

Features

- Compliant with AEC-Q200 Rev-C Stress Test Qualification for Passive Components in Automotive Applications
- Compact design to save board space -1206 footprint
- Small size results in very fast time to react to fault events
- Symmetrical design

- Low profile
- RoHS compliant* and halogen free**

MF-NSMF Series - PTC Resettable Fuses

Electrical Characteristics

	V max.	I max. Amps	I _{hold}	I _{trip}	Resis	tance	Max. Time To Trip		Tripped Power Dissipation
Model	Volts		Amperes at 23 °C		Ohms at 23 °C		Amperes Seconds at 23 °C at 23 °C		Watts at 23 °C
			Hold	Trip	R _{Min} .	R _{1Max.}			Тур.
MF-NSMF012	30.0	10	0.12	0.29	1.35	8.50	1.0	0.20	0.4
MF-NSMF016	30.0	10	0.16	0.75	0.70	6.00	1.0	0.30	0.6
MF-NSMF020	24.0	10	0.20	0.46	0.60	2.60	1.0	0.60	0.6
MF-NSMF020X	30.0	60	0.20	0.40	0.60	3.30	1.0	0.60	0.6
MF-NSMF025X	16.0	20	0.25	0.50	0.45	2.30	8.0	0.08	0.6
MF-NSMF035	6.0	100	0.35	0.75	0.30	1.20	8.0	0.10	0.6
MF-NSMF035X	16.0	20	0.35	0.75	0.30	1.40	3.5	0.14	0.6
MF-NSMF050	13.2	100	0.50	1.00	0.15	0.70	8.0	0.10	0.4
MF-NSMF075	6.0	100	0.75	1.50	0.10	0.40	8.0	0.10	0.4
MF-NSMF110	6.0	100	1.10	2.20	0.06	0.20	8.0	0.10	0.6
MF-NSMF150	6.0	100	1.50	3.00	0.03	0.13	8.0	0.30	0.6
MF-NSMF200	6.0	100	2.00	4.00	0.02	0.085	8.0	1.00	0.7

Environmental Characteristics

Operating Temperature		
Passive Aging	+85 °C, 1000 hours	. ±5 % typical resistance change
Humidity Aging	+85 °C, 85 % R.H. 1000 hours	±5 % typical resistance change
Thermal Shock	+85 °C to -40 °C, 20 times	±10 % typical resistance change
Solvent Resistance	MIL-STD-202, Method 215	. No change
	MIL-STD-883C, Method 2007.1,	
	Condition A	9
Moisture Sensitivity Level	1	
ESD Classification (HBM)	6	

Test Procedures And Requirements For Model MF-NSMF Series

Test Visual/Mech	Test Conditions . Verify dimensions and materials	Accept/Reject Criteria Per MF physical description
	. In still air @ 23 °C	
Time to Trip	. At specified current, Vmax, 23 °C	. T ≤ max. time to trip (seconds)
Hold Current	. 30 min. at Ihold	. No trip
Trip Cycle Life	. Vmax, Imax, 100 cycles	No arcing or burning
Trip Endurance	. Vmax, 48 hours	. No arcing or burning
Solderability	. ANSI/J-STD-002	. 95 % min. coverage
III. File Number	E174545	

http://www.ul.com/ Follow link to Online Certificates Directory, then enter UL File No.

E174545, or click here

http://www.tuvdotcom.com/ Follow link to "other certificates", enter File No. 2057213 or click here

WARNING Cancer and Reproductive Harm - www.P65Warnings.ca.gov

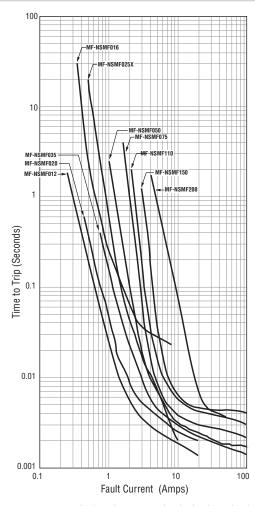
- RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.
- Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (CI) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (CI) content is 1500 ppm or less.

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

Applications

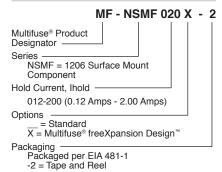
- USB port protection USB 2.0, 3.0 & OTG
- HDMI 1.4 Source protection
- PC motherboards Plug and Play protection
- Mobile phones Battery and port protection
- PDAs / digital cameras
- Game console port protection

■ Automotive electronic control modules

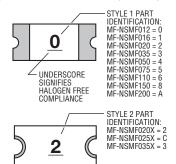

MF-NSMF Series - PTC Resettable Fuses

BOURNS

Thermal Derating Chart - Ihold (Amps)


Model	Ambient Operating Temperature									
wodei	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C	
MF-NSMF012	0.19	0.17	0.15	0.12	0.11	0.10	0.09	0.08	0.07	
MF-NSMF016	0.21	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.09	
MF-NSMF020	0.30	0.27	0.24	0.20	0.18	0.16	0.14	0.12	0.11	
MF-NSMF020X	0.30	0.27	0.24	0.20	0.18	0.16	0.14	0.12	0.10	
MF-NSMF025X	0.37	0.33	0.29	0.25	0.22	0.20	0.17	0.15	0.12	
MF-NSMF035	0.51	0.46	0.40	0.35	0.30	0.27	0.24	0.22	0.18	
MF-NSMF035X	0.58	0.51	0.44	0.35	0.31	0.28	0.24	0.21	0.16	
MF-NSMF050	0.76	0.68	0.59	0.50	0.44	0.40	0.35	0.32	0.26	
MF-NSMF075	1.11	1.00	0.85	0.75	0.67	0.61	0.52	0.50	0.42	
MF-NSMF110	1.64	1.46	1.30	1.10	0.92	0.83	0.80	0.65	0.52	
MF-NSMF150	2.20	1.99	1.77	1.50	1.34	1.23	1.10	1.01	0.84	
MF-NSMF200	2.88	2.61	2.28	2.00	1.80	1.66	1.51	1.39	1.19	

Typical Time to Trip at 23 °C


The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

How to Order

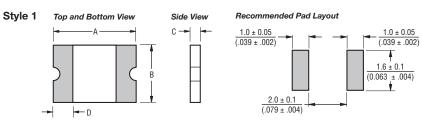
Typical Part Marking

Represents total content. Layout may vary.

BIWEEKLY DATE CODE WILL APPEAR ON THE PACKAGING LABEL: WEEK 1 AND 2 = A WEEK 51 AND 52 = Z

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.


MF-NSMF Series - PTC Resettable Fuses

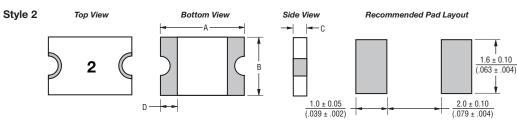
Product Dimensions

Model	l l	A	E	3			D	Ctude
Model	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Style
MF-NSMF012	3.00	3.40	1.40	1.80	0.70	1.10	0.25	1
	(0.118)	(0.134)	(0.055)	(0.071)	(0.028)	(0.043)	(0.010)	1
MF-NSMF016	3.00_	3.40	1.40	1.80_	_0.48_	_0.85_	0.25	1
IVII IVOIVII OTO	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	
MF-NSMF020	3.00_	3.40	1.40	1.80	0.48_	_0.85_	0.25	1
IVII TVOIVII 020	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF020X	_3.00_	3.40	1.40	1.80_	_0.40_	_0.85_	0.25	2
IVII TVOIVII 020X	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.033)	(0.010)	
MF-NSMF025X	3.00_	3.40	1.40	1.80	_0.48_	0.85	0.25	2
IVII -INGIVII UZSA	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	
MF-NSMF035	3.00	3.40	1.40	1.80	_0.48_	0.85	0.25	4
IVII -INGIVII 000	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF035X	3.00	3.40	1.40	1.80	0.40	0.85	0.25	2
IVII -INGIVII 000X	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.033)	(0.010)	
MF-NSMF050	3.00	3.40	1.40	1.80	0.48	0.85	0.25	1
IVII -INGIVII UGU	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF075	3.00	3.40	1.40	1.80	0.40	0.70	0.25	1
IVII -INGIVII 075	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	'
MF-NSMF110	3.00	3.40	1.40	1.80	0.40	0.70	0.25	1
IVII -IVOIVII TTO	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	'
MF-NSMF150	3.00	3.40	1.40	1.80	0.40	0.70	0.25	4
	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	
MF-NSMF200	3.00	3.50	1.40	1.80	0.70	1.60	0.25	1
IVIF-INDIVIF200	(0.118)	(0.138)	(0.055)	(0.071)	(0.028)	(0.063)	(0.010)	'

Packaging: 3000 pcs. per reel.

DIMENSIONS: (INCHES)

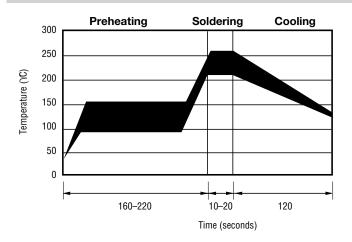
Terminal material:


Electroless Ni under immersion Au

Termination pad solderability:

Standard Au finish: Meets ANSI/J-STD-002 Category 2.

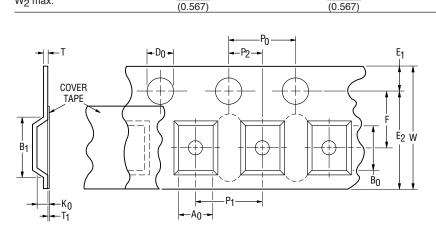
Recommended Storage:

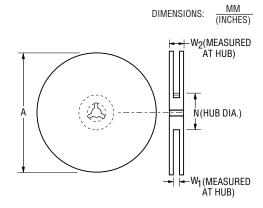

40 °C max./70 % RH max.

MF-NSMF Series - PTC Resettable Fuses

BOURNS

Solder Reflow Recommendations




Notes:

- MF-NSMF models cannot be wave soldered. Please contact Bourns for hand soldering recommendations.
- If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.
- · Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering.
 Please refer to the Multifuse® Polymer PTC Soldering Recommendation quidelines.

MF-NSMF Series Tape and Reel Specifications

W 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 8.0 ± 0.30 9.0 ± 0.012 9.0 ± 0.012 9.0 ± 0.012 9.0 ± 0.012 9.0 ± 0.012 9.0 ± 0.014 9.0 ± 0.014 9.0 ± 0.014 9.0 ± 0.014 9.0 ± 0.014 9.0 ± 0.014 9.0 ± 0.014 9.0 ± 0.012 9.0 ± 0.002	Tape Dimensions	MF-NSMF012 & MF-NSMF200 per EIA 481-1	MF-NSMF016 ~ MF-NSMF050 per EIA 481-1	MF-NSMF075 ~ MF-NSMF150 per EIA 481-1	MF-NSMF020X, MF-NSMF025X & MF-NSMF035X per EIA 481-1
W (0.315 ± 0.012) (0.315 ± 0.012) (0.315 ± 0.012) (0.315 ± 0.012) (0.315 ± 0.012) (0.315 ± 0.012) (0.315 ± 0.0012) (0.157 ± 0.004) (0.179 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.075 ± 0.004)				•	
P ₀ 4.0 ± 0.10 (0.157 ± 0.004) (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.10 (0.075 ± 0.004) 4.0 ± 0.00 (0.075 ± 0.004) 4.0	W				
PO (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 4.0 ± 0.10 1.0 ± 0.00 (0.157 ± 0.004) (0.157 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.18 ± 0.004) (0.18 ± 0.004) (0.18 ± 0.004) (0.110 ± 0.004) (0.171 ± 0.004) (0.171 ± 0.004) (0.052 ± 0.004) (0.052 ±	_				
P1 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) 4.0 ± 0.10 (0.157 ± 0.004) P2 2.0 ± 0.05 (0.079 ± 0.002) 2.0 ± 0.05 (0.079 ± 0.002) 2.0 ± 0.05 (0.079 ± 0.002) 2.0 ± 0.05 (0.079 ± 0.002) A0 1.90 ± 0.10 (0.075 ± 0.004) 1.90 ± 0.10 (0.075 ± 0.004) 1.90 ± 0.10 (0.075 ± 0.004) 1.90 ± 0.10 (0.075 ± 0.004) B0 3.50 ± 0.10 (0.138 ± 0.004) 3.45 ± 0.10 (0.138 ± 0.004) 3.45 ± 0.10 (0.138 ± 0.004) 3.45 ± 0.10 (0.138 ± 0.004) B1 max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) B1 max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) B2 max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) B2 max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) B2 max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) B3 max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) B3 max. 4.35 (0.054) 3.5 ± 0.05 (0.054) 3.5 ± 0.05 (0.054) 3.5 ± 0.05 (0.074) 3.5 ± 0	P ₀	$\overline{(0.157 \pm 0.004)}$	$\overline{(0.157 \pm 0.004)}$		
P2 2.0 ± 0.05 (0.079 ± 0.002) 2.0 ± 0.05 (0.075 ± 0.004) 2.0 ± 0.004 (0.075 ± 0.004) 3.5 ± 0.10 (0.138 ± 0.004) 3.5 ± 0.10 (0.171) 3.5 ± 0.05 (0.171) 3.5 ± 0.05 (0.171) 3.5 ± 0.05 (0.059 ± 0.004/-0)					
P2 (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) (0.079 ± 0.002) A0 1.90 ± 0.10 1.90 ± 0.10 1.90 ± 0.10 1.90 ± 0.10 1.90 ± 0.10 B0 3.50 ± 0.10 3.45 ± 0.10 3.45 ± 0.10 3.45 ± 0.10 3.55 ± 0.10 B1 max. 4.35 4.35 4.35 4.35 4.35 4.35 D0 1.5 + 0.10/-0.0	P1	$\overline{(0.157 \pm 0.004)}$	$\overline{(0.157 \pm 0.004)}$	$\overline{(0.157 \pm 0.004)}$	$\overline{(0.157 \pm 0.004)}$
A ₀ 1.90 ± 0.10 (0.075 ± 0.004) 1.90 ± 0.10 (0.138 ± 0.004) 1.90 ± 0.10 (0.138 ± 0.004) 1.90 ± 0.10 (0.138 ± 0.004) 1.90 ± 0.10 (0.171) 1.90 ± 0.10 (0.071) 1.90 ± 0.10 (0.081) 1.90 ± 0.	D-	2.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05
A0 (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) (0.075 ± 0.004) B _O 3.50 ± 0.10 (0.138 ± 0.004) 3.45 ± 0.10 (0.138 ± 0.004) 3.55 ± 0.10 (0.138 ± 0.004) (0.138 ± 0.004) (0.140 ± 0.004) B ₁ max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) D _O 1.5 + 0.10/-0.0 (0.059 + 0.004/-0) 1.5 + 0.10/-0.0 (0.138 + 0.002) 1.5 + 0.10/-0.0 (0.059 + 0.004/-0) 1.5 + 0.10/-0.0 (0.059 + 0.004/-0) 1.5 + 0.10/-0.0 (0.059 + 0.004/-0) 1.5 + 0.10/-0.0 (0.059 + 0.004/-0) <td< td=""><td>F2</td><td>$\overline{(0.079 \pm 0.002)}$</td><td>$(0.079 \pm 0.002)$</td><td>$(0.079 \pm 0.002)$</td><td>$(0.079 \pm 0.002)$</td></td<>	F2	$\overline{(0.079 \pm 0.002)}$	(0.079 ± 0.002)	(0.079 ± 0.002)	(0.079 ± 0.002)
Bo 3.50 ± 0.10 3.45 ± 0.10 3.45 ± 0.10 3.45 ± 0.10 3.55 ± 0.10 Bo 3.50 ± 0.10 0.3.55 ± 0.10 0.3.55 ± 0.10 0.3.55 ± 0.10 0.3.55 ± 0.10 B₁ max. 4.35 4.35 4.35 4.35 4.35 4.35 D0 1.5 ± 0.10/-0.0 1.75 ± 0.10 1.80 ± 0.10 1.80 ± 0.10 1.80 ± 0.10	٨٥	1.90 ± 0.10	1.90 ± 0.10	1.90 ± 0.10	1.90 ± 0.10
B0 (0.138 ± 0.004) (0.136 ± 0.004) (0.136 ± 0.004) (0.140 ± 0.004) B₁ max. 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) 4.35 (0.171) D0 1.5 ± 0.100-0.0 (0.059 ± 0.004/-0) 1.5 ± 0.100-0.0 (0.059 ± 0.004/-0) (0.175 ± 0.004/-0) (0.175 ± 0.004/-0) (0.175 ± 0.004/-0) (0.180 ± 0.002/-0) (0.069 ± 0.004/-0) (0.069 ± 0.004/-0) (0.069 ± 0.004/-0) (0.069 ± 0.004/-0) (0.069 ± 0.004/-0) (0.024/-0)	A0	(0.075 ± 0.004)	(0.075 ± 0.004)	(0.075 ± 0.004)	
B ₁ max.	Bo		3.45 ± 0.10		3.55 ± 0.10
B1 max. (0.171) (0.171) (0.171) (0.171) D0 1.5 ± 0.10/-0.0 (0.059 ± 0.004/-0) 1.5 ± 0.10 (0.059 ± 0.004/-0) 1.5 ± 0.10 (0.059 ± 0.004/-0) 0.138 ± 0.002 0.14 0.14 0.14 0.14 0.14 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024	<u></u>	(0.138 ± 0.004)	(0.136 ± 0.004)	(0.136 ± 0.004)	(0.140 ± 0.004)
Do 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10/-0.0 1.5 ± 0.10 1.5 ± 0.10 1.5 ± 0.10 1.75 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 1.05 ± 0.10 <t< td=""><td>R₄ may</td><td></td><td></td><td></td><td></td></t<>	R ₄ may				
DQ (0.059 + 0.004/-0) (0.059 + 0.004/-0) (0.059 + 0.004/-0) (0.059 + 0.004/-0) F 3.5 ± 0.05 (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.004) (0.069 ± 0.004) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0	Di Illax.		(0.171)		(0.171)
F	Do				
F (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) E1 1.75 ± 0.10 1.75 ± 0.10 1.75 ± 0.10 1.75 ± 0.10 1.75 ± 0.10 E2 min. 6.25 6.25 6.25 6.25 6.25 (0.246) (0.246) (0.246) (0.246) (0.246) (0.246) T max. 0.6 0.6 0.6 0.6 0.6 0.6 (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) T ₁ max. 0.1 0.1 0.1 0.1 0.1 (0.024) (0.004) 0.004) 0.004) 0.004) 0.004) K ₀ 1.35 ± 0.10 1.04 ± 0.10 0.85 ± 0.10 0.80 ± 0.10 K ₀ 1.35 ± 0.10 1.04 ± 0.10 0.85 ± 0.10 0.80 ± 0.10 Leader min. 390 390 390 390 Leader min. 160 160 160 160 Trailer min. 160 160 160 160		, ,			
E1 (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) (0.138 ± 0.002) E1 1.75 ± 0.10 1.75 ± 0.10 1.75 ± 0.10 (0.069 ± 0.004) (0.069 ± 0.004) (0.069 ± 0.004) E2 min. 6.25 6.25 6.25 6.25 6.25 T max. 0.6 0.6 0.6 0.6 0.6 T max. 0.1 0.1 0.1 0.1 0.1 T max. 0.0 0.0 0.0 0.0 0.0 0.0 K ₀ 0.1 0.1 0.1 0.1 0.1 0.0 0.00 0.004	F				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
E2 min. 6.25 (0.246) 6.25 (0.25) 6.25 (0.246) 6.25 (0.246) 6.25 (0.246) 6.25 (0.246)	F ₄				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,	
T max. 0.6 (0.024) 0.6 (0.024) 0.6 (0.024) 0.6 (0.024) 0.6 (0.024) T ₁ max. 0.1 (0.004) 0.1 (0.004) 0.1 (0.004) 0.1 (0.004) 0.1 (0.004) K ₀ 1.35 ± 0.10 (0.053 ± 0.004) 1.04 ± 0.10 (0.041 ± 0.004) 0.85 ± 0.10 (0.033 ± 0.004) 0.80 ± 0.10 (0.032 ± 0.004) Leader min. 390 (15.35) 390 (15.35) 390 (15.35) 390 (15.35) Trailer min. 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) Reel Dimensions A max. 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) N min. 50 (1.97) (1.97) 50 (1.97) (1.97) 50 (1.97) 50 (1.97) W ₁ 8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0) (0.331 + 0.059/-0.0) (0.331 + 0.059/-0.0) (0.331 + 0.059/-0.0) 14.4 (14.4) 14.4 (14.4)	Eo min.				
Timax. (0.024) (0.024) (0.024) (0.024) T1 max. 0.1 (0.004) 0.1 (0.004) 0.1 (0.004) 0.1 (0.004) K0 1.35 ± 0.10 (0.053 ± 0.004) 1.04 ± 0.10 (0.041 ± 0.004) 0.85 ± 0.10 (0.033 ± 0.004) 0.80 ± 0.10 (0.032 ± 0.004) Leader min. 390 (15.35) 390 (15.35) 390 (15.35) 390 (15.35) 390 (15.35) 390 (15.35) 390 (15.35) 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 184 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28) 184 (7.28					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T max.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T ₁ max.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(/	()	()	(/
Leader min. 390 (15.35)	K ₀				
Leader Min. (15.35) (15.35) (15.35) (15.35) Trailer min. 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) 160 (6.30) Reel Dimensions A max. 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 185 (7.28) 50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97) 1.97) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leader min.				
Reel Dimensions 185 (7.28) 18					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trailer min.				
A max. $\frac{185}{(7.28)}$ $\frac{185}{(7.28)}$ $\frac{185}{(7.28)}$ $\frac{185}{(7.28)}$ N min. $\frac{50}{(1.97)}$ $\frac{50}{(1.97)}$ $\frac{50}{(1.97)}$ $\frac{50}{(1.97)}$ W1 $\frac{8.4 + 1.5/-0.0}{(0.331 + 0.059/-0.0)}$ $\frac{8.4 + 1.5/-0.0}{(0.331 + 0.059/-0.0)}$ $\frac{8.4 + 1.5/-0.0}{(0.331 + 0.059/-0.0)}$ Wo may $\frac{14.4}{14.4}$ $\frac{14.4}{14.4}$ $\frac{14.4}{14.4}$	Pool Dimonoiono	(0.50)	(0.50)	(0.50)	(0.00)
A max. (7.28) (7.28) (7.28) (7.28) N min. 50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97) W ₁ 8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0) Wo may 14.4 14.4 14.4 14.4	neel Difficusions				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Λ may				
N min. (1.97) (1.97) (1.97) (1.97) W1 8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0) Wo may 14.4 14.4 14.4 14.4	A IIIax.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N min				
W1 (0.331 + 0.059/-0.0) (0.331 + 0.059/-0.0) (0.331 + 0.059/-0.0) (0.331 + 0.059/-0.0) W2 max	TV IIIIII.	` /			, ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wa				
	**	,	,	,	
(0.567) (0.567) (0.567)	Wo max				
		(0.567)	(0.567)	(0.567)	(0.567)

Legal Disclaimer Notice

This legal disclaimer applies to purchasers and users of Bourns® products manufactured by or on behalf of Bourns, Inc. and its affiliates (collectively, "Bourns").

Unless otherwise expressly indicated in writing, Bourns® products and data sheets relating thereto are subject to change without notice. Users should check for and obtain the latest relevant information and verify that such information is current and complete before placing orders for Bourns® products.

The characteristics and parameters of a Bourns® product set forth in its data sheet are based on laboratory conditions, and statements regarding the suitability of products for certain types of applications are based on Bourns' knowledge of typical requirements in generic applications. The characteristics and parameters of a Bourns® product in a user application may vary from the data sheet characteristics and parameters due to (i) the combination of the Bourns® product with other components in the user's application, or (ii) the environment of the user application itself. The characteristics and parameters of a Bourns® product also can and do vary in different applications and actual performance may vary over time. Users should always verify the actual performance of the Bourns® product in their specific devices and applications, and make their own independent judgments regarding the amount of additional test margin to design into their device or application to compensate for differences between laboratory and real world conditions.

Unless Bourns has explicitly designated an individual Bourns® product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949) or a particular qualification (e.g., UL listed or recognized), Bourns is not responsible for any failure of an individual Bourns® product to meet the requirements of such industry standard or particular qualification. Users of Bourns® products are responsible for ensuring compliance with safety-related requirements and standards applicable to their devices or applications.

Bourns® products are not recommended, authorized or intended for use in nuclear, lifesaving, life-critical or life-sustaining applications, nor in any other applications where failure or malfunction may result in personal injury, death, or severe property or environmental damage. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any Bourns® products in such unauthorized applications might not be safe and thus is at the user's sole risk. Life-critical applications include devices identified by the U.S. Food and Drug Administration as Class III devices and generally equivalent classifications outside of the United States.

Bourns expressly identifies those Bourns® standard products that are suitable for use in automotive applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns® standard products in an automotive application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk. If Bourns expressly identifies a sub-category of automotive application in the data sheet for its standard products (such as infotainment or lighting), such identification means that Bourns has reviewed its standard product and has determined that if such Bourns® standard product is considered for potential use in automotive applications, it should only be used in such sub-category of automotive applications. Any reference to Bourns® standard product in the data sheet as compliant with the AEC-Q standard or "automotive grade" does not by itself mean that Bourns has approved such product for use in an automotive application.

Bourns® standard products are not tested to comply with United States Federal Aviation Administration standards generally or any other generally equivalent governmental organization standard applicable to products designed or manufactured for use in aircraft or space applications. Bourns expressly identifies Bourns® standard products that are suitable for use in aircraft or space applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns® standard product in an aircraft or space application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk.

The use and level of testing applicable to Bourns® custom products shall be negotiated on a case-by-case basis by Bourns and the user for which such Bourns® custom products are specially designed. Absent a written agreement between Bourns and the user regarding the use and level of such testing, the above provisions applicable to Bourns® standard products shall also apply to such Bourns® custom products.

Users shall not sell, transfer, export or re-export any Bourns® products or technology for use in activities which involve the design, development, production, use or stockpiling of nuclear, chemical or biological weapons or missiles, nor shall they use Bourns® products or technology in any facility which engages in activities relating to such devices. The foregoing restrictions apply to all uses and applications that violate national or international prohibitions, including embargos or international regulations. Further, Bourns® products and Bourns technology and technical data may not under any circumstance be exported or re-exported to countries subject to international sanctions or embargoes. Bourns® products may not, without prior authorization from Bourns and/or the U.S. Government, be resold, transferred, or re-exported to any party not eligible to receive U.S. commodities, software, and technical data.

To the maximum extent permitted by applicable law, Bourns disclaims (i) any and all liability for special, punitive, consequential, incidental or indirect damages or lost revenues or lost profits, and (ii) any and all implied warranties, including implied warranties of fitness for particular purpose, non-infringement and merchantability.

For your convenience, copies of this Legal Disclaimer Notice with German, Spanish, Japanese, Traditional Chinese and Simplified Chinese bilingual versions are available at:

Web Page: http://www.bourns.com/legal/disclaimers-terms-and-policies

PDF: http://www.bourns.com/docs/Legal/disclaimer.pdf