |
|               | 560   | 561        |    |              |                                        |          |         | T  | 1       | +       | +       | 1  | 1  |          |              |     |          |                           |          |          |          |    |          |     | П        |     |    |          |          |          | $\Box$   | $\neg$        | $\neg$   | 7        | $\neg$        |          | Н               |    | т        | г        | т        | П        | $\vdash$ |          |
|               | 680   | 681        |    |              |                                        |          |         | 1  | 1       | +       | _       | 1  | 1  |          |              |     |          |                           |          |          |          |    |          |     | H        |     |    |          |          |          | $\Box$   | $\neg$        | $\neg$   | _        |               |          | $\vdash$        |    | т        | г        | т        | -        | $\vdash$ |          |
| 一             | 820   | 821        |    |              | T                                      |          | +       |    | 1       | +       | +       | +  | -  | -        |              |     |          |                           |          | 1        |          |    |          |     | H        |     |    | $\vdash$ |          |          | $\Box$   | $\dashv$      | $\dashv$ | $\dashv$ | 一             |          | $\vdash$        |    | т        | г        | $\vdash$ | г        | $\vdash$ |          |
| 一             | 1000  | 102        |    |              | T                                      |          | +       | t  | 1       | +       | +       | 1  | 1  | $\vdash$ |              |     |          |                           |          | $\vdash$ |          |    | t        |     | П        |     |    | $\vdash$ | t        | t        | H        | 十             | $\dashv$ | _        | 一             |          | $\vdash$        |    | т        | г        | Н        | г        | 一        |          |
| 1             | 1200  | 122        |    |              | +                                      |          | +       | +  | +       | +       | +       | +  | +  |          |              |     |          |                           |          | 1        | 1        |    | 1        |     | H        |     |    |          | 1        |          |          | _             |          | _        |               |          | $\vdash$        |    | $\vdash$ | т        | Н        | т        | <u> </u> |          |
| $\dashv$      | 1500  | 152        |    |              | +                                      | Н        | +       | +  | +       | +       |         |    | +  | $\vdash$ | $\vdash$     |     |          |                           |          |          |          |    |          |     |          |     |    |          |          |          |          |               |          |          | $\dashv$      |          | $\vdash$        |    | Н        | Н        | Н        | Н        | $\vdash$ | $\vdash$ |
| $\dashv$      | 1800  | 182        |    |              |                                        |          |         |    |         | +       |         |    |    |          |              |     |          |                           |          |          |          |    |          |     | $\vdash$ |     |    |          |          |          | $\vdash$ | $\dashv$      |          |          | $\dashv$      | $\dashv$ | $\vdash \vdash$ |    | т        | Н        | т        | Н        | $\vdash$ | $\vdash$ |
| $\dashv$      | 2200  | 222        |    |              |                                        |          |         |    |         | +       |         |    |    |          |              |     |          |                           |          |          |          |    |          |     |          |     |    |          |          |          |          | -             |          |          | $\dashv$      | $\dashv$ | $\vdash$        |    | $\vdash$ | Н        | $\vdash$ | Н        | $\vdash$ | $\vdash$ |
| $\dashv$      | 2700  | 272        |    |              |                                        |          |         |    |         | +       |         |    |    |          |              |     |          |                           |          |          |          |    |          |     |          |     |    |          |          |          |          | -             |          |          | $\dashv$      | $\dashv$ | $\vdash \vdash$ |    | $\vdash$ | Н        | H        | Н        | $\vdash$ | $\vdash$ |
| $\dashv$      | 3300  | 332        |    |              |                                        |          |         |    |         | +       |         |    |    |          |              |     |          |                           |          |          |          |    |          |     |          |     |    |          |          |          |          | -             |          |          | $\dashv$      |          | $\vdash$        |    | $\vdash$ | $\vdash$ | $\vdash$ | Н        | $\vdash$ | $\vdash$ |
| $\rightarrow$ | 3900  | 392        |    |              | +                                      | Н        | +       | ╁  | +       | +       |         |    | +  | +        | $\vdash$     |     |          |                           | $\vdash$ | $\vdash$ | $\vdash$ |    | +        |     | Н        |     |    |          | +        |          | $\vdash$ | $\dashv$      | +        |          | $\dashv$      | $\dashv$ | $\vdash$        |    | $\vdash$ | $\vdash$ | $\vdash$ | Н        | ⊢        | $\vdash$ |
| $\rightarrow$ | 4700  | 472        |    |              | +                                      | $\vdash$ | +       | ╁  | +       | +       |         |    | +  | +        | -            |     | 1        |                           | $\vdash$ | $\vdash$ | -        |    | +        |     | Н        |     |    |          | +        | 1        |          | $\dashv$      | +        |          | $\dashv$      | -        | $\vdash$        |    | $\vdash$ | $\vdash$ | $\vdash$ | Н        | ⊢        | $\vdash$ |
| $\dashv$      | 5600  | 562        |    |              | +                                      | ┢        | +       | +  | +       | +       |         |    | +  | +        | -            |     | $\vdash$ |                           | ╁        | ╁        | -        |    | +        |     | $\vdash$ |     |    | $\vdash$ | +        | ╁        | $\vdash$ | $\dashv$      | +        | -        | $\dashv$      | -        | $\vdash$        |    | ₩        | ₩        | ₩        | $\vdash$ | $\vdash$ | ⊢        |
| $\dashv$      | 6800  | 682        |    |              | +                                      | ┢        | +       | ╁  | +       | +       |         |    | +  | -        | -            |     | $\vdash$ |                           | $\vdash$ | $\vdash$ | -        |    | +        |     | Н        |     | -  | -        | $\vdash$ | $\vdash$ | $\vdash$ | $\rightarrow$ | +        | -        | $\dashv$      | $\dashv$ | $\vdash$        |    | $\vdash$ | ⊢        | ₩        | $\vdash$ | ₩        | $\vdash$ |
|               |       |            |    |              | +-                                     |          | +       | +  | +       | +       |         |    | +- | -        | -            |     | -        |                           | -        | -        | -        |    | -        |     |          |     |    |          | -        |          |          | +             | +        |          |               | _        | $\vdash$        |    | $\vdash$ | ₩        | ₩        | $\vdash$ | ₩        | -        |
|               | 8200  | 822        |    |              | +                                      | ⊢        | +       | ╄  | +       | +       |         |    | +  | -        | -            |     |          |                           | $\vdash$ | $\vdash$ | -        |    | +        |     | Н        |     |    |          | -        |          |          | $\rightarrow$ | -        | -        |               |          |                 |    | ₩        |          |          | $\vdash$ | ₩        | $\vdash$ |
|               | 0.010 | 103        |    |              | -                                      |          | +       | ⊢  | +       | -       |         |    | +  | -        | $\vdash$     |     |          |                           |          | $\vdash$ | -        |    | +        |     | Н        |     |    |          | $\vdash$ |          | Н        | $\rightarrow$ | -        | $\dashv$ |               |          |                 |    | ₩        |          |          | $\vdash$ | ₩        | $\vdash$ |
|               | 0.012 | 123<br>153 |    |              | $\vdash$                               |          | +       | ₽  | +       | -       | +       |    | +  | -        | $\vdash$     |     | $\vdash$ | ┝                         |          | ⊢        | $\vdash$ |    | $\vdash$ |     | Н        |     |    | -        | $\vdash$ | $\vdash$ | Н        | $\rightarrow$ | +        | $\dashv$ |               | -        |                 |    | ₩        |          |          | $\vdash$ | ⊢        | $\vdash$ |
|               | 0.015 |            |    | ⊢            | ₩                                      |          | +       | ₩  | ₩       | -       | +       | -  | ₩  | -        | -            |     | -        | <u> </u>                  |          | ⊢        | $\vdash$ |    | ⊢        |     | Н        |     |    |          | -        | -        | Н        | $\rightarrow$ | -        | $\dashv$ | $\rightarrow$ | -        |                 |    | ₩        |          |          | $\vdash$ | ₩        | ⊢        |
|               | 0.018 | 183        |    | H            | ┼                                      |          | +       | ╀  | +       | -       | +-      |    | -  | -        | -            |     | -        | <u> </u>                  |          | ⊢        | -        |    | -        |     | Н        |     |    | -        | -        | -        | Н        | -             | +        | $\dashv$ |               |          | $\vdash$        |    | ₩        |          |          | $\vdash$ | ⊢        | ₩        |
|               | 0.022 | 223        |    |              | $\vdash$                               |          | +-      | -  | -       | _       | _       |    | -  | -        | -            |     | -        | _                         |          | -        | -        |    | _        |     |          |     |    | -        | _        | -        | Н        | -             | _        | -        |               |          |                 |    | ₩        |          |          | $\vdash$ | ₩        | ⊢        |
|               | 0.027 | 273        |    | _            | -                                      |          | +       | ╄  | -       |         | _       |    | -  | -        | -            |     |          |                           |          | -        | -        |    | _        |     |          |     |    |          | _        | -        |          | -             | _        | -        |               | -        | $\vdash$        |    | ₩        |          |          | $\vdash$ | —        | ⊢        |
|               | 0.033 | 333        |    |              | -                                      |          | +       | _  | ₩       |         | +-      |    | ₩  | -        | <u> </u>     |     | _        |                           |          | ├        | -        |    | ₩        |     |          |     |    | _        | ₩        | -        | Ш        | $\rightarrow$ | -        | _        |               | _        | $\vdash \vdash$ |    | ₩        |          | <u> </u> | $\vdash$ | ₩        | ⊢        |
|               | 0.039 | 393        |    |              | ₩                                      |          | ₩       | ╄  | ╄       |         | +-      |    | ₩  | ₩.       | <u> </u>     |     | _        |                           |          | ┡        | <u> </u> |    | ₩        |     | ш        |     |    |          | ₩        | -        | Ш        | -             | -        | _        |               |          | Ш               |    | ₩        |          |          | $\vdash$ | ₩        | ╙        |
| _             | 0.047 | 473        |    |              | ╄                                      |          | +       | ╄  | ╄       | _       | +-      |    | ₩  | -        | <u> </u>     |     | _        |                           |          | ┡        | <u> </u> |    | ╄        |     | ш        |     |    | _        | ╄        | -        | Ш        | $\rightarrow$ |          | 4        |               | _        | $\sqcup$        |    | ₩        |          |          | $\vdash$ | ₩        | ╙        |
|               | 0.056 | 563        |    |              | $\vdash$                               |          | +       | ╄  | +       | _       | +       |    | ₩  | -        | -            | _   | _        | _                         |          | ├        | <u> </u> |    | ⊢        |     | ш        |     |    | _        | $\vdash$ | -        | ш        | $\rightarrow$ |          | -        |               | $\dashv$ | $\sqcup$        |    | ₩        |          |          | $\vdash$ | ₩        | $\vdash$ |
|               | 0.068 | 683        |    | $\vdash$     | ╙                                      |          | -       | ╄  | ₩       | -       | _       | _  | ₩  | -        | -            | _   | _        |                           |          | ╙        | -        |    | ₩        |     | ш        |     |    | _        | _        | _        | ш        | -             |          | -        |               | -        | $\sqcup$        |    | ₩.       |          |          | $\vdash$ | ₩        | ⊢        |
|               | 0.082 | 823        |    | <u> </u>     | $\vdash$                               |          |         |    |         | 1       | +       |    |    |          |              |     | -        | <u> </u>                  |          |          |          |    |          |     | ш        |     |    |          |          |          |          | _             |          | 4        |               | _        | Щ               |    | _        |          |          | $\vdash$ | ₩        | $\vdash$ |
| ļ             | 0.10  | 104        |    | $\vdash$     | $\vdash$                               |          |         |    |         | 1       | +       |    |    |          |              |     | _        | <u> </u>                  |          |          |          |    |          |     | $\vdash$ |     |    |          |          |          |          | -             |          | 4        |               | _        | Щ               |    |          |          |          |          | _        |          |
|               | 0.12  | 124        |    |              |                                        |          |         | _  | 1       | _       |         |    |    |          |              |     | _        | <u> </u>                  |          |          |          |    | _        |     | Ш        |     |    |          |          |          |          | $\perp$       | _        | 4        |               | _        | Щ               |    |          |          |          |          |          |          |
|               | 0.15  | 154        |    |              |                                        |          |         | ╄  | _       | _       |         |    | _  | _        | _            |     |          |                           |          | _        |          |    | _        |     |          |     |    |          | _        |          |          | _             | _        | _        |               | _        | Ш               |    |          |          |          |          | _        |          |
| ļ             | 0.22  | 224        |    |              | $\vdash$                               |          |         | 1  | 1       | _       |         |    |    |          |              |     | <u> </u> |                           |          |          |          |    |          |     | Ш        |     |    |          |          |          |          |               | _        | _        |               |          | Щ               |    |          |          |          |          |          |          |
| ļ             | 0.33  | 334        |    |              | $\vdash$                               | $\vdash$ | 1       | _  | 1       | $\perp$ | $\perp$ |    |    |          |              |     | ╙        | $ldsymbol{ldsymbol{eta}}$ |          |          |          |    |          |     | Ш        |     |    |          |          |          | ш        |               |          | _        |               |          | Щ               |    |          | $\vdash$ | Ш'       |          |          |          |
| ļ             | 0.47  | 474        |    |              | $\vdash$                               | $\vdash$ | $\perp$ | _  | 1       | $\perp$ | _       |    |    |          |              |     | ╙        | $\vdash$                  |          |          |          |    |          |     | $\sqcup$ |     |    |          |          |          | ш        | $\perp$       | _        | _        | ļ             |          | Щ               |    |          | $\vdash$ | Ш'       |          |          |          |
| ļ             | 0.56  | 564        |    | $\vdash$     | $\vdash$                               | $\vdash$ | $\perp$ | _  | $\perp$ | $\perp$ | _       |    |    | ₩        | _            |     | ╙        | $\vdash$                  |          |          |          |    |          |     | $\sqcup$ |     |    |          |          |          | ш        | $\rightarrow$ | _        | _        | ļ             |          | Щ               |    |          |          | Щ'       |          |          |          |
| ļ             | 0.68  | 684        |    | L            | $\vdash$                               | $\vdash$ | 1       | _  | _       | $\perp$ | _       |    |    | _        | $\vdash$     |     | $\vdash$ | $\vdash$                  |          |          |          | _  | _        |     | $\sqcup$ |     |    |          |          |          | ш        | $\perp$       | _        | 4        | ļ             |          | Щ               |    | $\vdash$ | └        | <u> </u> |          |          |          |
| ļ             | 0.82  | 824        |    | _            | ــــــــــــــــــــــــــــــــــــــ | ╙        | _       | _  | _       | _       |         |    |    | <u> </u> |              |     | ┞        | $oxed{oxed}$              |          |          |          |    | _        |     | Ш        |     |    |          |          |          | Ш        |               | $\perp$  | _        | ļ             |          | Ш               |    | _        | <b>└</b> | <u> </u> |          |          |          |
| ļ             | 1.0   | 105        |    | $oxed{oxed}$ | <u> </u>                               | ╙        | $\perp$ | _  | _       | $\perp$ |         |    |    |          | $oxed{oxed}$ |     | <u> </u> | <u> </u>                  |          |          |          |    |          |     | Ш        |     |    |          |          |          | Ш        |               |          | _        | ļ             |          | Ш               |    | 4        | L.       | <u> </u> |          |          |          |
| ]             | 1.2   | 125        |    |              |                                        | ┖        |         |    |         |         |         |    |    |          |              |     |          |                           |          |          |          |    |          |     | $\Box$   |     |    |          |          |          | $\Box$   |               |          |          |               |          | Ш               |    | $\Box$   |          |          |          |          |          |
|               | 1.5   | 155        |    |              |                                        |          |         |    |         |         |         |    |    |          |              |     |          |                           |          |          |          |    |          |     |          |     |    |          |          |          |          |               |          |          |               |          |                 |    |          |          |          |          |          |          |
|               | WVD0  |            | 16 | 25           | 50                                     | 10       | 16      | 25 | 50      | 10      | 0 200   | 10 | 16 | 25       | 50           | 100 | 200      | 250                       | 10       | 16       | 25       | 50 | 100      | 200 | 250      | 500 | 10 | 16       | 25       | 50       | 100      | 200 2         | 250 5    | 00       | 50            | 100      | 200             | 50 | 100      | 200      | 250      | 25       | 50       | 100      |
|               | SIZE  | •          | (  | 040          | 12                                     |          |         | 0  | 603     | }       |         |    |    | (        | 080          | 5   |          |                           |          |          |          | 12 | 06       |     |          |     |    |          |          | 12       | 10       |               |          |          | 18            | 808      | 3               |    | 18       | 12       |          |          | 222      | 0        |

## **Packaging of Chip Components**

## **Automatic Insertion Packaging**




#### **TAPE & REEL QUANTITIES**

All tape and reel specifications are in compliance with RS481.

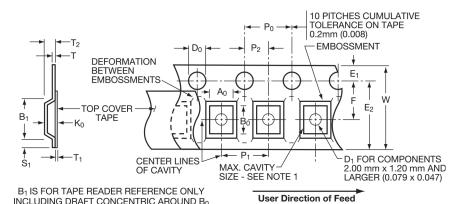
|                              | 4mm   | 8mm                                                                                        | 12mm   |                                                  |
|------------------------------|-------|--------------------------------------------------------------------------------------------|--------|--------------------------------------------------|
| Paper or Embossed<br>Carrier |       | 0612, 0508, 0805, 1206,<br>1210                                                            |        |                                                  |
| Embossed Only                | 0101  |                                                                                            | 1808   | 1812, 1825<br>2220, 2225                         |
| Paper Only                   |       | 0101, 0201, 0306, 0402, 0603                                                               |        |                                                  |
| Qty. per Reel/7" Reel        | 4,000 | 1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000<br>Contact factory for exact quantity | 3,000  | 500, 1,000<br>Contact factory for exact quantity |
| Qty. per Reel/13" Reel       |       | 5,000, 10,000, 50,000<br>Contact factory for exact quantity                                | 10,000 | 4,000                                            |

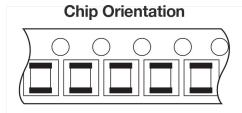
#### **REEL DIMENSIONS**



| Tape<br>Size <sup>(1)</sup> | A<br>Max.       | B*<br>Min.     | С                         | D*<br>Min.      | N<br>Min.       | <b>W</b> <sub>1</sub>                                           | W <sub>2</sub><br>Max. | W <sub>3</sub>                               |
|-----------------------------|-----------------|----------------|---------------------------|-----------------|-----------------|-----------------------------------------------------------------|------------------------|----------------------------------------------|
| 4mm                         | 1.80<br>(7.087) | 1.5<br>(0.059) | 13.0±0.5<br>(0.522±0.020) | 20.2<br>(0.795) | 60.0<br>(2.362) | 4.35±0.3<br>(0.171±0.011)                                       | 7.95<br>(0.312)        |                                              |
| 8mm                         | 330             | 1.5            | 13.0 <sup>+0.50</sup>     | 20.2            | 50.0            | 8.40 <sup>+1.5</sup> (0.331 <sup>+0.059</sup> )                 | 14.4<br>(0.567)        | 7.90 Min.<br>(0.311)<br>10.9 Max.<br>(0.429) |
| 12mm                        | (12.992)        | (0.059)        | (0.512 +0.020)            | (0.795)         | (1.969)         | 12.4 <sup>+2.0</sup> <sub>-0.0</sub> (0.488 <sup>+0.079</sup> ) | 18.4<br>(0.724)        | 11.9 Min.<br>(0.469)<br>15.4 Max.<br>(0.607) |

Metric dimensions will govern.


English measurements rounded and for reference only.


(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.

## **Embossed Carrier Configuration**

## 4, 8 & 12mm Tape Only

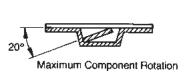


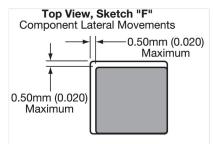


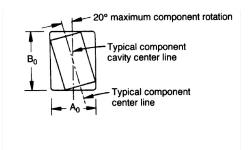


# 4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

#### **CONSTANT DIMENSIONS**


| Tape Size | D <sub>o</sub>            | E <sub>1</sub>  | P <sub>0</sub>  | P <sub>2</sub>  | S <sub>1</sub> Min. | T Max.  | T₁ Max. |
|-----------|---------------------------|-----------------|-----------------|-----------------|---------------------|---------|---------|
| 4mm       | 0.80±0.04                 | 0.90±0.05       | 2.0±0.04        | 1.00±0.02       | 1.075               | 0.26    | 0.06    |
| 4mm       | (0.031±0.001)             | (0.035±0.001)   | (0.078±0.001)   | (0.039±0.0007)  | (0.042)             | (0.010) | (0.002) |
| 8mm       | 1.50 +0.10                | 1.75 ± 0.10     | 4.0 ± 0.10      | 2.0 ± 0.05      | 0.60                | 0.60    | 0.10    |
| & 12mm    | $(0.059^{+0.004}_{-0.0})$ | (0.069 ± 0.004) | (0.157 ± 0.004) | (0.079 ± 0.002) | (0.024)             | (0.024) | (0.004) |


#### **VARIABLE DIMENSIONS**

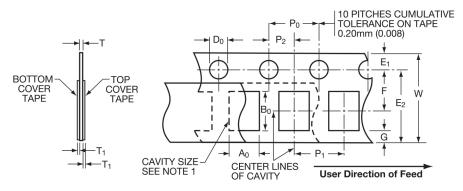

| Tape Size               | B <sub>1</sub><br>Max. | D₁<br>Min.      | E <sub>2</sub><br>Min. | F                              | P <sub>1</sub><br>See Note 5   | R<br>Min.<br>See Note 2 | T <sub>2</sub>       | W<br>Max.       | A <sub>0</sub> B <sub>0</sub> K <sub>0</sub> |
|-------------------------|------------------------|-----------------|------------------------|--------------------------------|--------------------------------|-------------------------|----------------------|-----------------|----------------------------------------------|
| 8mm                     | 4.35<br>(0.171)        | 1.00<br>(0.039) | 6.25<br>(0.246)        | 3.50 ± 0.05<br>(0.138 ± 0.002) | 4.00 ± 0.10<br>(0.157 ± 0.004) | 25.0<br>(0.984)         | 2.50 Max.<br>(0.098) | 8.30<br>(0.327) | See Note 1                                   |
| 12mm                    | 8.20<br>(0.323)        | 1.50<br>(0.059) | 10.25<br>(0.404)       | 5.50 ± 0.05<br>(0.217 ± 0.002) | 4.00 ± 0.10<br>(0.157 ± 0.004) | 30.0<br>(1.181)         | 6.50 Max.<br>(0.256) | 12.3<br>(0.484) | See Note 1                                   |
| 8mm 1/2<br>Pitch        | 4.35<br>(0.171)        | 1.00<br>(0.039) | 6.25<br>(0.246)        | 3.50 ± 0.05<br>(0.138 ± 0.002) | 2.00 ± 0.10<br>(0.079 ± 0.004) | 25.0<br>(0.984)         | 2.50 Max.<br>(0.098) | 8.30<br>(0.327) | See Note 1                                   |
| 12mm<br>Double<br>Pitch | 8.20<br>(0.323)        | 1.50<br>(0.059) | 10.25<br>(0.404)       | 5.50 ± 0.05<br>(0.217 ± 0.002) | 8.00 ± 0.10<br>(0.315 ± 0.004) | 30.0<br>(1.181)         | 6.50 Max.<br>(0.256) | 12.3<br>(0.484) | See Note 1                                   |

#### NOTES:

- The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:
- b) the component does not protrude beyond the sealing plane of the cover tape.
- c) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
- d) rotation of the component is limited to 20° maximum (see Sketches D & E).
- e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
- 2. Tape with or without components shall pass around radius "R" without damage.
- Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
- 4. B<sub>1</sub> dimension is a reference dimension for tape feeder clearance only.
- 5. If  $P_1$  = 2.0mm, the tape may not properly index in all tape feeders.










## **Paper Carrier Configuration**

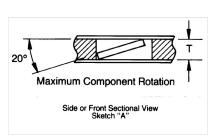
### 8 & 12mm Tape Only

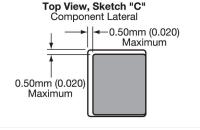


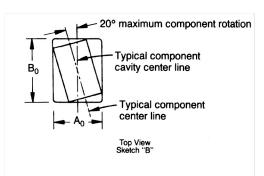


# 4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

#### **CONSTANT DIMENSIONS**


| Tape Size | D <sub>o</sub>            | E                   | P <sub>0</sub>  | P <sub>2</sub>      | T <sub>1</sub> | G. Min. | R Min.       |
|-----------|---------------------------|---------------------|-----------------|---------------------|----------------|---------|--------------|
| 8mm       | 1.50 +0.10                | 1.75 ± 0.10         | 4.00 ± 0.10     | 2.00 ± 0.05         | 0.10           | 0.75    | 25.0 (0.984) |
| and       | $(0.059^{+0.004}_{-0.0})$ | $(0.069 \pm 0.004)$ | (0.157 ± 0.004) | $(0.079 \pm 0.002)$ | ` ′            | (0.030) | See Note 2   |
| 12mm      |                           |                     |                 |                     | Max.           | Min.    | Min.         |


#### **VARIABLE DIMENSIONS**


| Tape Size               | P <sub>1</sub><br>See Note 4   | E <sub>2</sub> Min. | F                              | w                                                                                   | $A_0 B_0$  | Т                                  |
|-------------------------|--------------------------------|---------------------|--------------------------------|-------------------------------------------------------------------------------------|------------|------------------------------------|
| 8mm                     | 4.00 ± 0.10<br>(0.157 ± 0.004) | 6.25<br>(0.246)     | 3.50 ± 0.05<br>(0.138 ± 0.002) | 8.00 ±0.30<br>(0.315±0.012)                                                         | See Note 1 | 1.10mm<br>(0.043) Max.             |
| 12mm                    | 4.00 ± 0.10<br>(0.157 ± 0.004) | 10.25<br>(0.404)    | 5.50 ± 0.05<br>(0.217 ± 0.002) | 12.0 ± 0.30<br>(0.472 ± 0.012)                                                      |            | for Paper Base<br>Tape and         |
| 8mm<br>1/2 Pitch        | 2.00 ± 0.05<br>(0.079 ± 0.002) | 6.25<br>(0.246)     | 3.50 ± 0.05<br>(0.138 ± 0.002) | 8.00 <sup>+0.30</sup> <sub>-0.10</sub> (0.315 <sup>+0.012</sup> <sub>-0.004</sub> ) |            | 1.60mm<br>(0.063) Max.<br>for Non- |
| 12mm<br>Double<br>Pitch | 8.00 ± 0.10<br>(0.315 ± 0.004) | 10.25<br>(0.404)    | 5.50 ± 0.05<br>(0.217 ± 0.002) | 12.0 ± 0.30<br>(0.472 ± 0.012)                                                      |            | Paper Base<br>Compositions         |

#### NOTES

- 1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:
  - a) the component does not protrude beyond either surface of the carrier tape;
  - b)) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
- c) rotation of the component is limited to 20° maximum (see Sketches A  $\&\,B);$
- d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).
- 2. Tape with or without components shall pass around radius "R" without damage.
- Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.
- 4. If  $P_1$  = 2.0mm, the tape may not properly index in all tape feeders.







## **Bar Code Labeling Standard**

AVX bar code labeling is available and follows latest version of EIA-556





#### I. Capacitance (farads)

English: 
$$C = \frac{.224 \text{ K A}}{T_D}$$
  
Metric:  $C = \frac{.0884 \text{ K A}}{T_D}$ 

#### II. Energy stored in capacitors (Joules, watt - sec)

$$E = \frac{1}{2} CV^2$$

#### III. Linear charge of a capacitor (Amperes)

$$I=C \ \frac{dV}{dt}$$

#### IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

#### V. Capacitive Reactance (ohms)

$$x_C = \frac{1}{2 \pi fC}$$

#### VI. Inductive Reactance (ohms)

$$x_L = 2 \pi fL$$

#### VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

#### VIII. Dissipation Factor (%)

D.F.= 
$$\tan \delta$$
 (loss angle) =  $\frac{\text{E.S.R.}}{\text{X}_{\text{C}}}$  = (2  $\pi$ fC) (E.S.R.)

#### IX. Power Factor (%)

P.F. = Sine (loss angle) =  $\cos \varphi$  (phase angle)

P.F. = (when less than 10%) = DF

#### X. Quality Factor (dimensionless)

Q = Cotan 
$$\delta$$
 (loss angle) =  $\frac{1}{D}$  F

#### XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2 
$$\pi$$
 fC)

#### XII. Power Loss (watts)

Power Loss =  $(2 \pi fCV^2)$  (D.F.)

#### XIII. KVA (Kilowatts)

$$KVA = 2 \pi fCV^2 \times 10^{-3}$$

#### XIV. Temperature Characteristic (ppm/°C)

T.C. = 
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

#### XV. Cap Drift (%)

C.D. = 
$$\frac{C_1 - C_2}{C_1}$$
 x 100

#### XVI. Reliability of Ceramic Capacitors

$$\begin{array}{c} L_{o} = \left(\frac{V_{t}}{V_{o}}\right)^{X} & \left(\frac{T_{t}}{T_{o}}\right)^{-Y_{t}} \end{array}$$

#### XVII. Capacitors in Series (current the same)

Any Number: 
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - \frac{1}{C_N}$$
 Two:  $C_T = \frac{C_1 C_2}{C_1 + C_2}$ 

#### XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 --- + C_N$$

#### XIX. Aging Rate

A.R. =  $\%\Delta$  C/decade of time

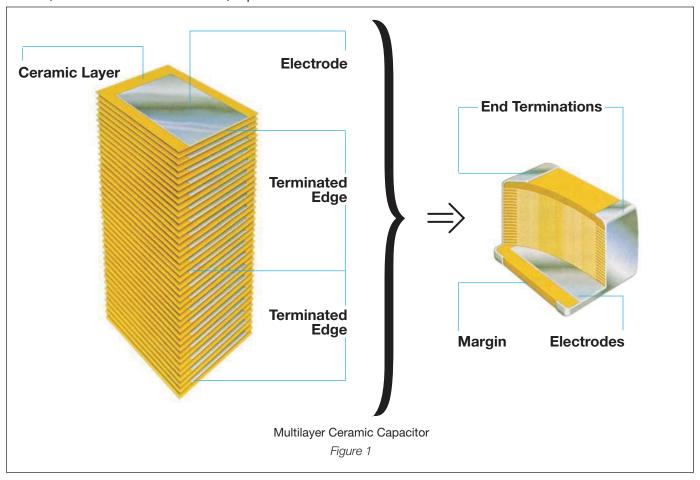
#### XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

#### **METRIC PREFIXES**

| Pico  | X 10 <sup>-12</sup> |
|-------|---------------------|
| Nano  | X 10 <sup>-9</sup>  |
| Micro | X 10 <sup>-6</sup>  |
| Milli | X 10 <sup>-3</sup>  |
| Deci  | X 10 <sup>-1</sup>  |
| Deca  | X 10 <sup>+1</sup>  |
| Kilo  | X 10 <sup>+3</sup>  |
| Mega  | X 10 <sup>+6</sup>  |
| Giga  | X 10 <sup>+9</sup>  |
| Tera  | X 10 <sup>+12</sup> |
|       |                     |
|       |                     |

#### **SYMBOLS**


| К              | = Dielectric Constant  | f              | = frequency                            | Lŧ             | = Test life             |
|----------------|------------------------|----------------|----------------------------------------|----------------|-------------------------|
| А              | = Area                 | L              | = Inductance                           | $V_{t}$        | = Test voltage          |
| T <sub>D</sub> | = Dielectric thickness | δ              | = Loss angle                           | V <sub>o</sub> | = Operating voltage     |
| V              | = Voltage              | φ              | = Phase angle                          | T <sub>t</sub> | = Test temperature      |
| t              | = time                 | X & Y          | = exponent effect of voltage and temp. | T <sub>o</sub> | = Operating temperature |
| R <sub>s</sub> | = Series Resistance    | L <sub>o</sub> | = Operating life                       |                |                         |





**Basic Construction** – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the

quality and quantities needed in today's electronic equipment.



**Formulations** – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.





Table 1: EIA and MIL Temperature Stable and General Application Codes

| EIA CODE Percent Capacity Change Over Temperature Range |                                                                                            |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| RS198                                                   | Temperature Range                                                                          |  |  |
| X7<br>X6<br>X5<br>Y5<br>Z5                              | -55°C to +125°C<br>-55°C to +105°C<br>-55°C to +85°C<br>-30°C to +85°C<br>+10°C to +85°C   |  |  |
| Code                                                    | Percent Capacity Change                                                                    |  |  |
| D<br>E<br>F<br>P<br>R<br>S<br>T<br>U<br>V               | ±3.3%<br>±4.7%<br>±7.5%<br>±10%<br>±15%<br>±22%<br>+22%, -33%<br>+22%, - 56%<br>+22%, -82% |  |  |

EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

| MIL CODE                   |                                                                                  |                                                                                  |  |  |
|----------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Symbol                     | bol Temperature Range                                                            |                                                                                  |  |  |
| A<br>B<br>C                | -55°C to +85°C<br>-55°C to +125°C<br>-55°C to +150°C                             |                                                                                  |  |  |
| Symbol                     | Cap. Change<br>Zero Volts                                                        | Cap. Change<br>Rated Volts                                                       |  |  |
| R<br>S<br>W<br>X<br>Y<br>Z | +15%, -15%<br>+22%, -22%<br>+22%, -56%<br>+15%, -15%<br>+30%, -70%<br>+20%, -20% | +15%, -40%<br>+22%, -56%<br>+22%, -66%<br>+15%, -25%<br>+30%, -80%<br>+20%, -30% |  |  |

Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

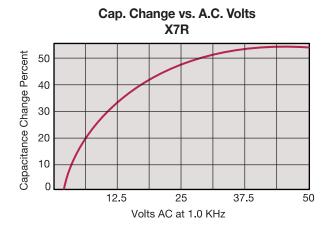



Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

## D.F. vs. A.C. Measurement Volts X7R

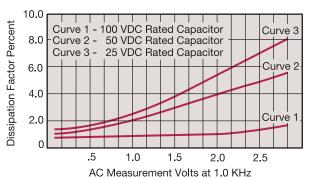
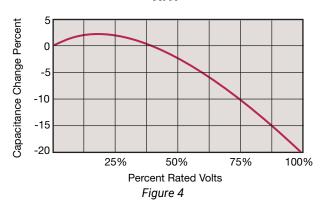




Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.



Typical Cap. Change vs. D.C. Volts X7R



Typical Cap. Change vs. Temperature X7R

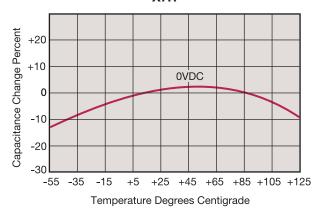



Figure 5

Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after deaging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

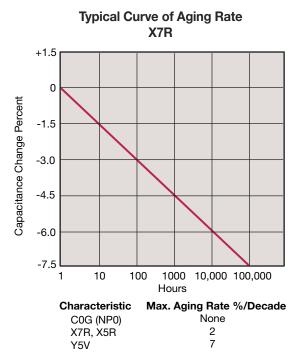



Figure 6

**Effects of Frequency** – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.



## **General Description**



Effects of Mechanical Stress - High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability - Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

 $L_0$  = operating life  $T_t$  = test temperature and L, = test life  $T_0$  = operating temperature in °C V, = test voltage

X,Y = see text  $V_0$  = operating voltage

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance - The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10<sup>-6</sup>), nano (10<sup>-9</sup>) or pico (10<sup>-12</sup>) farad level.

Dielectric Constant - In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness - Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area - Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored - The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

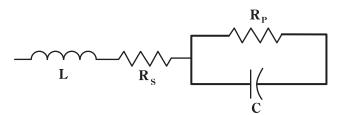
Potential Change - A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

C = Capacitance


dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit - A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance L = Inductance

R<sub>s</sub> = Series Resistance R<sub>D</sub> = Parallel Resistance



Reactance - Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

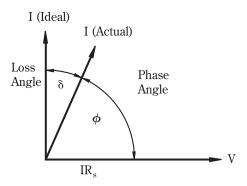
$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

where

**Z** = Total Impedance

**R**<sub>s</sub> = Series Resistance

 $= \frac{1}{2 \pi \text{ fC}}$  $= 2 \pi \text{ fL}$ **X**<sub>c</sub> = Capacitive Reactance


 $X_1$  = Inductive Reactance

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle - Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

## **General Description**





In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = Cos  $\phi$  or Sine  $\delta$  Dissipation Factor (D.F.) =  $\tan \delta$ 

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

**Equivalent Series Resistance** – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

**Dissipation Factor** – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor = 
$$\frac{\text{E.S.R.}}{\text{X}_{\odot}}$$
 = (2  $\pi$  fC) (E.S.R.)

The watts loss are:

Watts loss =  $(2 \pi fCV^2)$  (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

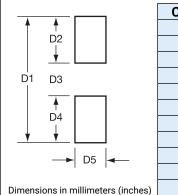
The  $\frac{cli}{clt}$  seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{\text{res}} = \frac{1}{2\pi\sqrt{\text{LC}}}$$

Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohmmicrofarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

**Dielectric Strength** – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.


**Dielectric Absorption** – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

**Corona** – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

### **MLC Chip Capacitors**

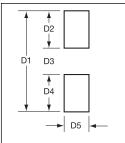


#### **REFLOW SOLDERING**



| Case Size | D1           | D2           | D3           | D4           | D5           |
|-----------|--------------|--------------|--------------|--------------|--------------|
| 0201      | 0.85 (0.033) | 0.30 (0.012) | 0.25 (0.010) | 0.30 (0.012) | 0.35 (0.014) |
| 0402      | 1.70 (0.067) | 0.60 (0.024) | 0.50 (0.020) | 0.60 (0.024) | 0.50 (0.020) |
| 0603      | 2.30 (0.091) | 0.80 (0.031) | 0.70 (0.028) | 0.80 (0.031) | 0.75 (0.030) |
| 0805      | 3.00 (0.118) | 1.00 (0.039) | 1.00 (0.039) | 1.00 (0.039) | 1.25 (0.049) |
| 1206      | 4.00 (0.157) | 1.00 (0.039) | 2.00 (0.079) | 1.00 (0.039) | 1.60 (0.063) |
| 1210      | 4.00 (0.157) | 1.00 (0.039) | 2.00 (0.079) | 1.00 (0.039) | 2.50 (0.098) |
| 1808      | 5.60 (0.220) | 1.00 (0.039) | 3.60 (0.142) | 1.00 (0.039) | 2.00 (0.079) |
| 1812      | 5.60 (0.220) | 1.00 (0.039) | 3.60 (0.142) | 1.00 (0.039) | 3.00 (0.118) |
| 1825      | 5.60 (0.220) | 1.00 (0.039) | 3.60 (0.142) | 1.00 (0.039) | 6.35 (0.250) |
| 2220      | 6.60 (0.260) | 1.00 (0.039) | 4.60 (0.181) | 1.00 (0.039) | 5.00 (0.197) |
| 2225      | 6.60 (0.260) | 1.00 (0.039) | 4.60 (0.181) | 1.00 (0.039) | 6.35 (0.250) |

#### **Component Pad Design**

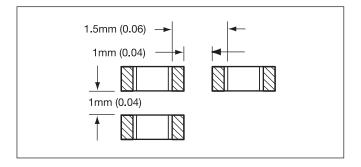

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- · Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

#### **WAVE SOLDERING**




| Case Size | D1          | D2          | D3          | D4          | D5          |
|-----------|-------------|-------------|-------------|-------------|-------------|
| 0603      | 3.10 (0.12) | 1.20 (0.05) | 0.70 (0.03) | 1.20 (0.05) | 0.75 (0.03) |
| 0805      | 4.00 (0.15) | 1.50 (0.06) | 1.00 (0.04) | 1.50 (0.06) | 1.25 (0.05) |
| 1206      | 5.00 (0.19) | 1.50 (0.06) | 2.00 (0.09) | 1.50 (0.06) | 1.60 (0.06) |

Dimensions in millimeters (inches)

#### Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.



#### **Preheat & Soldering**

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

#### Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

### **Recommended Soldering Profiles**



#### **REFLOW SOLDER PROFILES**

AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

#### Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180°C).

#### Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

#### **Cool Down:**

Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

#### **WAVE SOLDER PROFILES**

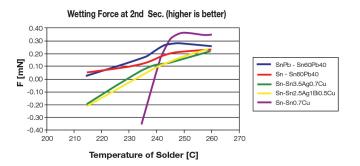
For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

#### Preheat:

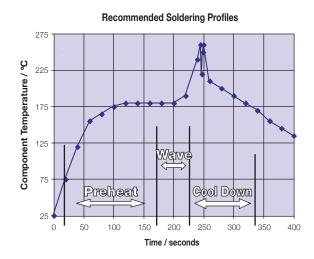
This is more important for wave solder, a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.

#### Wave:

 $250^{\rm o}\text{C}$  –  $260^{\rm o}\text{C}$  recommended for optimum solderability.


#### **Cool Down:**

As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated.




100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420

Time / secs



IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.



250

225

200

175

125

100

50

Component Temperature /

### **MLC Chip Capacitors**



#### **APPLICATION NOTES**

#### **Storage**

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

#### Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 245°C +/- 5°C for 5 +0/-0.5 seconds.

#### Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

| Termination Type | Solder Tin/<br>Lead/Silver | Solder<br>Temp °C | Immersion<br>Time Seconds |  |
|------------------|----------------------------|-------------------|---------------------------|--|
| Nickel Barrier   | 60/40/0                    | 260 ± 5           | 30 ± 1                    |  |

#### **Lead-Free Wave Soldering**

The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

#### General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

#### Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

#### **Preheat**

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

#### Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

#### Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

#### Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

#### **Prevention of Metallic Migration**

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

### **MLC Chip Capacitors**

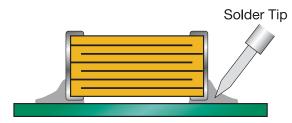


#### POST SOLDER HANDLING

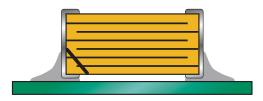
Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

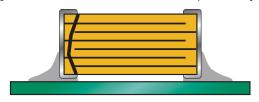
Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:


Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

### **COMMON CAUSES OF** MECHANICAL CRACKING


The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

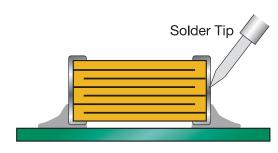

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.



Preferred Method - No Direct Part Contact



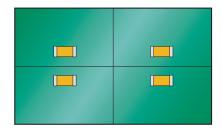
Type A: Angled crack between bottom of device to top of solder joint.



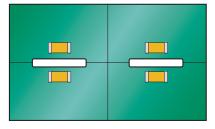

Type B: Fracture from top of device to bottom of device.

#### **REWORKING OF MLCS**

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.


However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.




Poor Method - Direct Contact with Part

#### **PCB BOARD DESIGN**

To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.



No Stress Relief for MLCs



Routed Cut Line Relieves Stress on MLC



# FOLLOW US: O 🗷 🖪 D in VISIT US AT WWW.AVX.COM

**North America** 

Tel: +1 864-967-2150

**Central America** Tel: +55 11-46881960 Europe

Tel: +44 1276-697000

Asia Tel: +65 6286-7555

Japan Tel: +81 740-321250