LVDS 4x4 CROSSPOINT SWITCH

FEATURES

- Greater Than 2.0 Gbps Operation
- Nonblocking Architecture Allows Each Output to be Connected to Any Input
- Pk-Pk Jitter:
- 60 ps Typical at 2.0 Gbps
- 110 ps Typical at 2.5 Gbps
- Compatible With ANSI TIA/EIA-644-A LVDS Standard
- Available Packaging 38-Pin TSSOP
- 25 mV of Input Voltage Threshold Hysteresis
- Propagation Delay Times: 800 ps Typical
- Inputs Electrically Compatible With LVPECL, CML and LVDS Signal Levels
- Operates From a Single 3.3-V Supply
- Low Power: 110 mA Typical
- Integrated 110- Ω Line Termination Resistors Available With SN65LVDT250

APPLICATIONS

- Clock Buffering/Clock Muxing
- Wireless Base Stations
- High-Speed Network Routing
- Telecom/Datacom

DESCRIPTION

The SN65LVDS250 and SN65LVDT250 are 4×4 nonblocking crosspoint switches in a flow-through pin-out allowing for ease in PCB layout. Low-voltage differential signaling (LVDS) is used to achieve a high-speed data throughput while using low power. Each of the output drivers includes a 4:1 multiplexer to allow any input to be routed to any output. Internal signal paths are fully differential to achieve the high signaling speeds while maintaining low signal skews. The SN65LVDT250 incorporates $110-\Omega$ termination resistors for those applications where board space is a premium.

The SN65LVDS250 and SN65LVDT250 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN65LVDS250DBT (Marked as LVDS250)
SN65LVDT250DBT (Marked as LVDT250) (TOP VIEW)

EYE PATTERN

$V_{I C}=1.2 \mathrm{~V}$
$\left|V_{I D}\right|=200 \mathrm{mV}$
2 Gbps
Input $=$ PRBS $\mathbf{2 n}^{23} \mathbf{- 1}$
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

LOGIC DIAGRAM

Integrated Termination on LVDT Only

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

INPUT LVDS250

Table 1. CROSSPOINT LOGIC TABLES

OUTPUT CHANNEL 1		OUTPUT CHANNEL 2				OUTPUT CHANNEL 3			OUTPUT CHANNEL 4		
CONTROL PINS	INPUT SELECTED	CONNTROL PINS		INPUT SELECTED	CONTROL PINS	INPUT SELECTED	CONTROL PINS		INPUT SELECTED		
S10	$\mathbf{S 1 1}$	$\mathbf{1 Y} / \mathbf{1 Z}$	$\mathbf{S 2 0}$	$\mathbf{S 2 1}$	$\mathbf{2 Y} / 2 Z$	$\mathbf{S 3 0}$	$\mathbf{S 3 1}$	$\mathbf{3 Y} / \mathbf{3 Z}$	$\mathbf{S 4 0}$	$\mathbf{S 4 1}$	$\mathbf{4 Y} / \mathbf{4 Z}$
0	0	$1 \mathrm{~A} / 1 \mathrm{~B}$	0	0	$1 \mathrm{~A} / 1 \mathrm{~B}$	0	0	$1 \mathrm{~A} / 1 \mathrm{~B}$	0	0	$1 \mathrm{~A} / 1 \mathrm{~B}$
0	1	$2 \mathrm{~A} / 2 \mathrm{~B}$	0	1	$2 \mathrm{~A} / 2 \mathrm{~B}$	0	1	$2 \mathrm{~A} / 2 \mathrm{~B}$	0	1	$2 \mathrm{~A} / 2 \mathrm{~B}$
1	0	$3 \mathrm{~A} / 3 \mathrm{~B}$	1	0	$3 \mathrm{~A} / 3 \mathrm{~B}$	1	0	$3 \mathrm{~A} / 3 \mathrm{~B}$	1	0	$3 \mathrm{~A} / 3 \mathrm{~B}$
1	1	$4 \mathrm{~A} / 4 \mathrm{~B}$	1	1	$4 \mathrm{~A} / 4 \mathrm{~B}$	1	1	$4 \mathrm{~A} / 4 \mathrm{~B}$	1	1	$4 \mathrm{~A} / 4 \mathrm{~B}$

PACKAGE DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ${ }^{(1)}$ ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
TSSOP (DBT)	Low-K ${ }^{(2)}$	1038 mW	9.0 mW/ ${ }^{\circ} \mathrm{C}$	496 mW
TSSOP (DBT)	High-K ${ }^{(3)}$	1772 mW	$15.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	847 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounded and with no air flow.
(2) In accordance with the Low-K thermal metric definitions of EIA/JESD51-6
(3) In accordance with the High-K thermal metric definitions of EIA/JESD51-6

THERMAL CHARACTERISTICS

PARAMETER	TEST CONDITIONS	VALUE	UNITS
$\Theta_{\mathrm{JB}} \quad$ Junction-to-board thermal resistance		40.3	C / W
$\Theta_{\mathrm{JC}} \quad$ Junction-to-case thermal resistance		8.5	
P_{D}	Device power dissipation	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1 \mathrm{GHz}$	356
	$\mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, 1 \mathrm{GHz}$	mW	

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

			UNITS
Supply voltage range, V			-0.5 V to 4 V
	S, DE		-0.5 V to 4 V
Voltage range ${ }^{(2)}$	A, B		-0.5 V to 4 V
Volage range	$\left\|\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right\|$ (LVDT only)		1 V
	Y, Z		-0.5 V to 4 V
Electrostatic discharge	Human body model ${ }^{(3)}$	All pins	$\pm 3 \mathrm{kV}$
E	Charged-device model ${ }^{(4)}$	All pins	$\pm 500 \mathrm{~V}$
Continuous power dissip			See Dissipation Rating Table

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		3	3.3	3.6	V
V_{IH}	High-level input voltage	S10-S41, 1DE-4DE	2		V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	S10-S41, 1DE-4DE	0		0.8	V
		LVDS	0.1		1	V
\| ID	ag	LVDT	0.1		0.8	V
	Input voltage (any combination of com	de or input signals)	0		3.3	V
T_{J}	Junction temperature				140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}{ }^{(1)}$	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$

(1) Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

TIMING SPECIFICATIONS

PARAMETER			MIN NOM	MAX	UNIT
$\mathrm{t}_{\text {SET }}$	Input to select setup time	See Eigure 7	0.6		ns
$\mathrm{t}_{\text {HOLD }}$	Input to select hold time		0.2		ns
$\mathrm{t}_{\text {SWITCH }}$	Select to switch output		1.2	1.6	ns

INPUT ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted ${ }^{(1)}$

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{(1)}$	MAX	UNIT
$\mathrm{V}_{1 \mathrm{~T}_{+}}$	Positive-going differential input voltage threshold		See Eigure-1			100	mV
$\mathrm{V}_{\text {IT }}$.	Negative-going differential input voltage threshold		See Eigure -	-100			mV
$\mathrm{V}_{\text {ID(HYS }}$	Differential input voltage hysteresis				25		mV
${ }^{1} \mathrm{H}$	High-level input current	1DE-4DE	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	-10			$\mu \mathrm{A}$
		S10-S41				20	
IIL	Low-level input current	1DE-4DE	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-10			$\mu \mathrm{A}$
		S10-S41				20	
1	Input current (A or B inputs)		$\mathrm{V}_{1}=0 \mathrm{~V}$ or 3.3 V , second input at 1.2 V (other input open for LVDT)	-20		20	$\mu \mathrm{A}$
$I_{\text {(OFF) }}$	Input current (A or B inputs)		$\mathrm{V}_{\mathrm{CC}} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or 3.3 V , second input at 1.2 V (other input open for LVDT)	-20		20	$\mu \mathrm{A}$
I_{10}			$\mathrm{V}_{\mathrm{IA}}=\mathrm{V}_{\text {IB }}, 0 \leq \mathrm{V}_{\text {IA }} \leq 3.3 \mathrm{~V}$	-6		6	$\mu \mathrm{A}$
R_{T}	Termination resistance (LVDT)		$\mathrm{V}_{\text {ID }}=300 \mathrm{mV}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ to 3.3 V	90	110	132	Ω
	Termination resistance (LVDT with power-off)		$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=300 \mathrm{mV}, \mathrm{~V}_{\mathrm{IC}}=0 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.5 \mathrm{~V} \end{aligned}$	90	110	132	
C_{1}	Differential input capacitance				2.5		pF

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a 3.3 V supply.

SLLS594B-MARCH 2004-REVISED OCTOBER 2004

OUTPUT ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
\| $\mathrm{V}_{\text {OD }} \mid$	Differential output voltage magnitude	$\begin{aligned} & \text { See Fiqure 2 } \\ & \mathrm{V}_{\mathrm{ID}}= \pm 100 \mathrm{mV} \end{aligned}$	247	350	454	mV
$\Delta \mathrm{V}_{\text {OD }} \mid$	Change in differential output voltage magnitude between logic states		-50		50	mV
$\mathrm{V}_{\mathrm{OC}(\mathrm{SS})}$	Steady-state common-mode output voltage	See Eigure3	1.125		1.375	V
$\Delta \mathrm{V}_{\text {OC(SS }}$	Change in steady-state common-mode output voltage between logic states		-50		50	mV
$\mathrm{V}_{\mathrm{OC} \text { (PP) }}$	Peak-to-peak common-mode output voltage			50	150	mV
I_{CC}	Supply current	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		110	145	mA
l_{OS}	Short-circuit output current	V_{OY} or $\mathrm{V}_{\mathrm{OZ}}=0 \mathrm{~V}$	-27		27	mA
IOSD	Differential short circuit output current	$\mathrm{V}_{\mathrm{OD}}=0 \mathrm{~V}$	-12		12	mA
l_{Oz}	High-impedance output current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}			± 1	$\mu \mathrm{A}$
C_{0}	Differential output capacitance			2		pF

SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH	Propagation delay time, low-to-high-level output	See Eigure 4	700	800	1200	ps
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high-to-low-level output		700	800	1200	
t_{r}	Differential output signal rise time ($20 \%-80 \%$)			200	245	
t_{f}	Differential output signal fall time (20\%-80\%)			200	245	
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew (\| $\left.\mathrm{tPHL}^{-\mathrm{t}_{\text {PLLH }}}\right)^{(1)}$			0	50	ps
$\mathrm{t}_{\text {sk(0) }}$	Channel-to-channel output skew ${ }^{(2)}$				175	ps
$\mathrm{t}_{\text {sk(pp) }}$	Part-to-part skew ${ }^{(3)}$				300	ps
$\mathrm{t}_{\text {jit }}$ (per)	Period jitter, rms (1 standard deviation) ${ }^{(4)}$	See Eigure 6		1	3	ps
$\mathrm{t}_{\mathrm{jit} \text { (cc) }}$	Cycle-to-cycle jitter (peak) ${ }^{(5)}$	See Figure6		8	17	ps
$\mathrm{t}_{\mathrm{jit} \text { (pp) }}$	Peak-to-peak jitteR ${ }^{(6)}$	See Figure 6		60	110	ps
$\mathrm{t}_{\mathrm{jit} \text { (det) }}$	Deterministic jitter, peak-to-peak ${ }^{(7)}$	See Figure 6		48	65	ps
$\mathrm{t}_{\text {PHZ }}$	Propagation delay, high-level-to-high-impedance output	See Eigure.5			6	ns
tpLZ	Propagation delay, low-level-to-high-impedance output				6	
$t_{\text {pzH }}$	Propagation delay, high-impedance -to-high-level output				300	
$\mathrm{t}_{\text {PZL }}$	Propagation delay, high-impedance-to-low-level output				300	

(1) $t_{\text {sk(p) })}$ is the magnitude of the time difference between the $t_{P L H}$ and $t_{P H L}$ of any output of a single device.
(2) $\mathrm{t}_{\mathrm{sk}(0)}$ is the maximum delay time difference between drivers over temperature, V_{CC}, and process.
(3) $t_{\text {sk }(p p)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(4) Input voltage $=V_{I D}=200 \mathrm{mV}, 50 \%$ duty cycle at $1.0 \mathrm{GHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}$ (20% to 80%), measured over 1000 samples.
(5) Input voltage $=V_{I D}=200 \mathrm{mV}, 50 \%$ duty cycle at $1.0 \mathrm{GHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}(20 \%$ to $80 \%)$.
(6) Input voltage $=V_{I D}=200 \mathrm{mV}, 2^{23}-1$ PRBS pattern at $2.0 \mathrm{Gbps}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}$ (20% to 80%), measured over 200k samples.
(7) Input voltage $=V_{I D}=200 \mathrm{mV}, 2^{7-1}$ PRBS pattern at $2.0 \mathrm{Gbps}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}(20 \%$ to $80 \%)$.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Voltage and Current Definitions

Figure 2. Differential Output Voltage (V_{OD}) Test Circuit

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 1 \mathrm{~ns}$, pulse-repetition rate (PRR) $=0.5 \mathrm{Mpps}$, pulse width $=500 \pm 10 \mathrm{~ns} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the DUT; the measurement of $\mathrm{V}_{\mathrm{OC}(\mathrm{PP})}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 3. Test Circuit and Definitions fot the Driver Common-Mode Output Voltage

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 0.25 \mathrm{~ns}$, pulse-repetition rate $(P R R)=0.5 \mathrm{Mpps}$, pulse width $=500 \pm 10 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the DUT.

Figure 4. Timing Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f} \leq 1 \mathrm{~ns}$, pulse-repetition rate $(P R R)=0.5 \mathrm{Mpps}$, pulse width $=500 \pm 10 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the DUT.

Figure 5. Enable and Disable Time Circuit and Definitions

A. All input pulses are supplied by an Agilent 81250 Stimulus System.
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software.

Figure 6. Driver Jitter Measurement Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

DE

DE
A. $\quad t_{S E T}$ and $t_{\text {HOLD }}$ times specify that data must be in a stable state before and after mux control switches.

Figure 7. Input to Select for Both Rising and Falling Edge Setup and Hold Times

TYPICAL CHARACTERISTICS

Figure 8.

PEAK-TO-PEAK JITTER
vs FREQUENCY

Figure 11.

Figure 14.

PROPAGATION DELAY TIME
FREE-AIR TEMPERATURE

Figure 9.

PEAK-TO-PEAK JITTER
vs
DATA RATE

Figure 12.
PEAK-TO-PEAK JITTER
vs
FREQUENCY

Figure 15.

PROPAGATION DELAY TIME COMMON-MODE INPUT VOLTAGE

Figure 10.

PEAK-TO-PEAK JITTER
vs
FREQUENCY

Figure 13.
PEAK-TO-PEAK JITTER
VS
DATA RATE

Figure 16.

TYPICAL CHARACTERISTICS (continued)

Figure 17.
DIFFERENTIAL OUTPUT VOLTAGE FREQUENCY

Figure 19.

Figure 18.

60 - ps/div
$\mathrm{V}_{\text {IC }}=1.2 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=200 \mathrm{mV}, 2.5 \mathrm{Gbps}$, Input $=$ PRBS $\mathbf{2 T}^{23} \mathbf{- 1}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Figure 20.

APPLICATION INFORMATION

CONFIGURATION EXAMPLES

S10	S11	S20	S21
0	0	0	1
S30	S31	S40	S41
1	0	1	1

S10	S11	S20	S21
0	0	0	0
S30	S31	S40	S41
1	0	1	0

S10	S11	S20	S21
0	0	0	0
S30	S31	S40	S41
0	0	0	0

S10	S11	S20	S21
1	1	1	1
S30	S 31	S 40	S 41
0	0	0	0

APPLICATION INFORMATION (continued)
TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, etc.)

Figure 21. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

Figure 22. Current-Mode Logic (CML)

Figure 23. Single-Ended (LVPECL)

Figure 24. Low-Voltage Differential Signaling (LVDS)

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN65LVDS250DBT	ACTIVE	TSSOP	DBT	38	50	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVDS250	Samples
SN65LVDS250DBTR	ACTIVE	TSSOP	DBT	38	2000	Green (RoHS $\&$ no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVDS250	Samples
SN65LVDS250DBTRG4	ACTIVE	TSSOP	DBT	38	2000	Green (RoHS $\&$ no $\mathrm{Sb} / \mathrm{Br})$	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVDS250	Samples
SN65LVDT250DBT	ACTIVE	TSSOP	DBT	38	50	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVDT250	Samples
SN65LVDT250DBTR	ACTIVE	TSSOP	DBT	38	2000	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVDT250	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of $<=1000$ ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
SN65LVDS250DBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
SN65LVDT250DBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDS250DBTR	TSSOP	DBT	38	2000	350.0	350.0	43.0
SN65LVDT250DBTR	TSSOP	DBT	38	2000	350.0	350.0	43.0

PACKAGE OUTLINE

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

