

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

August 1998 Revised June 2005

74LCXP16245

Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and Pull-Down Resistors

General Description

The LCXP16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) $V_{\rm CC}$ applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The $\overline{\rm OE}$ inputs disable both the A and B ports by placing them in a high impedance state.

In addition, A and B port datapath pins have built-in resistors to GND allowing the pins to float without any increase in $I_{\rm CC}$ current. This feature is intended to address modular and space constrained applications where additional space consumed by external resistors is not available.

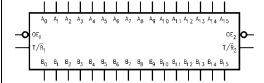
The LCXP16245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- I/O pull-down resistors terminate inactive busses ensuring a stable bus state
- 5.5 ns t_{PD} max ($V_{CC} = 3.3V$), 20 μ A I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA output drive (V_{CC} = 3.0V)
- Implements proprietary noise/EMI reduction circuitry
- Pinout compatible with 74 series 16245
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V

Machine model > 200V


Note 1: To ensure the high-impedance state during power up or down $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCXP16245MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCXP16245MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions

Pin Names	Description
OE _n	Output Enable Input
T/\overline{R}_n	Transmit/Receive Input
A ₀ -A ₁₅	Side A Inputs or 3-STATE Outputs
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs

Connection Diagram

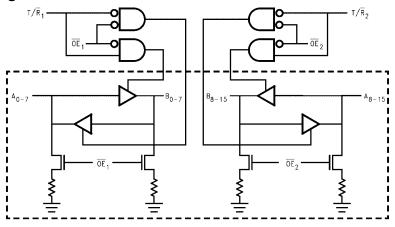
- /=			
T∕R ₁ —	1	48	→ OE ₁
В ₀ —	2	47	— A ₀
В ₁ —	3	46	— A ₁
GND -	4	45	— GND
В2 —	5	44	— A ₂
В3 —	6	43	— A ₃
v _{cc} -	7	42	- v _{cc}
В4 —	8	4 1	— A4
В ₅ —	9	40	— A ₅
GND -	10	39	— GND
В ₆ —	11	38	— A ₆
В ₇ —	12	37	— A ₇
в ₈ —	13	36	— A ₈
В ₉ —	14	35	— A ₉
GND -	15	34	— GND
В ₁₀ —	16	33	— A ₁₀
B _{1 1} —	17	32	— A _{1 1}
v _{cc} —	18	31	— v _{cc}
B _{1 2} —	19	30	— A ₁₂
B ₁₃ —	20	29	— A _{1 3}
GND -	21	28	— GND
B _{1 4} —	22	27	— A _{1.4}
B ₁₅ —	23	26	— A ₁₅
τ/R̄ ₂ —	24	25	— ŌĒ ₂
	L		I

Truth Tables

	Inp	uts	
	OE ₁	T/R ₁	Outputs
	L L		Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇
	L H H X		Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇
			HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇ (Note 2)

	Inputs		
	OE ₂	T/R ₂	Outputs
	L L		Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅
	L H H X		Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅
			HIGH Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅ (Note 2)

- H = HIGH Voltage Level L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance


Note 2: A and B port inputs are still active.

Functional Descriptions

The LCXP16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs, the device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device.

The $\overline{\text{OE}}$ inputs disable both the A and B ports by placing them in a high impedance state. The pulldown resistor (30K Ω normal) to GND is active only when the outputs are 3-STATED ($\overline{\text{OE}}$ = HIGH). When the outputs become active ($\overline{\text{OE}}$ = LOW) the resistor is removed from the circuit.

Logic Diagram

Absolute Maximum Ratings(Note 3)							
Symbol	Parameter	Value	Conditions	Units			
V _{CC}	Supply Voltage	-0.5 to +7.0		V			
VI	DC Input Voltage	-0.5 to +7.0		V			
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V			
		-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 4)				
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA			
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA			
		+50	V _O > V _{CC}	IIIA			
I _O	DC Output Source/Sink Current	±50		mA			
I _{CC}	DC Supply Current per Supply Pin	±100		mA			
I _{GND}	DC Ground Current per Ground Pin	±100		mA			
T _{STG}	Storage Temperature	-65 to +150		°C			

Recommended Operating Conditions

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V_{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°0	C to +85°C	Units
Syllibol	Faianietei	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		V
V_{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		8.0	•
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -8 \text{ mA}$	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2	
		$I_{OL} = 8 \text{ mA}$	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 – 3.6		±5.0	μА
I _{OZ(L)}	3-STATE I/O Leakage	V _I or V _O = 0.0V	2.3 – 3.6		±5.0	μА
I _{OZ(H)}	3-STATE I/O Leakage	V_I or $V_O = 5.5V$	2.3 – 3.6	50	500	μА
I _{OFF}	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μА
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.3 – 3.6		20	μА
		$3.6V \le V_I, V_O \le 5.5V \text{ (Note 5)}$	2.3 - 3.6		±20	μΑ

Note 4: $I_{\rm O}$ Absolute Maximum Rating must be observed.

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Cymbol	T diamotor	Conditions	(V)	Min	Max	Oillio
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μА

Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40$ °C to $+85$ °C, $R_L = 500\Omega$							
Cumbal	Parameter	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V V _{CC} = 2.7V C _L = 50 pF		$\label{eq:VCC} \begin{aligned} \text{VCC} &= 2.5 \text{V} \pm 0.2 \text{V} \\ \text{C}_{L} &= 50 \text{ pF} \end{aligned}$		Units	
Symbol	Parameter								
		Min	Max	Min	Max	Min	Max		
t _{PHL}	Propagation Delay	1.5	5.5	1.5	6.0	1.5	6.6		
t _{PLH}	A _n to B _n or B _n to A _n	1.5	5.5	1.5	6.0	1.5	6.6	ns	
t _{PZL}	Output Enable Time	1.5	7.0	1.5	8.0	1.5	9.1	ns	
t_{PZH}		1.5	7.0	1.5	8.0	1.5	9.1	115	
t _{PLZ}	Output Disable Time	1.5	7.0	1.5	7.5	1.5	8.4	ns	
t_{PHZ}		1.5	7.0	1.5	7.5	1.5	8.4	115	
toshl	Output to Output Skew (Note 6)		1.0					ns	
toslh			1.0					115	

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$	Units
Oyillboi	raiameter	Conditions	(V)	Typical	J.i.i.o
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
i		$C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{V, } V_{IL} = 0 \text{V}$	2.5	-0.6	٧

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V _{CC} = Open, V _I = 0V or V _{CC}	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

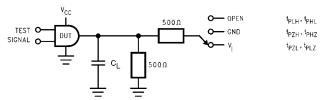
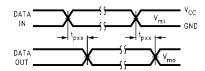
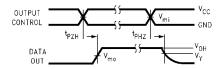
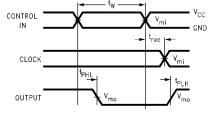
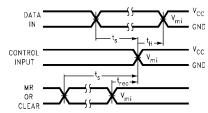
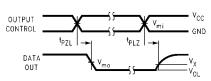




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch	
t _{PLH} , t _{PHL}	Open	
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 ± 0.3V V_{CC} x 2 at V_{CC} = 2.5 ± 0.2V	
t _{PZH} , t _{PHZ}	GND	


Waveform for Inverting and Non-Inverting Functions


3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and \mathbf{t}_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

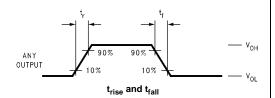
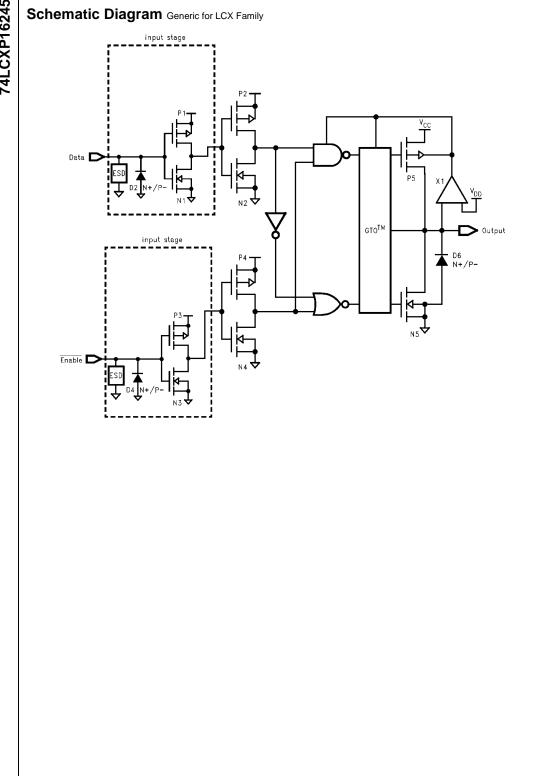
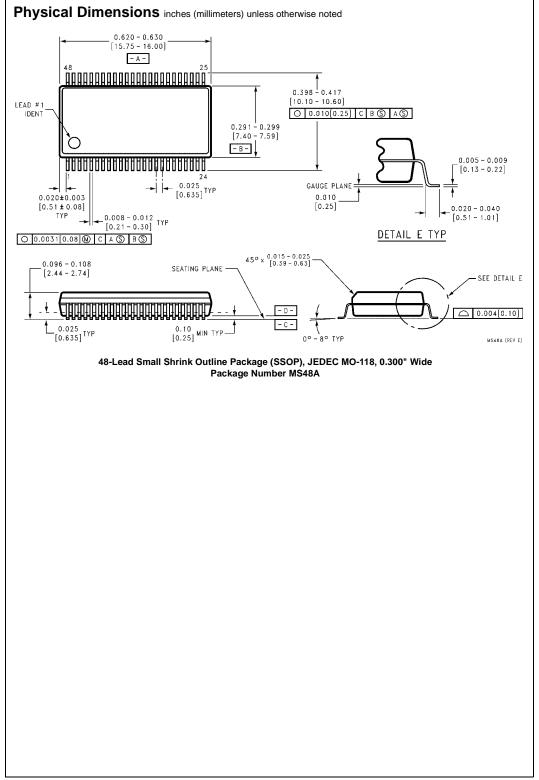
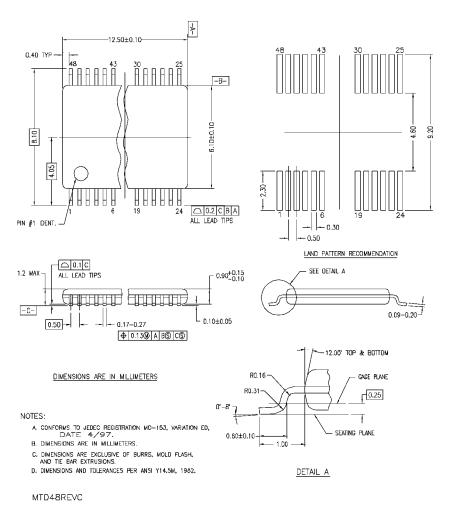




FIGURE 2. Waveforms (Input Characteristics; f = 1MHz, $t_r = t_f = 3ns$)


Symbol	V _{CC}		
	3.3V ± 0.3V	2.7V	2.5V ± 0.2V
V_{mi}	1.5V	1.5V	V _{CC} /2
V _{mo}	1.5V	1.5V	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V
٧,,	V _{OH} = 0.3V	V _{OH} – 0.3V	V _{OH} - 0.15V

Resistors

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: