September 2000 Revised June 2005

FAIRCHILD

SEMICONDUCTOR TM

74LCXZ162244

Low Voltage 16-Bit Buffer/Line Driver with 5V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs

General Description

Ordering Code:

The LCXZ162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

When V_{CC} is between 0 and 1.5V, the LCXZ162244 is in the high impedance state during power up or power down. this places the outputs in the high impedance (Z) state preventing intermittent low impedance loading or glitching in bus oriented applications.

The LCXZ162244 is designed for low voltage (2.7V or 3.3V) $\rm V_{CC}$ applications with capability of interfacing to a 5V signal environment.

In addition the outputs include 26Ω (nominal) series resistors to reduce overshoot and undershoot and are designed to sink/source 12 mA at V_{CC} = 3.0V.

The LCXZ162244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- Guaranteed power up/down high impedance
- Supports live insertion/withdrawal
- $\blacksquare \text{ Outputs have equivalent } 26\Omega \text{ series resistors}$
- 2.7V–3.6V V_{CC} specifications provided
- 5.3 ns t_{PD} max (V_{CC} = 3.0V), 20 µA I_{CC} max
- \blacksquare ±12 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V Machine model > 200V

Order Number	Package Number	Package Description		
74LCXZ162244MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TUBES]		
74LCXZ162244MEX (Note 1)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]		
74LCXZ162244MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TUBES]		
74LCXZ162244MTX (Note 1)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL]		

Note 1: Use this Order Number to receive devices in Tape and Reel.

© 2005 Fairchild Semiconductor Corporation DS500251

74LCXZ162244

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Connection Diagram						
$v_{cc} = 18$ $31 = v_{cc}$ $o_{12} = 19$ $30 = I_{12}$	$\begin{array}{c} \overline{O}\overline{E}_1 \\ O_0 \\ O_1 \\ O_2 \\ O_2 \\ O_3 \\ O_2 \\ O_4 \\ O_5 \\ O_7 \\ O_8 \\ O_7 \\ O_8 \\ O_7 \\ O_8 \\ O_7 \\ O_8 \\ O_1 $	1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18	48 - Οξ ₂ 47 - 10 45 - 6 NC 44 - 12 43 - 13 42 - Vcc 41 - 14 40 - 15 - 13 - 13 - 15 - 19 - 33 - 19 - 19				

Logic Symbol

Pin Descriptions

Pin Names	Description			
OE n	Output Enable Input (Active LOW)			
I ₀ —I ₁₅	Inputs			
O ₀ -O ₁₅	Outputs			

Truth Tables

Inputs		Outputs
OE ₁	I ₀ –I ₃	0 ₀ –0 ₃
L	L	L
L	н	н
Н	Х	Z

Inputs		Outputs
OE ₃	I ₈ -I ₁₁ O ₈ -O ₁₁	
L	L	L
L	н	н
н	х	Z

Inputs		Outputs
OE ₂	I ₄ —I ₇	0 ₄ –0 ₇
L	L	L
L	н	н
н	х	Z

Inj	Outputs	
OE ₄	I ₁₂ -I ₁₅ O ₁₂ -O	
L	L	L
L	н	н
Н	х	Z

H = HIGH Voltage Level L = LOW Voltage Level

 X = Immaterial

 Z = High Impedance

Functional Description

The LCXZ162244 contains sixteen non-inverting buffers with 3-STATE standard outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each nibble. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE or V _{CC} = 0–1.5V	V	
		–0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 3)	v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	m ^	
		+50	$V_{O} > V_{CC}$	mA	
I _O	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

74LCXZ162244

Recommended Operating Conditions (Note 4)

Symbol	Parameter			Max	Units
V _{CC}	Supply Voltage	Operating	2.7	3.6	V
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.7V - 3.0V$		±8	IIIA
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Farameter	Conditions	(V)	Min	Max	Onita
V _{IH}	HIGH Level Input Voltage		2.7 - 3.6	2.0		V
VIL	LOW Level Input Voltage		2.7 - 3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.7	2.2		
		I _{OH} = -6 mA	3.0	2.4		V
		$I_{OH} = -8 \text{ mA}$	2.7			
		$I_{OH} = -12 \text{ mA}$	3.0	2.0		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 – 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	2.7		0.4	
		$I_{OL} = 6 \text{ mA}$	3.0		0.55	V
		I _{OL} = 8 mA	2.7		0.6	
		$I_{OL} = 12 \text{ mA}$	3.0		0.8	
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.7 – 3.6		±5.0	μA
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.7 - 3.6			
		$V_I = V_{IH} \text{ or } V_{IL}$	2.7 - 3.0		±5.0	μA
I _{OFF}	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 V$	0		10	μA
I _{PU/PD}	Power Up/Down	$V_0 = 0.5V$ to V_{CC}				
	3-STATE Output Current	$V_I = GND \text{ or } V_{CC}$	0 – 1.5		±5.0	μA
Icc	Quiescent Supply Current	V _I = V _{CC} or GND	2.7 - 3.6		225	
		$3.6V \leq V_{I}, V_{O} \leq 5.5V \; (\text{Note 5})$	2.7 - 3.6		±225	μA
Δlcc	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		500	μA

DC Electrical Characteristics (Continued) Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

Symbol		$\mathbf{T}_{\mathbf{A}} = -40^{\circ}\mathbf{C} \text{ to } + 85^{\circ}\mathbf{C}, \ \mathbf{R}_{\mathbf{L}} = 500 \ \Omega$				
	Parameter		$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$	
	Falanetei	C _L = 50 pF		C _L = 50 pF		Units
		Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.0	5.3	1.0	6.0	ns
t _{PLH}	Data to Output	1.0	5.3	1.0	6.0	
t _{PZL}	Output Enable Time	1.0	6.3	1.0	7.1	ns
t _{PZH}		1.0	6.3	1.0	7.1	115
t _{PLZ}	Output Disable Time	1.0	5.4	1.0	5.7	ns
t _{PHZ}		1.0	5.4	1.0	5.7	115
t _{OSHL}	Output to Output Skew (Note 6)		1.0			ns
t _{OSLH}			1.0			115

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{CC} $T_A = 25^{\circ}C$		Units
			(V)	Typical	onno
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	20	pF

74LCXZ162244

