- Easily Interfaced to Microprocessors
- On-Chip Data Latches
- Monotonic Over the Entire A/D Conversion Range
- Interchangeable With Analog Devices AD7528 and PMI PM-7528
- Fast Control Signaling for Digital Signal Processor (DSP) Applications Including Interface With TMS320
- Voltage-Mode Operation
- CMOS Technology

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 bits
Linearity Error	$1 / 2 \mathrm{LSB}$
Power Dissipation at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	20 mW
Settling Time at $\mathrm{V}_{D D}=5 \mathrm{~V}$	100 ns
Propagation Delay Time at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	80 ns

description

The TLC7528C, TLC7528E, and TLC7528I are dual, 8 -bit, digital-to-analog converters (DACs) designed with separate on-chip data latches and feature exceptionally close DAC-to-DAC matching. Data are transferred to either of the two DAC data latches through a common, 8 -bit, input port. Control input DACA/DACB determines which DAC is to be loaded. The load cycle of these devices is similar to the write cycle of a random-access memory, allowing easy interface to most popular microprocessor buses and output ports. Segmenting the high-order bits minimizes glitches during changes in the most significant bits, where glitch impulse is typically the strongest.

These devices operate from a 5 V to 15 V power supply and dissipates less than 15 mW (typical). The 2 - or 4-quadrant multiplying makes these devices a sound choice for many microprocessor-controlled gain-setting and signal-control applications. It can be operated in voltage mode, which produces a voltage output rather than a current output. Refer to the typical application information in this data sheet.
The TLC7528C is characterized for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The TLC7528I is characterized for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The TLC7528E is characterized for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

functional block diagram

operating sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{DD} (to AGND or DGND) . -0.3 V to 16.5 V

Input voltage (voltage mode out A, out B to AGND) -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3$
Output voltage, V_{OA} or V_{OB} (to AGND) . .. $\pm 25 \mathrm{~V}$
Peak input current ... 10ヶ. 10 A
 TLC75281 $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ TLC7528E $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Case temperature for 10 seconds, T_{C} : FN package ... $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: DW or N package $\ldots \ldots . \ldots \ldots .+260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

package/ordering information

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

recommended operating conditions

		$\mathrm{V}_{\text {DD }}=$.75V to	.25V	$\mathrm{V}_{\mathrm{DD}}=$	4.5 V to	5.5V	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Reference voltage, $\mathrm{V}_{\text {refA }}$ or $\mathrm{V}_{\text {refB }}$			± 10			± 10		V
High-level input voltage, V_{IH}		2.4			13.5			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$				0.8			1.5	V
$\overline{\mathrm{CS}}$ setup time, $\mathrm{t}_{\text {su }}(\mathrm{CS})$		50			50			ns
$\overline{\mathrm{CS}}$ hold time, th(CS)		0			0			ns
DAC select setup time, $\mathrm{t}_{\text {su(}}$ (DAC)		50			50			ns
DAC select hold time, th(DAC)		10			10			ns
Data bus input setup time $\mathrm{t}_{\text {su }}(\mathrm{D})$		25			25			ns
Data bus input hold time th(D)		10			10			ns
Pulse duration, $\overline{\mathrm{WR}}$ low, $\mathrm{t}_{\mathrm{w}}(\mathrm{WR})$		50			50			ns
	TLC7628C	0		+70	0		+70	
Operating free-air temperature, T_{A}	TLC7628I	-25		+85	-25		+85	${ }^{\circ} \mathrm{C}$
	TLC7628E	-40		+85	-40		+85	

electrical characteristics over recommended operating free-air temperature range,

$V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OA }}$ and $\mathrm{V}_{\text {OB }}$ at 0 V (unless otherwise noted)

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$			UNIT	
			MIN	TYP \dagger MAX	MIN	TYP†	MAX			
IIH	High-level input current			$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$		10			10	$\mu \mathrm{A}$
IIL	Low-level input current		$V_{1}=0$		$12-10$	5	12	-10	$\mu \mathrm{A}$	
	Reference input impedance REFA or REFB to AGND				20			20	$\mathrm{k} \Omega$	
IIkg	Output leakage current	OUTA	DAC data latch loaded with $00000000, V_{\text {refA }}= \pm 10 \mathrm{~V}$		± 400			± 200	nA	
		OUTB	DAC data latch loaded with $00000000, \mathrm{~V}_{\text {refB }}= \pm 10 \mathrm{~V}$		± 400			± 200		
	Input resistance match (REFA to REFB)				$\pm 1 \%$			$\pm 1 \%$		
	DC supply sensitivity, Δ gain/ $\Delta \mathrm{V}_{\mathrm{DD}}$		$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \%$		0.04			0.02	\%/\%	
IDD	Supply current (quiescent)		All digital inputs at V_{IH} min or $V_{\text {IL }}$ max		2			2	mA	
IDD	Supply current (standby)		All digital inputs at OV or V_{DD}		0.5			0.5	mA	
Ci_{i}	Input capacitance	DB0-DB7			10			10	pF	
		$\begin{aligned} & \overline{\overline{W R}, \overline{C S}}, \\ & \overline{\mathrm{DACA}} / \mathrm{DACB} \end{aligned}$			15			15	pF	
	Output capacitance (OUTA, OUTB)		DAC data latches loaded with 00000000		50			50	pF	
			DAC data latches loaded with 11111111		120			120		

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
operating characteristics over recommended operating free-air temperature range, $V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OA }}$ and $\mathrm{V}_{\text {OB }}$ at 0 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Linearity error						$\pm 1 / 2$			$\pm 1 / 2$	LSB
Settling time (to 1/2L		See Note 1			100			100	ns	
Gain error		See Note 2			2.5			2.5	LSB	
AC feedthrough	REFA to OUTA	See Note 3			-65			-65	dB	
	REFB to OUTB				-65			-65		
Temperature coefficient of gain		See Note 4			0.007			0.0035	\%FSR/ $/{ }^{\circ} \mathrm{C}$	
Propagation delay (from digital input to 90% of final analog output current)		See Note 5			80			80	ns	
Channel-to-channel isolation	REFA to OUTB	See Note 6	77			77			dB	
	REFB to OUTA	See Note 7	77			77				
Digital-to-analog glitch impulse area		Measured for code transition from 00000000 to 11111111, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	160			440			nV-s	
Digital crosstalk		Measured for code transition from 00000000 to 11111111, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	30			60			nV-s	
Harmonic distortion		$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}, \quad \mathrm{f}=1 \mathrm{kHz}, \quad \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-85			-85			dB	

NOTES: 1. OUTA, OUTB load $=100 \Omega, C_{e x t}=13 p F ; \overline{W R}$ and $\overline{C S}$ at $0 V$; DB0 $-D B 7$ at $0 V$ to $V_{D D}$ or $V_{D D}$ to $0 V$.
2. Gain error is measured using an internal feedback resistor. Nominal full scale range (FSR) $=V_{r e f}-1 L S B$.
3. $\mathrm{V}_{\text {ref }}=20 \mathrm{~V}$ peak-to-peak, 100 kHz sine wave; DAC data latches loaded with 00000000.
4. Temperature coefficient of gain measured from $0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ or from $+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
5. $V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}$; OUTA/OUTB load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at 0 V ; DB0-DB7 at OV to VDD or VDD to OV.
6. Both DAC latches loaded with $11111111 ; \mathrm{V}_{\text {refA }}=20 \mathrm{~V}$ peak-to-peak, 100 kHz sine wave; $\mathrm{V}_{\text {refB }}=0 ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
7. Both DAC latches loaded with $11111111 ; \mathrm{V}_{\text {refB }}=20 \mathrm{~V}$ peak-to-peak, 100 kHz sine wave; $\mathrm{V}_{\text {refA }}=0 ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PRINCIPLES OF OPERATION

These devices contain two identical, 8-bit-multiplying DACs, DACA and DACB. Each DAC consists of an inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state. Most applications require only the addition of an external operational amplifier and voltage reference. A simplified DAC circuit for DACA with all digital inputs low is shown in Figure 1.
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs share the analog ground terminal 1 (AGND). With all digital inputs high, the entire reference current flows to OUTA. A small leakage current (l_{lkg}) flows across internal junctions, and as with most semiconductor devices, doubles every $10^{\circ} \mathrm{C} . \mathrm{C}_{0}$ is due to the parallel combination of the NMOS switches and has a value that depends on the number of switches connected to the output. The range of C_{0} is 50 pF to 120 pF maximum. The equivalent output resistance $\left(r_{0}\right)$ varies with the input code from $0.8 R$ to $3 R$ where R is the nominal value of the ladder resistor in the R-2R network.
These devices interface to a microprocessor through the data bus, $\overline{C S}, \overline{W R}$, and $\overline{\mathrm{DACA}} / \mathrm{DACB}$ control signals. When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both low, the TLC7528 analog output, specified by the $\overline{\mathrm{DACA}} / \mathrm{DACB}$ control line, responds to the activity on the DB0-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When either the $\overline{\mathrm{CS}}$ signal or WR signal goes high, the data on the DB0-DB7 inputs are latched until the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled regardless of the state of the $\overline{\mathrm{WR}}$ signal.

PRINCIPLES OF OPERATION

The digital inputs of these devices provide TTL compatibility when operated from a supply voltage of 5 V . These devices can operate with any supply voltage in the range from 5 V to 15 V ; however, input logic levels are not TTL-compatible above 5 V .

Figure 1. Simplified Functional Circuit for DACA

Figure 2. TLC7528 Equivalent Circuit, DACA Latch Loaded With 11111111
MODE SELECTION TABLE

$\overline{\text { DACA/DACB }}$	$\overline{\mathbf{C S}}$	$\overline{\text { WR }}$	DACA	DACB
L	L	L	Write	Hold
H	L	L	Hold	Write
X	H	X	Hold	Hold
X	X	H	Hold	Hold

L = low level, H = high level, \quad X = don't care
$\mathrm{L}=$ low level, $\quad \mathrm{H}=$ high level, $\quad \mathrm{X}=$ don't care

APPLICATION INFORMATION

These devices are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for 2-quadrant and 4-quadrant multiplication are shown in Figure 3 and Figure 4. Table 1 and Table 2 summarize input coding for unipolar and bipolar operation, respectively.

NOTES: A. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with digital input of 255.
B. C1 and C2 phase compensation capacitors (10 pF to 15 pF) are required when using high-speed amplifiers to prevent ringing or oscillation.

Figure 3. Unipolar Operation (2-Quadrant Multiplication)

APPLICATION INFORMATION

NOTES: A. R1, R2, R3, and R4 are used only if gain adjustment is required. See table in Figure 3 for recommended values. Adjust R1 for $\mathrm{V}_{\mathrm{OA}}=0 \mathrm{~V}$ with code 10000000 in DACA latch. Adjust R 3 for $\mathrm{V}_{\mathrm{OB}}=0 \mathrm{~V}$ with 10000000 in DACB latch.
B. Matching and tracking are essential for resistor pairs R6, R7, R9, and R10.
C. C1 and C2 phase compensation capacitors (10 pF to 15 pF) may be required if A1 and A3 are high-speed amplifiers.

Figure 4. Bipolar Operation (4-Quadrant Operation)

Table 1. Unipolar Binary Code

| DAC LATCH CONTENTS
 MSB | LSB \dagger |
| :---: | :---: | ANALOG OUTPUT

$\dagger 1 \mathrm{LSB}=\left(2^{-8}\right) \mathrm{V}_{\text {I }}$

Table 2. Bipolar (Offset Binary) Code

DAC LATCH CONTENTS MSB LSB \ddagger	ANALOG OUTPUT
11111111	$\mathrm{V}_{\mathrm{l}}(127 / 128)$
10000001	$\mathrm{V}_{\mathrm{I}}(1 / 128)$
10000000	OV
01111111	- $\mathrm{V}_{1}(1 / 128)$
00000001	- $\mathrm{V}_{1}(127 / 128)$
00000000	- $\mathrm{V}_{\mathrm{I}}(128 / 128)$

$\ddagger 1 \mathrm{LSB}=\left(2^{-7}\right) \mathrm{V}_{\text {I }}$

APPLICATION INFORMATION

microprocessor interface information

NOTE A: A = decoded address for TLC7528 DACA
A $+1=$ decoded address for TLC7528 DACB
Figure 5. TLC7528: Intel 8051 Interface

NOTE A: A = decoded address for TLC7528 DACA
A +1 = decoded address for TLC7528 DACB
Figure 6. TLC7528: 6800 Interface

APPLICATION INFORMATION

NOTE A: $\begin{aligned} \text { A }=\text { decoded address for TLC7528 DACA } \\ A+1=\text { decoded address for TLC7528 DACB }\end{aligned}$
Figure 7. TLC7528 To Z-80A Interface

programmable window detector

The programmable window comparator shown in Figure 8 determines if the voltage applied to the DAC feedback resistors is within the limits programmed into the data latches of these devices. Input signal range depends on the reference and polarity; that is, the test input range is 0 to $-\mathrm{V}_{\text {ref. }}$. The DACA and DACB data latches are programmed with the upper and lower test limits. A signal within the programmed limits drives the output high.

APPLICATION INFORMATION

Figure 8. Digitally-Programmable Window Comparator (Upper- and Lower-Limit Tester)
digitally-controlled signal attenuator
Figure 9 shows a TLC7528 configured as a two-channel programmable attenuator. Applications include stereo audio and telephone signal level control. Table 3 shows input codes vs attenuation for a 0 dB to 15.5 dB range.

Figure 9. Digitally Controlled Dual Telephone Attenuator

APPLICATION INFORMATION

Table 3. Attenuation vs DACA, DACB Code

ATTEN (dB)	DAC INPUT CODE	CODE IN DECIMAL	ATTN (dB)	DAC INPUT CODE	CODE IN DECIMAL
0	11111111	255	8.0	01100110	102
0.5	11110010	242	8.5	01100000	96
1.0	11100100	228	9.0	01011011	91
1.5	11010111	215	9.5	01010110	86
2.0	11001011	203	10.0	01010001	81
2.5	11000000	192	10.5	01001100	76
3.0	10110101	181	11.0	01001000	72
3.5	10101011	171	11.5	01000100	68
4.0	10100010	162	12.0	01000000	64
4.5	10011000	152	12.5	00111101	61
5.0	10011111	144	13.0	00111001	57
5.5	10001000	136	13.5	00110110	54
6.0	10000000	128	14.0	00110011	51
6.5	01111001	121	14.5	00110000	48
7.0	01110010	114	15.0	00101110	46
7.5	01101100	108	15.5	00101011	43

programmable state-variable filter

This programmable state-variable or universal filter configuration provides low-pass, high-pass, and bandpass outputs, and is suitable for applications requiring microprocessor control of filter parameters.
As shown in Figure 10, DACA1 and DACB1 control the gain and Q of the filter while DACA2 and DACB2 control the cutoff frequency. Both halves of the DACA2 and DACB2 must track accurately in order for the cutoff-frequency equation to be true. With the TLC7528, this validity is easy to achieve.

$$
f_{C}=\frac{1}{2 \pi R 1 C 1}
$$

The programmable range for the cutoff or center frequency is 0 kHz to 15 kHz with a Q ranging from 0.3 to 4.5 . This parameter defines the limits of the component values.

APPLICATION INFORMATION

Circuit Equations:
$\mathrm{C}_{1}=\mathrm{C}_{\mathbf{2}}, \mathrm{R}_{\mathbf{1}}=\mathrm{R}_{\mathbf{2}}, \mathrm{R}_{\mathbf{4}}=\mathrm{R}_{\mathbf{5}}$
$\mathrm{Q}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}} \times \frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{fb}(\mathrm{DACB} 1)}}$
Where:
$R_{f b}$ is the internal resistor connected between OUTB and RFBB
$\mathbf{G}=-\frac{\mathbf{R}_{\mathbf{F}}}{\mathbf{R}_{\mathbf{S}}}$
NOTES: A. Op-amps A1, A2, A3, and A4 are TL287.
B. $\overline{\mathrm{CS}}$ compensates for the op-amp gain-bandwidth limitations.
C. DAC equivalent resistance equals $\frac{256 \times \text { (DAC ladder resistance) }}{\text { DAC digital code }}$

Figure 10. Digitally-Controlled State-Variable Filter

APPLICATION INFORMATION

voltage-mode operation

It is possible to operate the current multiplying D/A converter of these devices in a voltage mode. In the voltage mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at the reference voltage terminal. Figure 11 is an example of a current multiplying D/A that operates in the voltage mode.

Figure 11. Voltage-Mode Operation
The following equation shows the relationship between the fixed input voltage and the analog output voltage:
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{I}}(\mathrm{D} / 256)$
Where:
$\mathrm{V}_{\mathrm{O}}=$ analog output voltage
$\mathrm{V}_{\mathrm{I}}=$ fixed input voltage (must not be forced below 0 V .)
D = digital input code converted to decimal
In voltage-mode operation, these devices meet the following specification:

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Linearity error at REFA or REFB	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \quad$ OUTA or OUTB at $2.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1	LSB

Revision History

DATE	REV	PAGE	SECTION	DESCRIPTION
$11 / 08$	E	13	Application Information	Corrected Figure 10.
$6 / 07$	D	Front Page	-	Deleted Available Options table.
		3	-	Inserted Package/Ordering information.

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLC7528CDW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CDWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CFN	ACTIVE	PLCC	FN	20	46	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CFNG3	ACTIVE	PLCC	FN	20	46	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CFNR	ACTIVE	PLCC	FN	20	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC7528CN	Samples
TLC7528CNS	ACTIVE	SO	NS	20	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528	Samples
TLC7528CNSR	ACTIVE	SO	NS	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528	Samples
TLC7528CPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528CPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC7528C	Samples
TLC7528EDW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC7528E	Samples
TLC7528EDWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC7528E	Samples
TLC7528EDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC7528E	Samples
TLC7528EN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC7528EN	Samples
TLC7528IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples
TLC7528IDWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples

INSTRUMENTS

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLC7528IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples
TLC7528IFN	ACTIVE	PLCC	FN	20	46	Green (RoHS \& no Sb/Br)	CU SN	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples
TLC7528IFNG3	ACTIVE	PLCC	FN	20	46	Green (RoHS \& no Sb/Br)	CU SN	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples
TLC7528IN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	TLC7528IN	Samples
TLC7528IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples
TLC7528IPWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples
TLC7528IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	TLC7528I	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TLC7528CNSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
TLC7528EDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TLC7528IDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TLC7528IPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

*All dimensions are nomina

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC7528CNSR	SO	NS	20	2000	367.0	367.0	45.0
TLC7528EDWR	SOIC	DW	20	2000	367.0	367.0	45.0
TLC7528IDWR	SOIC	DW	20	2000	367.0	367.0	45.0
TLC7528IPWR	TSSOP	PW	20	2000	367.0	367.0	38.0

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G20)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

$P W$ (R-PDSO-G20)	PLASTIC SMALL OUTLINE
Example Board Layout	Based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in inches. Any dimensions in brackets are in millimeters. Any dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Dimension does not include mold protrusion. Maximum allowable mold protrusion .01 in [0.25 mm$]$ per side.
4. Reference JEDEC registration MS-018.

SOLDER MASK DETAILS

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

